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ABSTRACT: Great pioneers of nucleic acid chemistry had elucidated nucleic acid functions and
structures and developed various antiviral modified nucleoside drugs. It is possible in theory that
antiviral modified nucleosides prevent viral replication by inhibiting viral polymerases. However,
biological phenomena far exceed our predictions at times. We describe the characteristics of the
approved antiviral modified nucleosides from an organic chemistry perspective. Also, based on
our experiences and findings through the development of the HIV-1 reverse-transcriptase
inhibitor “Islatravir”, we provide the practical and approximate guidelines for the drug
development of antiviral modified nucleosides against COVID-19.
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The pandemic of the novel coronavirus infection (COVID-
19) reminds us that “Themerciless battle between humans

and viruses never ends.” The discovery of viruses, especially
RNA viruses, has had a significant impact on life sciences, forcing
a substantial revision of the “Central Dogma,” a fundamental
concept in molecular biology. The 2020 Nobel Prize in
Physiology or Medicine was awarded to three virologists who
discovered the hepatitis C virus (HCV). To confront the Global
Virus Threat, many scientists struggle with research and the
development of vaccines and antiviral drugs. Theoretically,
antiviral modified nucleosides can prevent viral replication by
inhibiting viral polymerases; in practice, though, things never
work out as expected. In this Viewpoint, we describe the
characteristics of the approved antiviral modified nucleosides on
the basis of organic chemistry perspective. We refer to the
possibility of the development of antiviral modified nucleosides
against COVID-19. We hope that this Viewpoint will raise the
researcher’s interest in the antiviral modified nucleosides.
Viruses that threaten humankind’s survival can be divided into

DNA viruses and RNA viruses depending on their genomic
nucleic acids.

■ DNA VIRUS
A DNA virus is a virus whose genome is stored in DNA,
replicated, and proliferated by host (human) DNA polymerase.
To give some examples, smallpox virus, varicella zoster virus
(VZV), and herpes simplex virus (HSV) belong to this category.
These viruses do not mutate because they use human DNA
polymerase and benefit from its proof-reading capabilities. Since
the smallpox virus is genetically stable and has few mutations,
smallpox has been eradicated by a global vaccination program.

Hepatitis B virus (HBV) is a unique DNA virus that utilizes
human RNA polymerase to synthesize RNA from genomic
DNA. It then uses the viral reverse transcriptase (RT) to
replicate genomic DNA from the RNA. HBV is prone to
mutation due to the nature of the viral nucleic acid polymerase
(RT).

■ RNA VIRUS

Retroviruses use their own RTs to produce DNA from their
RNA genomes. Thus, the viral DNA integrates into host DNA
and forms a stable latent infection. Human Immunodeficiency
Virus (HIV) belongs to them. On the other hand, many RNA
viruses use viral RNA-dependent RNA polymerase to replicate
and propagate genomic RNA. Coronavirus, influenza virus,
Ebola virus, and hepatitis C virus (HCV) belong to this category.
These viruses use viral RNA polymerase for replication and are
therefore susceptible to mutations. (Replicative errors in DNA
polymerases are suppressed to about once for every 108−1010

nucleotides by proof-reading, whereas RNA polymerases make
mistakes at a rate of about 1 per every 10 000 nucleotides.)
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■ EXAMPLESOFANTIVIRALMODIFIEDNUCLEOSIDE
DRUGS FOR DNA VIRUS

Varicella-Zoster Virus (VZV) and Herpes Simplex Virus
(HSV). Acyclovir (ACV: 1)1 (Figure 1) and its analogues are
considered silver bullets against herpes. As the name implies,
acyclovir is acyclic and could be regarded as a 2′, 3′-
dideoxyguanosine analogue.

1 is not phosphorylated by cellular thymidine kinase but is
phosphorylated by viral thymidine kinase expressed in VZV-
infected cells and further converted to the triphosphate by
cellular phosphatases. The ACV-triphosphate is incorporated
into the viral DNA instead of guanosine-5′-O-triphosphate.
Therefore, human DNA polymerase is unable to elongate viral
DNA fully. However, 1 does not undergo phosphorylation by
human kinase and therefore is not toxic to uninfected cells.

The toxicity (side effect) of antiviral modified nucleoside
drugs arises from the recognition of modified nucleoside
triphosphate as a substrate by human nucleic acid
polymerases.
Sorivudine (SRV: 3)2 (Figure 2), a synthetic analogue of

thymidine, is approximately 2000−3000 times more potent than

1 against VZV and also shows activity against Epstein−Barr virus
(EBV) for which there is no effective treatment. The 5′-OH of 3
is phosphorylated by the thymidine kinase of VZV. Therefore, 3
exhibits selective viral activity. 3 inhibits DNA polymerases as a
2′-deoxynucleoside derivative. Despite being a potent antiviral
drug, 3 had significant drug interaction side effects when used
with the common anticancer prodrug, 5FU (5). Phosphorolytic
enzymes cleave the glycosidic bond of 3 to release 5-
bromovinyluracil (4). At the same time, 3 loses its antiviral
activity. 4 is an inhibitor of dihydrothymine dehydrogenase, the

enzyme that catalyzes the hydrogenation of 5 (Figure 2), which
is a highly toxic anticancer drug. Consequently, the plasma
concentrations of 5 increase, causing severe side effects such as
leukopenia and thrombocytopenia.
In 1993, 15 cancer patients undergoing 5-FU chemotherapy

died by the concomitant administration of SRV in Japan3,4

(Sorivudine Incident).
This case suggests that the glycosyl bond of nucleosides needs

to be stable in vivo to prevent the loss of activity and the incident
caused by the released base. It may also be necessary for the
modified nucleosides that have no antiviral activity due to being
not phosphorylated by human kinases to be re-examined the
activity against VZV and HSV.

Hepatitis B Virus (HBV). Infants are vaccinated to prevent
HBV infection. RT inhibitors of HIV-1 are also used as anti-
HBV drugs. The authors have developed a novel modified
nucleoside analogue for the reverse-transcriptase inhibitor of
HIV-1, EFdA (7)5 (Islatravir; details of this compound will be
described later), which has an ethynyl group at the 4′-C-position
(Figure 3). 7 exerts potent antiviral activity against HIV-1;

however, it did not show the expected antiviral activity against
HBV. Later, it was found that 2′-deoxynucleosides with a cyano
group at the 4′-C-position showed good antiviral activity against
HBV. It was also inferred that the ethynyl group at the 4′-C
moiety is too large for the lipophilic pocket of the RT of HBV,
but the cyano group at the 4′-C-position is just the right size to
make the strong enzyme−substrate interactions.6
It is reported that 4′-C-cyanoentecavir (8)7 and 4′-C-cyano-7-

deaza-7-fluoro-2′-deoxyadenosine (9)8 have potent antiviral
activity against HBV and prevent the emergence of resistant
HBV strains (Figure 4).

The above are examples of antiviral modified nucleoside drugs
for DNA viruses.

■ EXAMPLESOFANTIVIRALMODIFIEDNUCLEOSIDE
DRUGS FOR RNA VIRUS

Generally, the development of antiviral therapeutic agents for
RNA viruses is considered difficult because RNA viruses have
high mutation rates. However, the authors conceive that the
mutation is the key to the creation of antiviral modified

Figure 1. Chemical structure of acyclovir and guanosine.

Figure 2. Mechanism of lethal interactions between sorivudine and 5-
fluorouracil.

Figure 3. Chemical structure of EFdA (Islatravir).

Figure 4. Anti-HBV-Nucleosides.

ACS Medicinal Chemistry Letters pubs.acs.org/acsmedchemlett Viewpoint

https://doi.org/10.1021/acsmedchemlett.1c00070
ACS Med. Chem. Lett. 2021, 12, 510−517

511

https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00070?fig=fig4&ref=pdf
pubs.acs.org/acsmedchemlett?ref=pdf
https://doi.org/10.1021/acsmedchemlett.1c00070?rel=cite-as&ref=PDF&jav=VoR


nucleosides. That is, the mutation is the process by which viruses
alter their genes. Viral nucleic acid polymerases accept
noncanonical nucleosides, which do not obey adenine-thymine
and guanine-cytosine rules in canonical Watson−Crick base
pairing, in place of normal nucleosides. This fact indicates that
the substrate selectivity of viral nucleic acid polymerases is very
lenient, and therefore, the viral nucleic acid polymerases will
accept modified nucleosides.
Hepatitis C Virus (HCV).TheNobel Prize inMedicine 2020

was awarded for the discovery of HCV. The discovery has led to
the development of superior therapeutic agents such as
sofosbuvir (10), of which nucleoside part was invented by late
Dr. Kyoichi A. Watanabe.9−11 The authors expected that he
would be the Nobel laureate for the development of 10 (Figure
5).

Conventionally, the combination of interferon and ribavirin
(11) (Figure 5) has been used to treat chronic HCV infection.
Still, it has significant therapeutic challenges because of adverse
events due to long-term administration. With the advent of 10,
chronic HCV infection treatment has been revolutionized. The
combination of 10 /11 and the combination of 10 with the

NS5A inhibitor, ledipasvir (HARVONI tablets), have few side
effects. They are therapeutically more effective than the
combination of interferon and 11. In particular, 10 has the
efficacy of achieving almost 100% sustained virological response
rates (SVR) against HCV. Furthermore, it does not allow the
emergence of resistant HCV strains.
10 is the HCV NS5B RNA polymerase inhibitor. 2′-C-

Methyladenosine (12)12 (Figure 5) was known as an antiviral
modified nucleoside that inhibits HCV RNA polymerase;
however, it was not a clinically applicable drug due to its strong
side effects resulting from inhibition of human RNA polymerase.
The nucleosides that are chemically modified at any single

position of physiological nucleosides have high viral activity. At
the same time, they are highly toxic for clinical use because they
are indistinguishable from the original physiologic nucleosides
for human nucleic acid polymerases. Tubercidin (7-deaza-
adenosine: 13),13 with a single modification, is also highly active
antibiotics but highly toxic against humans.
Olsen’s group synthesized a hybrid nucleoside 14 of 12 and

13. They also synthesized compound 15, which is a further
modification of compound 14. Olsen’s group also found that
compound 14 has lower side effects and higher anti-HCV
activity than 12 and that 15 is superior to 1414 (Figure 6).

Toxicity (side effects) of modified nucleosides is drastically
reduced when they are modified more. In some cases, the
activity of the further modified nucleosides may be even
higher than the original one.
For example, 4′-C-ethynyl d4T (Ed4T: 17),15 which is a

further modification of the anti-HIV clinical drug d4T (16), is
less toxic andmore active than 16 and 7 is much less harmful and
much more anti-HIV active than 4′-C-ethynyl-2′-deoxyadeno-
sine (EdA: 18) (Figure 7).
10 is a 2′-α-fluoro-2′-C-methyl-2′-deoxyuridine. Since nucleic

acid polymerases of eukaryotes such as humans and bacteria do
not recognize the 2′-α-F moiety of nucleosides as a 2′-OH
group, the 2′-α-fluoro-2′-deoxynucleoside was recognized as a
2′-deoxynucleoside. However, RNA polymerase of HCV utilizes
10 as a substrate, and therefore, there is a possibility that the
other viral RNA polymerases recognize the fluorine moiety of a
nucleoside as 2′-OH. Also, 10 does not inhibit human RNA

Figure 5. Anti-HCV-nucleosides.

Figure 6. Olsen’s anti-HCV nucleotide to reduce cell toxicity.
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polymerase because human RNA polymerases do not recognize
the 2′-α-F moiety of a nucleoside as the 2′-OH group. This is the
difference between human RNA polymerase and HCV RNA
polymerase. Since the base of 10 is uracil, it is not recognized as a
substrate for human DNA polymerase. Therefore, 10 tends to
have fewer side effects. It is very intriguing whether other RNA
viruses recognize the 2′-α-F moiety of a nucleoside as the 2′-OH
group. 10 is an antiviral drug that utilizes the difference in
recognizing 2′-α-F moiety between human RNA polymerase
and HCV RNA polymerase. Therefore, it is engaging to
investigate how the unknown nucleosides such as 4′-C-cyano-
2′-fluoro-2′-deoxyuridine (19), 4′-C-cyano-2′,7-difluoro-2′-
deoxy-7-deazaadenosine (20), and 4′-C-cyano-2,2′-difluoro-2′-
deoxyadenosine (21) (Figure 8) show activity against human
and virus polymerases.

If human kinases do not phosphorylate the 5′-OH groups of
these nucleosides, they need to be chemically modified to
nucleotide prodrug like 10.
Human Immunodeficiency Virus (HIV). HIV is a

retrovirus that uses RT to synthesize DNA from genomic
RNA, incorporates the DNA into host DNA, and proliferates
genomic RNA using human RNA polymerase. Unlike other
treatments for viral infections, the treatment of HIV infection
requires a lifetime anti-HIV medication as the viral DNA
incorporated into human DNA cannot be removed. Therefore,
the side effects of drugs are a more severe problem. 2′, 3′-
Dideoxynucleosides (ddN), which inhibit RT (Figure 9), have

been used as anti-HIV drugs. This is because the ddN structure
is thought to be essential to be a chain terminator for RT.
However, the problems are the rapid emergence of drug-
resistant HIV variants to ddN drugs and the side effects by them,
which are the chain terminators of DNA polymerase, as shown
by the Sanger method for DNA sequencing.
The authors predicted that the reason for the emergence of

HIV drug-resistant mutant strains to ddN drugs was the ability
of RT to discriminate ddN drugs from the physiological 2′-
deoxynucleoside (dN: 25) and not to incorporate the ddN drugs
into the active center of RT. Since the difference between ddN
and 25 is whether they have 3′-OH, HIV can discriminate them
by the 3′-OH. In other words, for a modified nucleoside drug to
prevent the emergence of HIV drug-resistant mutant strains, it
must have the 3′-OH group in the molecule to be misidentified
as 25 by RT.
Furthermore, we figured that for the ddN nucleoside drugs

with 3′-OH to be the chain-terminator of RT, a substituent
should be introduced at the 4′-position of 25. The reason is that
when a substituent is introduced at the 4′-position of 25, the 3′-
OH becomes a neopentyl-type secondary hydroxyl group, which
results in an extremely low reactive OH and would stop DNA
chain synthesis. However, when a substituent at the 4′-position
is introduced into 25, the 5′-OH becomes an unreactive
neopentyl primary hydroxyl group, raising whether the kinase
phosphorylates the 5′-OH. The side effects of modified
nucleoside drugs are thought to occur because the triphosphates
of them are recognized and incorporated as the substrates by
human DNA polymerases. Therefore, we considered it
necessary to modify the physiological nucleosides at two or
more positions to prevent the modified nucleosides from being
recognized as the substrates for human DNA polymerases.
Furthermore, we expected that the introduction of a substituent
at the 4′-positionmakes the glycosyl bond of the nucleosides less
susceptible to the decomposition by acids and enzymes, thus
improving the stability of the 4′-substituted nucleosides and the
persistence of antiviral activity of the nucleosides in vivo.
Based on these working hypotheses, we designed a 4′-C-

substituted-2′-deoxynucleoside (4′SdN: 26) as a RT inhibitor
that might prevent the emergence of drug-resistant HIV strains
and evaluated its biological activities (Figure 10).
The ribonucleosides with a substituent at the 4′-C-position

showed no biological activity because 5′-OH is not phosphory-
lated by kinase. The 2′,3′-dideoxy (dd: 27), and 2′,3′-
didehydrodideoxy (d4: 28) nucleosides with a substituent at
the 4′-C-position generally showed much lower anti-HIV
activity than the original 27 and 28, nucleosides respectively
(Figure 11).
We speculated that the reason for these results is that the

neopentyl alcohol moiety at the 5′-position is difficult to be
phosphorylated by the kinase, but, fortunately, the 5′-OH group
of 26, which has 3′-OH group in the molecule, was
phosphorylated and showed high anti-HIV activity. However,

Figure 7. Examples of reducing toxicity of modified nucleosides.

Figure 8. 4′-C-Cyano substituted nucleosides.

Figure 9. Representative ddNs in clinical use.
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26 with a natural base which is modified at one position of the
physiologic nucleoside showed high toxicity.
In vivomice studies showed the 2′-deoxyadenosine derivatives

of 26 were deaminated by adenosine deaminase (ADA), but the
precise toxicity could not be evaluated (data not shown). These
findings indicated that ADA’s deamination of the 6-position of
the purine base poses an essential issue in developing antiviral
modified nucleosides. Montgomery and Hewson reported that
the introduction of halogen at the 2-position of adenine makes it
less susceptible to hydrolysis by adenosine deaminase due to the
electronegativity of the halogens.16 Therefore, fluorine was
introduced into the adenine at the 2-position of 18, and we
finally developed 4′-C-ethynyl-2-fluoro-2′-deoxyadenosine
(EFdA: 7), which was modified at two positions of 2′-
deoxyadenosine (Figure 3).
EFdA (7) has unique characteristics as shown below:

(1) It does not allow the emergence of resistant HIV strains.
This is because the 3′-OH group in the molecule prevents
HIV from distinguishing it from physiological 2′-
deoxyadenosine.

(2) It is more than 400 times potent than AZT and several
orders of magnitude more potent than other anti-HIV
drugs.5 This is because it is firmly combined to RT by
both the 4′-ethynyl group and 3′-OH to make it
translocation defective RT inhibitor.

(3) Due to a two-position modified nucleoside, it has very low
toxicity.

(4) It exhibits a long-acting anti-HIV activity because of the
stability against both ADA and phosphorylase.

(5) It is effective not only for the treatment of infection but
also for prophylaxis.

The supremely high anti-HIV activity is ascribed to the fact
that the ethynyl group at the 4′-position of 7 forms a strong bond
with RT by fitting precisely into the previously unknown
lipophilic pocket of HIV RT.17,18 The recent structural analysis
of protein−ligand interactions unveiled that the 4′-ethynyl
moiety of the EFdA-triphosphate has formed strong van der
Waals interactions with both wild-type HIV and drug-resistant
HIV strains in the active site cavity of RT.19

An efficient synthesis of 7 has been difficult due to the control
of stereoselectivity.20 Schürmann et al. dramatically improved
the stereoselective synthesis of 7 by developing a multistep
enzymatic cascade reaction combining five engineered enzymes
and four auxiliary enzymes, generating a single isomer.21

7was named “Islatravir” byMerck, and the clinical trials began
in 2013. A clinical study reported that single doses of 7 as low as
0.5 mg significantly suppressed HIV-1 plasma RNA for at least 7
days with tolerability.22 With regard to infection prevention,
Merck announced a collaboration with the Bill &Melinda Gates
Foundation to jointly conduct a Phase III Trial to evaluate 7 as
once-monthly oral PrEP (pre-exposure prophylaxis) for women
and adolescent girls in Africa (IMPOWER 22). This trial is
aimed to end the HIV pandemic and eradicate it further.

COVID-19 (SARS-CoV-2). Attention has been drawn to
favipiravir (Avigan), remdesivir (Veklury), and morunupiavir,
which are used for the treatment of COVID-19. We will discuss
these therapeutic drugs.
Favipiravir (27)23 was developed by Toyama Chemical as a

new type of anti-influenza drug, but it has a severe side effect of
teratogenicity. According to Toyama Chemical, 27 is converted
directly into ribonucleotide (28a) in the body, is further
converted to trisphosphate (29), and inhibits viral RNA
polymerase. Administration of the ribonucleoside of Favipiravir
analogue (28b) has no activity because it is not phosphorylated
by a kinase24 (Figure 12). The uptake of triphosphates of

modified nucleosides by human nucleic acid polymerases
mediates the side effects, and the teratogenicity of modified
nucleosides is unknown so far. Hence, the teratogenicity will
come from the Favipiravir itself before it is converted to
nucleotides. Nucleosides (or nucleotides) of 27 are presumed to
be quite unstable because they are formed by losing the
aromaticity of 27. Therefore, the enzymatic reactions highly
skew the chemical equilibrium between the 27 and 28a. This is
probably why a high dose of 27 may be required for treatment.
The Favipiravir nucleotide prodrug (30) (Figure 12) will be a

potential drug candidate with no teratogenic side effects and
high antiviral activity.
Remdesivir (31)25 (Figure 13), a 1′-C-CN modified

adenosine C-nucleoside, was initially developed for the treat-
ment of the Ebola virus. This is the sole FDA-approved drug for
the treatment of COVID-19. The CN group at the 1′-position
seems to be the best substituent. This is because the CN may fit

Figure 10. HIV drug resistance refers to the phenomenon of
discrimination between ddN and dN and prevents ddN from being
incorporated into the active center of RT. 4′SdN is a designed RT
inhibitor to be recognized by human DNA polymerase.

Figure 11. Anti-HIV activities of 4′-C-substituted nucleosides.

Figure 12.Chemical equilibrium between favipiravir and the favipiravir
nucleotides.
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into a lipophilic pocket of COVID-19 coronavirus RNA
polymerase.26

Reported side effects of 31 include liver dysfunction, diarrhea,
skin rash, and renal dysfunction. 31 could causemore severe side
effects, including multiple organ dysfunction syndromes
(MODS), septic shock, acute kidney injury (AKI), and
hypotension.27 These side effects would be acceptable for the
treatment of lethal Ebola virus infection. However, the chemical
structure will need to be improved to be used as a therapeutic
agent for other viral infections.
In our experience, further modifications of the modified

nucleoside have reduced toxicity and, in several cases, enhanced
the antiviral activity of the compounds (Figure 7). Hence, 4′-C-
cyanoremdesibir (32), a further modification of 31, may be a
compound that attracts a great deal of attention. In addition, 4′-
C-cyano-2′-deoxyremdesivir (33) and 4′-C-cyano-2′-fluoro-2′-
deoxyremdesivir (34) (Figure 14) are also attractive modified

nucleosides. Compound 33 is expected to reduce the side effects
and enhance the antiviral activity of 31. Compound 33 is
expected to have antiviral activity against HIV and HBV, and
compound 34 is expected to be active against RNA viruses,
including HCV. It is speculated that compounds 33 and 34 do
not need to be prodrug nucleotides because human kinases
would phosphorylate these nucleosides.
Molnupiravir (MK-4482/EIDD-2801: 35),28 an oral anti-

COVID-19 drug, is currently in a clinical trial with Merck
(Figure 15).
This is a prodrug of N4-hydroxycytidine with an isobutyryl

ester, and the active species is its 5′-O-trisphosphate. According
to our experience, the nucleosides modified at any single
position of physiological nucleosides may have high antiviral
activity but severe side effects. Therefore, monomodified

nucleosides may not be suitable for clinical agents. Hence, we
are very interested in the efficacy and side effects of 35.
If 35 is found to have severe side effects and does not become

a clinical drug, further modifications could be made to reduce
the side effects. Therefore, it will be intriguing to investigate the
efficacy of compounds 36−39 against COVID-19 (Figure 16).

Ideas are conceived in the research process. We hope that this
Viewpoint inspires researchers on COVID-19 and better drugs
can be developed by them as soon as possible.
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