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Abstract

While a primary genital tract infection with C. trachomatis stimulates partial-protection against re-infection, it may also result in
severe inflammation and tissue destruction. Here we have dissected whether functional compartments exist in the genital
tract that restrict Th1-mediated protective immunity. Apart from the Th1-subset, little is known about the role of other CD4+ T
cell subsets in response to a genital tract chlamydial infection. Therefore, we investigated CD4+ T cell subset differentiation in
the genital tract using RT-PCR for expression of critical transcription factors and cytokines in the upper (UGT) and lower genital
tract (LGT) of female C57BL/6 mice in response to C. trachomatis serovar D infection. We found that the Th1 subset dominated
the UGT, as IFN-c and T-bet mRNA expression were high, while GATA-3 was low following genital infection with C. trachomatis
serovar D. By contrast, IL-10 and GATA-3 mRNA dominated the LGT, suggesting the presence of Th2 cells. These functional
compartments also attracted regulatory T cells (Tregs) differently as increased FoxP3 mRNA expression was seen primarily in
the UGT. Although IL-17A mRNA was somewhat up-regulated in the LGT, no significant change in RORc-t mRNA expression
was observed, suggesting no involvement of Th17 cells. The dichotomy between the LGT and UGT was maintained during
infection by IL-10 because in IL-10-deficient mice the distinction between the two compartments was completely lost and a
dramatic shift to the predominance of Th1 cells in the LGT occurred. Unexpectedly, the major source of IL-10 was CD11c+

CD11b+ DC, probably creating an anti-inflammatory privileged site in the LGT.
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Introduction

Chlamydia trachomatis is an intracellular bacterium that infects the

genital and ocular mucosae. The genital tract infection is the

number one cause of bacterial sexually transmitted disease (STD)

world-wide. Because the infection is asymptomatic in up to 70% of

females and can result in severe damage of the reproductive tract,

it is one of the major causes of tubal factor infertility [1]. It is

generally agreed that the best protection against infection and

sequelae could be achieved by an effective vaccine. However,

vaccine development has been hampered by our poor under-

standing of protective immune mechanisms in the genital tract. In

particular, the dichotomy between effector and regulatory

functions that, on the one hand eliminate infection and on the

other, could prevent immunopathology from developing, is

inadequately defined for genital tract chlamydial infections.

It is known that chlamydial infection of the genital tract

stimulates a complex array of host innate and adaptive immune

responses. Cells of the innate immune system react rapidly to

recognize and limit the infection, and ultimately influence the

outcome of infection through the modulation of the adaptive

immune response. Studies have shown that CD4+ T cells and Th1-

cells, in particular, are necessary for the effective clearance of

Chlamydia from the genital tract [2,3,4,5,6]. Protective immune

responses to other infections such as herpes simplex virus-2 (HSV-

2) and Leishmania, are also Th1-mediated and critically dependent

on IFN-c [7,8]. However, we know that activated CD4+ T cells

differentiate into a number of T helper subsets, including: T-

helper 1 (Th1), Th2, Th17 and several subsets of T regulatory

(Treg) cells, each subset capable of secreting a distinct cytokine

profile (reviewed [9]). Differentiation of Ag-primed CD4+ T cell

subsets is critically dependent on the cytokine milieu that regulates

CD4+ T cell subset differentiation (reviewed [10]). Early on after

cognate interaction with an antigen-presenting cell (APC), a

developmental program mediated by a group of enzymes known

as transcription factors is activated in the T cells. This enzymatic

activity results in the removal of covalent modifications from

histone tails, and together with DNA methylating enzymes,
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activates selected cytokine genes. This process allows for the

expression of a signature profile of cytokine genes specific for that

T cell subset. At the same time it silences the expression of

cytokines and transcription factors of the opposing subsets, thereby

resulting in lineage restriction [11]. Although not exclusively

expressed in CD4+ T cells, expression of the transcription factors

T-bet, GATA-3, RORc-t and FoxP-3 can be used to identify Th1,

Th2, Th17 and some Treg subsets, respectively [12,13,14,15].

Th1 cells are associated with the production of IFN-c and strong

cell-mediated immunity, which is thought to be the primary

mechanism for clearance of Chlamydia from the genital tract and

protection against reinfection [3,5]. The Th2 subset is associated

with secretion of the cytokines IL-4, IL-5, IL-13 and antibody

production, and is not effective in the defense against Chlamydia

[16,17]. Studies suggest that Th2-driven antibody production is of

subordinate importance during a primary chlamydial infection,

although it may contribute to protection against re-infection [18].

The Th17 subset has been ascribed critical roles in several

infection models and autoimmune diseases, through the produc-

tion of IL-17 and IL-23. Recently, it was demonstrated that lung

chlamydial infections were dependent on IL-17 for Th1 protection

to develop [19]. However, presently we do not know whether IL-

17 or Th17 cells play any protective role in genital tract

chlamydial infections [20,21].

Advances in our understanding of the immunobiology of the

genital tract and better knowledge about CD4+ T cell subset

immunity in response to genital tract chlamydial infections are

critical elements for the development of effective vaccines. Treg

cell subsets have been ascribed a dampening function on

inflammation. Tregs can be divided into the naturally occurring

Tregs and inducible Tregs (iTreg), according to cell surface

markers and cytokine producing abilities, primarily IL-10 or TGF-

b. Tregs have been documented in the context of many bacterial

infections, including intracellular infections with Salmonella typhi-

murium [22]. However, the analysis of Treg subsets and their

actions in the genital tract mucosa are few, and the role of Tregs in

chlamydial infections is still quite unclear. We recently reported

that ICOS-deficient mice, have impaired Treg-development in

response to C. trachomatis genital tract infection, which resulted in

significantly augmented local inflammation and a more effective

clearance of bacteria compared to that found in wild-type (WT)

mice [23]. The relative roles of Th1, Th2, and to a lesser extent,

Th17 cells, have been described for other bacterial infections [21].

However, their contribution to resistance and immunopathology

against a genital tract chlamydial infection is incompletely known.

Therefore, we undertook the present study to gain insight into the

development of different effector and regulatory CD4+ T cell-

subsets in response to a genital tract infection in mice with C.

trachomatis serovar D. More specifically, we sought to understand

the balance between effector and regulatory CD4+ T cell subsets in

genital tract protective immunity and whether any distinct

functional anatomical compartments could be identified.

Results

Infection induces striking CD4+ T cell infiltration in the
genital tract and results in protective immunity against
reinfection

It has previously been shown that a primary infection with C.

trachomatis results in partially protective immunity against reinfection

with the same serovar [24]. Following intravaginal infection, we

found that peak shedding occurred between 5 and 10 days after

infection. Importantly, by day 10, clearance of the infection in the

genital tract had begun, and was completely eliminated by day 32

(Fig. 1A). To secure that the EIA-method used for detection of EBs

reflected an ongoing infection we assessed inclusion forming units

(IFU) in samples taken at some critical time points (Fig. 1A). This

analysis demonstrated good correlation with the EIA detection

method, albeit assessment of IFU was more sensitive at later time

points, showing a higher level of infected mice compared to the EIA-

method (Fig. 1A). In agreement with previous work, highly immune

mice exhibited strong resistance against reinfection, suffering only a

transient infection, with less than 40% of animals infected after 4

days (Fig. 1B) [24]. We and others have shown that CD4+ T cells are

crucial for clearance of a primary infection with C. trachomatis from

the genital tract and the development of protective immunity

[3,6,25]. In accordance, intense CD4+ T cell infiltration during

infection can be seen throughout the genital tract (Fig. 1C). In order

to investigate CD4+ T cell differentiation during infection, we

carefully dissected the UGT, which consisted of the uterus and

uterine horns, from the cervix and proximal vaginal tissue of the

LGT, for analysis by RT-PCR (Fig. 1C). Throughout the study this

anatomical distinction was kept, separating UGT from LGT.

Distinct and different cytokine dominance in the upper
and lower female genital tract

Little is known about the kinetics of differentiation of T cell

subsets in the genital tract during infection. CD4+ T cells in the

early phase of the infection were more frequent in the LGT than

in the UGT. However, by day 10 of the infection CD4+ numbers

had begun to increase dramatically in the UGT (Fig. 2A). Parallel

to this we found increases in mRNA expression of several

important cytokines. Whereas increases in IFN-c mRNA expres-

sion were seen from day 10 of infection in the UGT, little change

was observed in the LGT (Fig. 2B). This pattern was also

confirmed at the protein level by labeling of IFN- c in frozen

sections or production of IFN-c by isolated CD4+ T cells after

stimulation with PMA/ionomycin in UGT, but not by CD4+ T

cells of the LGT, of infected mice (Fig. 2C). By contrast, IL-10

mRNA was increased in the LGT, in particular, with high

expression levels recorded on day 24 (Fig. 2B). Hence, the LGT

and UGT were characterized by distinct and different cytokine

Author Summary

The immune response to the genital tract pathogen C.
trachomatis can result in a number of pathological
outcomes including tubal scarring and consequently,
infertility. CD4+ T helper 1 (Th1) cells are critical for host
protection against infection, but may also contribute to
immunopathology. Apart from the Th1 cells, little is known
about the role of other CD4+ T cell subsets in response to a
genital tract chlamydial infection. By tracking the devel-
opment of T helper cells in the genital tract using RT-PCR
for distinct transcription factors associated with these
subsets, we found vastly different immune responses in
the upper genital tract (UGT) compared to the lower
genital tract (LGT) of female mice during infection. The LGT
was dominated by anti-inflammatory IL-10 production
from dendritic cells (DC) and the non-protective Th2
subset. In contrast, the upper genital tract was populated
by protective-Th1 cells. In the absence of IL-10, though,
the LGT and UGT were both dominated by Th1 cells,
arguing that DC-derived IL-10 secures an anti-inflamma-
tory privileged site in the LGT. These findings provide a
break-through in our understanding of functional com-
partments in the genital tract immune system with
potentially strong impact on vaccine development.

CD4+ T Cells in Chlamydia trachomatis Infection
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responses, with IFN-c expression in the UGT and IL-10

dominating the LGT (Fig. 2B). Comparatively weak expression

of mRNA for IL-4 was recorded in both UGT and LGT, but the

latter showed higher levels on day 15 following infection (Fig. 2B,

2D). Evidence of Th17 subset activity through IL-17A mRNA

expression was found predominantly in the LGT at the later time

points of infection (Fig. 2B). The contrasting cytokine profiles of

the UGT and LGT suggested that these compartments could be

functionally different and subjected to unique regulatory control

allowing different developmental or selection processes for the

CD4+ T cell subsets. To rule out that the functional dichotomy

observed between the UGT and LGT was due to differences in

antigen/infectious load we followed the IFU in the respective

tissue. Detection of IFUs in the UGT and LGT over time reflected

an ascending infection and comparable antigen loads (IFUs) in the

UGT and LGT (Fig. 3A). To confirm this, we challenged the mice

with different doses of EBs or heat-killed EBs and we observed a

similar dominance of Th1 cells in the UGT and practically no

IFN-c in the LGT irrespective of the challenge dose (Fig. 3B).

Strictly regulated Th1 and Th2 activity in the upper and
lower genital tract in response to a primary chlamydial
infection

To further investigate the nature and location of CD4+ T cell

subsets during infection, we undertook RT-PCR analysis of T

helper cell differentiation by monitoring transcription factor

mRNA expression in the genital tract. The transcription factor

T-bet has been shown to be the master regulator of CD4+ T

differentiation into Th1-type cells, which controls the expression of

IFN-c, in addition to silencing T cell transcription factors of

opposing T helper-subsets [14]. The activity of T-bet in the PALN

compared to the ILN was higher at all measured time points

during infection (Fig. 4A). Expression of T-bet mRNA in the UGT

increased to a peak on day 15 (Fig. 4A), representing an 11-fold

increase of expression from levels in naı̈ve tissue (Fig. 4D). In

striking contrast, T-bet mRNA expression was not increased in the

LGT following infection (Fig. 4A). Furthermore, the transcription

factor GATA-3, essential for Th2 differentiation, peaked later than

T-bet transcription on day 24 with a 9-fold increase in mRNA for

Figure 1. The adaptive immune response is protective against re-infection with C. trachomatis. (A) Bacterial shedding was determined at
given intervals after a primary infection or (B) post-reinfection with C. trachomatis. Results are expressed as mean absorbance 6 SEM as determined
by Chlamydia Mikrotrak EIA, or log10 IFU as determined by culture or cervicovaginal swabs (left panels). Right panels, results are expressed as the
percentage of animals infected within the group as determined by EIA or culture. (C) Whole sections of the genital tract indicating the dissection
definition of upper (uterus and uterine horns; UGT) and lower (cervix and proximal vaginal tissue; LGT) genital tract. Representative sections are
shown from naı̈ve mice (left panel), and after 24 days of infection (right panels), stained for CD4+ T cells with 206 inset. Data is from one
representative experiment of 2 or 3 giving similar results, each experiment including at least 15 mice per group.
doi:10.1371/journal.ppat.1001179.g001

CD4+ T Cells in Chlamydia trachomatis Infection

PLoS Pathogens | www.plospathogens.org 3 November 2010 | Volume 6 | Issue 11 | e1001179



Figure 2. Distinct cytokine mRNA profiles in different regions of the genital tract during C. trachomatis infection. (A) sections of
upper genital tract (UGT; left panels) and lower genital tract tissue (LGT; right panels) were stained for CD4+ T cells on day 3, day 5, and day 10 post-
infection, as indicated. Representative sections from one experiment of 3 giving similar results are shown. Large photographs are 106
magnification with 206 inset. (B) Cytokine mRNA levels were determined using RT-PCR, in the LGT and UGT at the indicated time points of
infection. Results are expression of IFN-c, IL-17A, IL-10 and IL-4 mRNA normalized to the housekeeping gene, HPRT, 6 SEM. Data is from a
representative experiment out of 3 giving similar results, and 5 mice per time point. (C) Tissue sections from the UGT (upper panel) and LGT (lower
panel) were stained for CD4 (TxRd; red), IFN-c FITC; green) and Topro-3 (blue) on day 24 of infection. Cytokine bead array analysis was used to
quantify the production of IFN- c following PMA/ionomycin in vitro stimulation of CD4+ sorted T cells from infected mice on day 24 (right panel).
(D) PMA/ionomycin stimulated CD4+ T cells from the LGT were stained for IL-4 (upper panel) or IL-5 (lower panel) and analysed by flow cytometry.
* p,0.05, ** p,0.01.
doi:10.1371/journal.ppat.1001179.g002

CD4+ T Cells in Chlamydia trachomatis Infection
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GATA-3 exclusively up-regulated in LGT and not in the UGT

(p,0.05) (Fig. 4B,D). Of note, in naı̈ve and infected mice GATA-3

mRNA expression was higher in the ILN than in the PALN, which

contrasted with the pattern seen for T-bet mRNA expression

(Fig. 4B, D). These expression patterns for Th1 and Th2 activity

was also obtained when the transcription factor mRNA expression

was normalized against CD3-% mRNA levels in the respective

tissues (Fig. 4E). Thus, we found distinct and unique expression

patterns of T-bet (Th1) and GATA-3 (Th2) mRNA in the genital

tract in response to a C. trachomatis infection with a dominance of

T-bet in the UGT and PALN, while GATA-3 was exclusively

upregulated in the LGT, supporting that the UGT and LGT were

functionally separate compartments.

No or poor Th17 activity in the genital tract during C.
trachomatis infection

Th17 is a recently identified T helper subset that has been

ascribed important roles in tolerance, autoimmune diseases and

infections [11,20,26]. This population of T helper cells remains

poorly studied in the genital tract, and to date, its role in Chlamydia

genital tract infection has not been described. The Th17 subset

differentiates under the control of the transcription factor RORc-t

[15]. Thus, we used RT-PCR to report the presence of Th17 cells

through the expression of RORc-t mRNA during Chlamydia

genital tract infection. The expression of RORc-t mRNA in the

draining lymph nodes did not significantly change from naı̈ve

levels during infection, although there was an initial decrease in

expression from naı̈ve levels observed in the ILN (Fig. 4C, D).

During homeostatic conditions in the UGT of naı̈ve mice, RORc-

t mRNA expression was low, whereas these levels were somewhat

higher in the LGT (Fig. 4C, E). However, following infection,

RORc-t mRNA expression decreased in the LGT and UGT

(Fig. 4E). These data suggested that the Th17 subset were not

expanded in the genital tract in response to a C. trachomatis

infection.

Treg development in the genital tract during Chlamydia
infection

The balance between CD4+ effector cell populations and Tregs

is considered critical for limiting the immunopathological outcome

of a chlamydial infection. We have recently shown that lack of

FoxP3+ Tregs, as seen in the ICOS-deficient mice, increases the

risk of developing severe immunopathology following a genital

tract infection with C. trachomatis [23]. Here we found an increase

in expression of FoxP3 mRNA in the LGT and UGT (Fig. 5B).

FoxP3 mRNA levels in the UGT increased gradually from day 10,

and by day 24 were at 30-fold of those observed in naı̈ve mice,

whereas levels in the LGT had increased 6-fold by day 24 (Fig. 5B,

C). By contrast, RT-PCR analysis of the draining lymph nodes

revealed little activity and only decreased FoxP3 mRNA levels

followed upon infection (Fig. 5A). To conclude, we observed a

relative increase in FoxP3 mRNA expression in the UGT,

paralleling the increase in mRNA expression of T-bet (Fig. 5B).

By contrast, the LGT, dominated by GATA-3 mRNA expression,

and exhibited less of a change in FoxP3 mRNA in response to a

genital tract infection with C. trachomatis.

T cells from the ILN and PALN exhibit similar tissue
homing properties

Given that we observed an association between enhanced T-bet

mRNA expression in the UGT and the PALN, while ILN only

weakly expressed T-bet and more distinctly GATA-3 mRNA, we

hypothesized that imprinting of UGT CD4+ T cells could have

occurred in the PALN rather than in the ILN. To investigate to

what extent the differences in transcription factor mRNA

expression in UGT and LGT reflected differential homing

properties acquired by primed T cells in the PALN and ILN,

we adoptively transferred GFP-transgene expressing T cells from

either the ILN or PALN of infected or naı̈ve mice into naı̈ve

recipient C57Bl/6 mice or mice that had been infected 10 days

earlier. Irrespective of whether the CD4+ T cells were isolated

from the PALN or ILN, we found T cells were able to home to

both the UGT and the LGT of Chlamydia-infected mice, albeit

more cells ended up in the UGT (Fig. 6A, B). Of note, GFP+ T

cells could not be found in the genital tract of adoptively

transferred naı̈ve mice, indicating that homing of specific T cells

to the genital tract does not occur in the absence of infection (data

not shown). Therefore, CD4+ T cells acquire homing properties in

the PALN or ILN that do not discriminate between UGT and

LGT, suggesting that these two functionally distinct compartments

appeared to be influenced by local factors in the respective tissues,

rather than unique imprinting by antigen-presenting DC restricted

to the PALN or the ILN. Thus, the anatomically distinct T helper

subset profiles observed could have been influenced by local

factors in the tissues.

Figure 3. The dichotomy between upper and lower genital
tract remains regardless of infectious dose. (A) The chlamydial
inclusion forming unit (IFU) load in the upper (UGT) versus lower (LGT)
genital tract was determined by culture of tissue homogenates on day
5, 15 and 24 of infection. Results are expressed as mean log10IFU/ml 6

SEM from 4 mice per time point. (B) Mice were infected with 106, 105 C.
trachomatis EBs or mock-infected with 106 heat-killed (HK EBs). IFN-c
mRNA expression levels in the LGT and UGT on day 15 and 24 of
infection were determined using RT-PCR. Results are expressed as mean
expression normalized to the housekeeping gene, HPRT, 6 SEM from 4
mice per time point.
doi:10.1371/journal.ppat.1001179.g003

CD4+ T Cells in Chlamydia trachomatis Infection
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IL-10 production critically influences the lower genital
tract

Since we observed a significantly increased level of IL-10

mRNA expression in the LGT on day 24 of the infection and that

this cytokine is a particularly strong inhibitor of Th1-development

we analyzed the possible source for the production of IL-10 in the

tissue. To locate the cellular source of IL-10, we isolated distinct

populations of cells, with purity of over 97%, from the genital tract

of naı̈ve mice and Chlamydia infected mice. Surprisingly, the major

source of IL-10 mRNA in the LGT of infected mice was found to

be the classical DC population (cDC; CD11b+CD11c+) (Fig. 7A,

B). Labeling of frozen sections of LGT with anti-IL-10 also

confirmed the presence of CD11c+ cells producing this cytokine on

day 24 following infection (Fig. 7C). Moreover, after saponin

extraction of cytokines in biopsies of LGT we could detect IL-10

by ELISA, but only in samples from infected mice (Fig. 7C). The

Figure 4. T-bet dominates the upper genital tract, while GATA-3 is upregulated in the lower genital tract. Regional lymph nodes (PALN
and ILN), lower (LGT) and upper (UGT) genital tracts were collected from naı̈ve and C. trachomatis infected mice at the indicated time points. RT-PCR
was undertaken to determine the mRNA levels of (A) T-bet, (B) GATA-3 and (C) RORc-t expression, normalized to the housekeeping gene (A-D) HPRT
or CD3-c (E). (A-C,E) Data is expressed as normalized mean expression 6 SEM, or (D) fold-increase over naı̈ve levels. Values are from one
representative experiment of 3 giving similar results, and 5 mice per time point. * p,0.05, ** p,0.01.
doi:10.1371/journal.ppat.1001179.g004

CD4+ T Cells in Chlamydia trachomatis Infection
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high IL-10 mRNA expression in the cDC of the LGT was

observed on day 24 after infection, while at earlier time points the

IL-10 mRNA expression in LGT did not differ from that in naı̈ve

mice, although this was substantially higher levels than in UGT

cDC. (Fig. 7D). Interestingly, on day 24 post-infection we also

observed an increase in the size of the cDC population in the LGT

(Fig. 7D). By contrast, only weak expression of IL-10 mRNA was

found in macrophages (CD11b+F4/80+), plasmacytoid DC (pDC;

CD11c+CD11b-CD19-B220+), CD8a+ DC (CD11c+CD8a+),

CD4+ T cells (CD4+ CD3+), or epithelial sheets (Fig. 7B and data

not shown).

To rule out that Tregs were directly or indirectly responsible for

the IL-10 dominance in the LGT we undertook adoptive transfer

experiments with CD4+ T cells from IL-10-deficient (IL-102/2 )

or wild-type (WT) mice injected into nu/nu mice. Following a

genital tract primary infection, nu/nu mice responded with IL-10

mRNA expression levels in the LGT of comparable magnitude

irrespective of if the CD4+ T cells were IL-10-deficient or normal

(Fig. 7E). As before, the IL-10 mRNA was restricted to the LGT

and only expressed at low levels in the UGT of infected mice

(Fig. 7E). This result clearly demonstrated that CD4+ T cells were

not directly or indirectly responsible for the IL-10 production in

the LGT. Taken together, the LGT mucosa appeared to be a

privileged tissue through anti-inflammatory activity, provided by

regulatory cDC producing IL-10. Hence, our data suggested that

Th1-effector T cell activity in the LGT in response to a genital

tract chlamydial infection was restricted by DCs.

Failure in IL-10-deficient mice to maintain a privileged
anti-inflammatory compartment in the lower genital
tract

Finally, to test the notion that IL-10 was a locally produced

factor responsible for establishing a privileged compartment in the

Figure 5. Infection induces Tregs in the genital tract. Using RT-
PCR we determined the FoxP3 mRNA expression levels in PALN, ILN,
upper (UGT) and lower genital tract (LGT) after infection with C.
trachomatis. Expression of FoxP3 mRNA was normalized to the
expression of the housekeeping gene, HPRT (A-B), or CD3-c (D). Data
is presented as mean expression 6 SEM or (C) fold-increase over naı̈ve
levels. Values are from one representative experiment of 3 with
similar results, with each experiment containing 5 mice per time point.
* p,0.05.
doi:10.1371/journal.ppat.1001179.g005

Figure 6. Local factors influence the accumulation of T helper
subsets in the genital tract. GFP-expressing T cells were isolated
from the (A) ILN or (B) PALN of mice infected with C. trachomatis 7 days
earlier. GFP+CD4+ T cells were then adoptively transferred to recipient
infected WT mice after 10 days of a primary infection. Upper genital
tract (UGT; left panels) and lower genital tract (LGT; right panels) tissues
were harvested 4 days after transfer. To-Pro-3 counterstained (blue) and
GFP+ cells (white arrows;green) were visualized by confocal microscopy.
(C) GFP+ cells were counted in 14 visual fields from at least 3 mice per
group. Data represent the mean + SEM per 0.5 mm2 of tissue.
doi:10.1371/journal.ppat.1001179.g006

CD4+ T Cells in Chlamydia trachomatis Infection
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LGT we undertook experiments in IL-102/2 mice. Given that it

has been reported that IL102/2 mice display enhanced immunity

to chlamydial infection, we asked if the LGT compartment was

dominated by Th1 effector cells rather than Th2 cells, as seen in

WT mice [25,27]. To this end, IL-102/2 mice were infected with

C. trachomatis and the mRNA expression of transcription factors T-

Figure 7. Lower genital tract DC are the primary source of IL-10 production following C. trachomatis infection. (A) Lymphocytes from
the lower genital tracts (LGT) from naı̈ve WT mice or C. trachomatis infected (day 24) were isolated and sorted into CD4, CD8a, MW, pDC, and cDC
populations (see Materials and Methods for definitions). (B) The relative level of IL-10 mRNA expression in the indicated sorted populations was
analyzed by RT-PCR on day 24 of infection. Values were normalized against the housekeeping gene (HPRT) and given as mean normalized expression
6 SEM, from a representative of 2 experiments, each with 3 samples per group and 3 pooled mice in each sample. (C, left panel)
Immunohistochemistry was used to confirm the presence of IL-10 protein (TxRed; red), CD11c (FITC;green) and Topro-3 (blue) on day 24 of infection.
(C, right panel) IL-10 levels from the LGT of naı̈ve mice or after 24 days of infection were measured using an ELISA. (D) The numbers of sorted cDC per
mouse from the LGT of naı̈ve mice, and on day 10 and 24 of infection (left panel). IL10 mRNA expression normalized to HPRT in the sorted cDC from
the LGT (middle panel) and UGT (right panel) of naı̈ve mice, and on day 10 and 24 of infection. (E) IL102/2 or WT CD4+ T cells were adoptively
transferred to nu/nu mice and IL10 mRNA expression in the LGT (left panel) or upper genital tract (UGT; right panel) was assessed in unchallenged
mice or after 24 days of infection.
doi:10.1371/journal.ppat.1001179.g007

CD4+ T Cells in Chlamydia trachomatis Infection

PLoS Pathogens | www.plospathogens.org 8 November 2010 | Volume 6 | Issue 11 | e1001179



bet, GATA-3, RORc-t and FoxP3 was analyzed by RT-PCR. We

found that IL-102/2 mice displayed enhanced clearance of

infection, as reported earlier [27]. In fact, elimination of bacteria

was complete by day 15 in IL-102/2 mice, at a time point when

more than 40% of WT mice remained infected (Fig. 8A, B). With

regard to transcription factor expression we found that T-bet

mRNA expression in the LGT of IL-102/2 mice was strikingly

up-regulated, representing a 506106-fold increase over WT levels

at the same time point (Fig. 8C). This dramatic shift in T-bet and

Th1-development was clearly a local consequence of lack of

Figure 8. IL-10 production inhibits T-bet mRNA expression during infection. (A-B) IL-102/2 and WT mice were infected intravaginally with
C. trachomatis and bacterial shedding was followed using a MikroTrak EIA. (A) Results represent mean absorbance 6 SEM and (B) frequency of
infected mice per group per time-point. (C-F) Transcription factor mRNA expression was determined by PCR in the upper genital tract (UGT) and
lower genital tract (LGT) from IL-102/2 (right panels) and WT mice (left panels) at indicated time points after infection. Values were normalized
against the housekeeping gene (HPRT) expression level and given as mean expression 6 SEM. Values are from one representative experiment of 2
giving similar results, and 3 mice in each group per time point.
doi:10.1371/journal.ppat.1001179.g008
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regulatory IL-10 in the LGT as the level of T-bet mRNA

expression in the UGT was relatively unchanged in these mice

(Fig. 8C). Also, GATA-3 and RORc-t mRNA expression levels

both in the UGT and LGT were relatively unaffected in the

absence of IL-10, further supporting the notion that IL-10 in LGT

renders this tissue a status of an anti-inflammatory privileged site

(Fig. 8D, E). Interestingly, whereas we had observed that T-bet

mRNA expression levels in the UGT of WT mice were

accompanied by a corresponding increase in FoxP3 mRNA

expression, this did not apply to the LGT in IL-102/2 mice, where

FoxP3 mRNA expression levels were not significantly changed

(Fig. 8F). The absence of IL-10 did not change TGF-b mRNA

expression levels in either the UGT or LGT compared to that seen

in WT mice (not shown). These results favor that local production

of IL-10 in response to a genital tract infection with C. trachomatis

prevents the development of strong Th1-immunity in the LGT.

Hence, we propose that cDC derived IL-10 provides conditions

for a privileged compartment in the LGT.

Discussion

In the present study we set out to learn more about the different

effector and regulatory CD4+ T cell populations induced by a

primary genital tract infection with C. trachomatis, an obligate

intracellular bacterium. Unexpectedly we found that a key player

in establishing the peripheral CD4+ T cell repertoire in the local

genital tract tissue was a population of classical CD11c+ CD11b+

DCs, which produced significant levels of IL-10. This production

appeared to prevent Th1-dominance in the LGT, whereas the

latter was clearly the main CD4+ T cell population in the UGT.

Hence, we propose that anti-inflammation prevails in the LGT as

a consequence of regulatory cDCs producing IL-10. This could

possibly impair anti-infectious effector functions, while preventing

unwanted tissue destruction exerted by the Th1 cells during a

Chlamydia-infection. The LGT could, thus, be viewed as a

privileged site.

Here we report a functional distinction between the LGT and

UGT, driven by a local cytokine production, as immune

protection against a genital tract infection develops. Surprisingly,

we found that IL-10 played a critical role for this effect. The

evidence for that was derived from experiments in IL-102/2 mice

where this functional dichotomy was completely lost and both

tissues were dominated by CD4+ Th1-cells. Furthermore, it was

clear that imprinting of homing abilities in newly primed CD4+ T

cells in the draining lymph nodes, ILN or PALN, did not support

such a dichotomy, since irrespective of their origin, CD4+ T cells

were found in both UGT and LGT. Rather, it appeared that the

IL-10 production in the LGT influenced the accumulation and/or

differentiation of Th2 cells and prevented the expansion of Th1

cells in that tissue. Furthermore, adoptive transfer experiments

showed that the ability to produce IL-10 was not a critical

property of the CD4+ T cells as such since IL-10-deficient cells in

nu/nu mice did not alter the functional dichotomy between LGT

and UGT seen in WT mice. Collectively our data suggest that

genital tract cDC could exert a regulatory function by influencing

the local CD4+ T cell repertoire in the LGT in response to a

genital tract chlamydial infection.

CD4+ T cells are of fundamental importance for protection

against C. trachomatis genital tract infections, yet a detailed

understanding of functional qualities of CD4+ T cell subsets

during infection is limited [5,6,18]. Such studies have been

technically demanding especially because of the difficulties in

isolation of T cells from the tissues [28]. To circumvent this

problem, we developed RT-PCR assays to detect mRNA

expression of transcription factors and cytokines in the genital

tract. Hence, for the first time, using very specific and sensitive

methods, we were able to follow global CD4+ T cell differentiation

and immune regulation in the genital tract in response to a C.

trachomatis infection. Quite unexpectedly, we found evidence that

unraveled a complex system of expansion and regulation of CD4+

T helper subsets in the UGT and LGT, establishing a clear

functional dichotomy between the two compartments. Whereas, a

strong Th1 profile was induced in the UGT with an exclusive

presence of IFN-c, the LGT appeared to be a privileged site with

anti-inflammatory IL-10 and a dominance of Th2 cells. Our initial

theory was that the dichotomy between LGT and UGT was

established by imprinting different homing properties on CD4+ T

cells by antigen-presenting cDC in the regional lymph nodes. This

was because we observed an up-regulation of T-bet mRNA in the

PALN and of GATA-3 mRNA in the ILN we thought that a

differential homing pattern could have explained the selective

enrichment of Th1 and Th2 cells in the UGT and LGT,

respectively. However, this notion was not supported by our

finding that T cells from both PALN and ILN were capable of

homing to the UGT and LGT.

Rather, an alternative explanation for the dichotomy was

considered, namely that local production of regulatory cytokines in

the LGT promoted Th2 cells and largely prevented Th1 cells in

this tissue. This latter theory was also supported by two

observations; i) that local cDC in the LGT produced IL-10 and

that ii) in IL-10 deficient mice the LGT environment was changed

and instead hosted a dominant Th1 cell population in response to

the genital tract infection. Moreover, primed and tissue migrating

CD4+ T cells, including Tregs, were not required to produce IL-10

to allow for the dichotomy between LGT and UGT. The

importance of local production of immune regulating factors in the

genital tract is supported by findings reported by Maxion et al.,

who showed that chemokines associated with Th1 responses,

namely CXCL10, CXCL9 and CCL5 were found exclusively in

the oviducts, while the Th2-associated chemokine CCL11 was

elevated primarily in the cervical region following infection [29].

However, to accommodate our results with these findings we must

assume that the selective expression pattern of chemokines in the

LGT is influenced by IL-10 and that in the absence of this

cytokine the expression of CXCL10, CXCL9 and CCL5 prevails

also in the LGT, allowing for the migration and accumulation of

Th1 cells in both UGT and LGT, in agreement with what we

observed in IL-10-deficient mice. Indeed, previous studies have

documented that endogenous IL-10 plays a crucial down-

modulating role on both CC and CXC chemokine expression

and neutrophil influx, in e.g lung and gut intestinal tissues [30,31].

Moreover, several reports associate CXCL10 expression with

tissue-recruitment of Th1 cells and IL-10 production strongly

inhibits CXCL10 expression [32,33]. Hence, we propose that local

IL-10 production by cDC is the key factor in maintaining LGT an

anti-inflammatory privileged site, down-modulating CXCL10 and

preventing Th1 cell influx. Whether withdrawal of IL-10 in the

LGT, as in IL-102/2 mice, allows for CXCL10, CXCL9 and

CCL5 chemokine production to increase will be investigated in

future studies.

In the present study we have documented IL-10 producing cDC

in the LGT, which appeared to control the distribution of CD4+

effector T cells and secured that the LGT was a privileged

compartment during C. trachomatis infection. However, to un-

equivocally document that IL-10 producing cDC in the LGT were

responsible for the lack of Th1 cells and dominance of Th2 and

GATA3-expressing cells in the LGT, we would have to engineer a

mouse model where these cells could be selectively depleted.
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Unfortunately, there exists no such model at present given that

depletion of cDC in general in the CD11c-DTR (diphtheria toxin

receptor) mouse model would take away all DCs, leaving no DCs

for priming of a T cell response, plus the fact that repeated

injection of DT would be required, which also depletes other cell

subsets, including plasma blasts, activated CD8+ T cells, NK cells

and some populations of macrophages [34,35,36,37]. We are,

therefore, currently exploring the possibility to generate a mouse

model with IL-10-deficiency in the cDC population through

mating mice with a loxP IL-10 gene with mice CD11c-cre mice.

We found evidence that not only CD4+ effector T cells, but also

Tregs, may be differentially distributed to the UGT and LGT. We

found that increases in FoxP3 mRNA expression occurred in the

UGT already 10 days after inoculation, suggesting that early Th1

migration into the UGT promoted the establishment of FoxP3+

Tregs in this tissue. Whereas there was a clear association between

increases in Th1 cells and Tregs in the UGT, such a pattern was

not as clear for the LGT, as the RT-PCR detection revealed only

6-fold increases in FoxP3 mRNA in the LGT as compared to

nearly 40-fold increases in the UGT over the course of the

infection. Functionally, this observation agrees well with many

previous reports because Tregs could effectively dampen the Th1

activity and protect against tissue damage [38]. As IL-10 from

cDC appears to be the main anti-inflammatory factor in the LGT,

Tregs could fulfill this function in the UGT, again pointing to the

dichotomy and very compartmentalized functions of the LGT and

UGT. At present we can only speculate that the mechanism by

which Tregs limit immunopathology in the UGT is through TGF-

a or other mechanisms rather than IL-10, since IL-10 mRNA

levels were low in the UGT [39].

Studies of Th17 cells have largely demonstrated their

involvement in autoimmunity and recently also their role in host

defense against bacteria [20,21,40,41]. Th17 cells are induced in a

number of bacterial infections including Salmonella enteritidis,

Helicobactor pylori, and Mycobacterium tuberculosis [21,41,42,43].

Although there are 6 members of the IL-17 family, Th17 cells

produce large amounts of IL-17A and, therefore, most effector

functions of Th17 cells have been attributed to the production of

this cytokine. Th17 cells are induced by the cytokines TGF-b and

IL-6, which have both been shown to be produced in response to

C. trachomatis [44,45,46]. Contrary to other studies of bacterial

infections we failed to detect any major alterations in the Th17

subset in either the UGT or the LGT, as assessed by detection of

mRNA for RORc-t. We must, therefore, conclude that this subset

appears not to play a role in host protection against a genital tract

infection with C. trachomatis. This result is also at variance with a

recent study by Bai et al., who reported on lung infections induced

by Chlamydia muridarium, the mouse-specific Chlamydia species.

These authors treated mice with neutralizing anti-IL17 antibodies

and found poor immunity to infection [19]. As IL-17 has not been

found to inhibit chlamydial growth the effect of anti-IL17 antibody

treatment was rather attributed to poor IL-12 and strong IL-10

production by DC, leading to reduced Th1-effector functions [47].

Similar to the chlamydial lung infection, the Th17 response in M.

tuberculosis infections is induced rapidly and is necessary to attract

Th1 cells to the lung to enhance the adaptive immune response

[43]. Although, we observed some increases in IL-17 mRNA in

the LGT by day 24 following infection a concomitant increase in

RORc-t mRNA was not observed. Hence, we do not think Th17

cells are prominent in chlamydial genital tract infections. It should

be emphasized that the Th17 subset is not the only cell type

capable of producing IL-17; cd+ T cells [48], NKT cells [49],

neutrophils [50] and even FoxP3+ T cells [51] have also been

shown to produce this cytokine. However, because of the

complexity of the CD4+ T cell response that we observed a

similar type of anti-IL17 antibody treatment experiment should be

performed to rule out any involvement of IL-17 in protective

immunity against C. trachomatis genital tract infections.

Recently, Moniz et al. described two subsets of DC in the mouse

genital tract in response to C. muridarium infection [52]. These

authors found that DC primed Th1 cells, while pDC produced IL-

6 and IL-10 and primed non-Th1 cells. Our findings are

somewhat T at variance with this observation, in that pDC from

the LGT did not produce significant levels of IL-10, while cDC

did. However, the cDCs of the LGT may represent a subset of

cells resembling those found in the gut intestine. Recent elegant

studies by Varol et al. have documented several subsets of lamina

propria DCs, especially a population of non-monocyte-derived

CX3CR1- CD103+ were reported critical for homeostasis, whereas

a monocyte derived DC population failed to control inflammation

[53]. Also in the Peyer’s patches, a DC subset has been reported

which preferentially secretes IL-10 and generates Th2 responses

[54]. By contrast, splenic DC produce IL-12 and favor Th1

generation. In agreement with this latter notion, Th1 instead of

Th2-responses were induced in IL-102/2 mice. Th1 polarization

of the immune response in the absence of IL-10 correlated also

with better protection. IL-10 producing cDCs following chlamyd-

ial infection of the lung have been shown to reduce allergen-

specific cytokine production and CD4+ T cell responses [55]. In

the lung infection model of C. muridarium, adoptively transferred

DCs prevented Th1 cell expansion, indicating that DC in

chlamydial infections have a regulatory function [19]. These DC

produced high levels of IL-10, which resulted in poor Th1

expansion and poor clearance of bacteria from the lung [19].

The most important observation in the present study was that

IL-10 production by cDC coincided with a lack of Th1 expansion

in the LGT. Previous studies have reported that in IL-102/2 mice,

resistance to Chlamydia was associated with early maturation and

activation of DCs in the draining lymph nodes, enhanced antigen

presentation and stimulation of increased IFN-c production from

the T cells [25]. Our present data complement these findings by

showing that IL-10 strongly regulates the presence of Th1 cells in

the LGT. Interestingly, this effect was restricted to Th1 functions,

since no changes in Th2 or Th17 transcription factor mRNA

expression were observed in the LGT of IL-102/2 mice. Whether

these regulatory cDC migrated into the tissue or were resident in

the LGT as the genital tract C. trachomatis infection ascended is not

known. As aforementioned, the literature support for that they

were derived from monocytes is weak as such DCs have nearly

always been associated with pro-inflammatory responses [53].

Rather, it appears that the LGT cDC are bone-marrow derived

and at least three subsets of these cells have been described in the

mouse vaginal epithelium [56]. We believe that a better

understanding of the functional dichotomy between UGT and

LGT and the role of cDC-derived IL-10 in regulating the CD4+ T

cell repertoire in the LGT is of vital importance to the

development of future effective and safe local vaccines against C.

trachomatis. Such knowledge could also have important implications

for how to prevent the immunopathology associated with genital

tract chlamydial infections.

Materials and Methods

Chlamydia stocks
A human genital tract clinical isolate of C. trachomatis serovar D

was propagated in buffalo-green monkey kidney cells and purified

by centrifugation. Chlamydia IFU were enumerated using the

method described below and stored in sucrose–phosphate–
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glutamate (SPG) buffer at 280uC. The infectivity of C. trachomatis

stocks of elementary bodies (EBs) was tested by intravaginal

infection of C57BL/6 mice using a range of doses. We found that

106 inclusion forming units (IFU) was required for 100% of the

mice to be infected on day 8.

Mice
6–8 week old female C57BL/6 mice were purchased from

Taconic (Denmark). IL102/2 mice were bred at the Department

of Experimental Biomedicine at the University of Gothenburg,

Sweden [57]. UBI-GFP/BL6 mice [58], which express a transgene

coding for green fluorescent protein (GFP) under control of the

human ubiquitin C promoter, were used for transfer experiments.

Nu/nu mice were purchased from Taconic (USA). All experiments

include DepoProvera treated (2.5 mg subcutaneously 7 days prior

to analysis) naı̈ve controls of each group.

Ethics statement
Mice were maintained under specific pathogen-free conditions,

according to FELASA specified guidelines, at the Department of

Experimental Biomedicine at the University of Gothenburg, Sweden.

Approval was obtained from Swedish Animal Welfare Agency.

Bacterial infection and challenge protocols
Mice were given 2.5 mg subcutaneous injection of medrox-

yprogesterone acetate (DepoProvera, Pharmacia Sverige AB) 7

days prior to the inoculation of approximately 16106 inclusion

forming units (IFU), 105 IFU, or 106 heat-killed IFU of C.

trachomatis elementary bodies (EBs) intravaginally. Four weeks

after the resolution of the primary infection, the inoculation

procedure was repeated in a manner identical to that described for

the primary infection. Bacterial shedding was monitored at 2, 4, 8,

16 and 24 days post-reinfection.

Detection of chlamydial infection
Detection of C. trachomatis infection was performed in two ways.

Firstly, bacterial shedding was monitored at 8-day intervals using a

commercial MicroTrak II Chlamydia EIA kit (Trinity Biotech plc.)

according to manufacturer’s instructions. Samples with an

absorbance greater than the provided cut-off value were

considered positive for chlamydial shedding. This detection

method correlates closely with assessment of inclusion forming

units (IFU) as described [2].

To confirm the level of infection at each time point, the number

of IFU were enumerated by infection of HeLa cell monolayers, as

previously described [59]. Swabs were collected in SPG buffer,

vortexed and centrifuged at 13000 rpm for 10 minutes. Samples

were then sonicated for 30 seconds. EBs were then added to HeLa

cell monolayers and centrifuged at 280 6g at room temperature

for 1 hour followed by incubation at 37uC for 30 minutes. Plates

were washed with 16with HBSS and culture medium containing

cycloheximide (2 mg/ml) was added. After 40 hours incubation at

37uC in a 5% CO2, infected monolayers were fixed by addition of

100 ml/well of methanol at room temperature for 20 minutes. The

infected monolayers were stained with biotin-conjugated anti-

MOMP antibody (Abcam), followed by streptavidin-alkaline

phophatase (Dako), and developed by the addition of 1-Step

NBT/BCIP reagent (Pierce). The reaction was stopped by rinsing

with water, and the plates were allowed to air dry before counting.

PCR analysis
The uterus/uterine horns (upper genital tract; UGT), the

vagina/cervix (lower genital tract; LGT), para-aortic lymph nodes

(PALN) and inguinal lymph nodes (ILN) were collected at the

indicated time points. Tissues were stored in RNAlater (Qiagen)

before total mRNA was isolated using Qiagen homogenizer and

RNAeasy minicolumns (Qiacube, Qiagen) according to manufac-

turer’s instructions. The resulting extraction was used for cDNA

synthesis using oligo (dT) primer and SuperScript RT (Invitrogen

Life Technologies) and analyzed by RT-PCR. Primers (MWG-

biotech) used for the determination of transcription factor mRNA

levels using SYBR green technology were as follows: GATA-3

forward (59- CTT ATC AAG CCC AAG CGA AG -39), GATA-3

reverse (59- CCC ATT AGC GTT CCT CCT C -39), T-bet

forward (59- TCAACCAGCACCAGACAGAG -39), T-bet re-

verse (59- AACATCCTGTAATGGCTTGTG -39), Foxp3 for-

ward (59- AGC TGG AGC TGG AAA AGG A -39), Foxp3

reverse (59- GCT ACG ATG CAG CAA GAG C -39), IFN-c
forward (59- GCC ATC AGC AAC AAC ATA AGC -39), IFN-c
reverse (59- TGA GCT CAT TGA ATG CTT GG -39), IL-10

forward (59- GCT CCT AGA GCT GCG GAC T -39), IL-10

reverse (59- TGT TGT CCA GCT GGT CCT TT -39), IL-4

forward (59- CATCGGCATTTTGAACGAG -39), IL-4 reverse

(59- CGAGCTCACTCTCTGTGGTG -39), IL-17A forward (59-

TGT GAA GGT CAA CCT CAA AGT C -39), IL-17A reverse

(59- AGG GAT ATC TAT CAG GGT CTT CAT T -39) RORc-t

forward (59- GGT GAC CAG CTA CCA GAG GA -39), RORc-t

reverse (59- CCA CAT ACT GAA TGG CCT CA -39), TGF-b
forward (59- CAC CGG AGA GCC CTG GAT A -39), TGF-b
reverse (59- TTC CAA CCC AGG TCC TTC CTA -39), CD3%

forward (59- CCAAGGAAACCAACTGAGGA -39), CD3%re-

verse (59- TTGATTCTGGGTGCTGGATAG -39), HPRT

forward (59- TCC TCC TCA GAC CGC TTT T -39), HPRT

reverse (59- CCT GGT TCA TCA TCG CTA ATC -39) . RT-

PCR was performed using the LightCycler System and Relative

Quantification software (Roche Diagnostics, GmbH). Results were

expressed as a normalized ratio of the target mRNA to

housekeeping mRNA.

Immunohistochemistry
The reproductive tract, including the uterus/uterine horns (upper

genital tract; UGT) and the vagina/cervix (lower genital tract;

LGT), was removed, snap frozen in TissueTek OCT Compound

(Histolab Products AB) and stored at –80uC within 2 hours.

Cryostat sections of 7 mm were fixed in acetone before blocking with

0.3% H2O2, blocking using an avidin-biotin blocking kit (Vector

Laboratories), followed by 20% normal horse serum. Sections were

incubated with anti-CD4-biotin (BD PharMingen) followed by anti-

rat IgG and developed using peroxidase-conjugated avidin (DAKO

Cytomation) and a commercial peroxidase AEC substrate (Sigma-

Aldrich). Sections were counterstained with HTX and mounted

with Faramount (Histolab Products AB). For intracellular cytokine

staining, sections were fixed as above and permeabilised in 0.1%

saponin/PBS. Sections were incubated with biotin-conjugated anti-

IL-10 or FITC-conjugated anti-IFN-c and biotin-conjugated anti-

CD4 or FITC-conjugated anti-CD11c (BD Pharmingen), followed

by streptavidin-conjugated TxRd (Vector) and Topro-3 (Invitro-

gen). Negative controls were stained with isotype-matched irrele-

vant antibodies or the secondary antibody in absence of a primary

antibody. Sections were visualised using a Leica LSC microscope or

Zeiss LSM 510 Meta confocal microscope.

T cell transfers
The draining lymph nodes (ILN and PALN) of the genital tract

were harvested from UBI-GFP/BL6 mice, after 7 days of infection

with C. trachomatis. CD4+ T cells were purified by negative selection

using MACS. Briefly, single cell suspensions were prepared and
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incubated with CD4+ T cell biotin antibody cocktail (Miltenyi Biotec)

for 10 minutes at 4uC, followed by biotin beads for 15 minutes. The

cell suspension was transferred to a CS MACS column according to

the manufacturer’s instructions (Miltenyi Biotec). Purity of eluted T

cells was controlled using FACS (typically around 90%). 16106 cells

were injected i.v. into recipient DepoProvera-treated C57BL/6 mice

either before or after 10 days of infection. For nu/nu experiments,

CD4+ T cells were isolated as describe from naı̈ve IL102/2 or

C57BL/6 (IL-10+/+) mice and 16106 cells were injected i.v. into

recipient DepoProvera-treated nu/nu mice. One day later, two

groups of nu/nu mice were infected with C. trachomatis, while two

remained uninfected controls.

Isolation of genital tract lymphocytes
Isolation of lymphocytes from the UGT and the LGT was

performed as previously described [60]. Briefly, the genital tract

tissue was washed in calcium- and magnesium-free HBSS (CMF-

HBSS; Life Technologies), supplemented with 25 mM HEPES (Life

Technologies), and then incubated at 37uC in CMF-HBSS

containing 5 mM EDTA (Merck) and 10% heat-inactivated horse

serum (Life Technologies). Following each incubation, the super-

natant containing the sloughed epithelial cells and the intraepithelial

lymphocytes were collected, centrifuged and prepared for RNA

isolation. For isolation of the mucosal lymphocytes the remaining

tissue was incubated three times for 60 minutes with collagenase D

(120IU/ml; Sigma-Aldrich) dissolved in RPMI 1640 containing

25 mM HEPES and 20% inactivated horse serum (Life Technol-

ogies). Cell suspensions were washed and stained with anti-CD11c,

anti-CD11b, anti-MHCII, anti-CD4, and anti-CD8 (BD Pharmin-

gen) for 30 minutes on ice. The cells were then washed twice with

PBS containing 0.1% BSA and sorted using a FACSAria (BD

biosciences). Sorted cells were sorted into PBS/0.1% BSA,

immediately centrifuged and resuspended in 350 ml buffer RLT

(Qiagen) for subsequent RNA extraction as described above. Sorted

populations were defined as following: CD4; CD4+CD3+, CD80+;

CD11c+CD8a+, MW; CD11b+F480+, pDC; CD11c+CD11b-

CD19-B220+, cDC; CD11b+CD11c+.

Measurement of cytokine production
Cytokine levels were measured from genital tract tissue or from

in vitro stimulated sorted CD4+ T cells. Briefly, tissues were

weighed and immediately placed in 10 volumes (wt/vol) of a

protease inhibitor cocktail containing 10 mM EDTA, 2 mM

PMSF, 0.1 mg/ml soybean trypsin inhibitor, 1.0 mg/ml BSA,

PBS, pH 7.0. Tissues were incubated at 2% saponin at 4uC over

night. Samples were clarified by centrifugation at 130006 g for 10

minutes at 4uC. Protein concentration was determined using a

cytometric bead array (CBA; BD biosciences) or ELISA (BD

biosciences). For sorted cells, CD4+ T cells were incubated at

37uC, 5% CO2, for 72 hours in the presence of PMA (Sigma) at

10 ng/mL and ionomycin (Sigma) at 1 mg/mL. Cell culture

supernatants were analyzed by cytometric bead array (CBA)

according to the manufacturer’s instructions (BD biosciences) or

by intracellular cytokine staining for analysis by flow cytometry.

Intracellular cytokine staining
CD4+ T cells isolated from the genital tract of infected or naı̈ve

mice were stimulated with PMA/ionomycin for 3 days as

described above. Cell suspensions were incubated for the final

5 hrs at 37u in the presence of 5 mg/ml Brefeldin A (Sigma-

Aldrich). Cells were stained for surface molecules, fixed with 2%

formaldehyde (HistoLab Products AB) and re-suspended in

permeabilization buffer containing HBSS, 0.5% bovine serum

albumin (BSA), 0.5% saponin and 0.05% azide. FITC-conjugated

anti-IL-4 or IL-5 were added. Cells were detected using an LSRII

flow cytometer (BD Biosciences) with diva software (BD Biosci-

ences). Data were analysed using Flowjo software (Tree Star Inc).

Statistical analysis
Mann-Whitney or Dunnett’s C non-parametric tests were used

for analysis of significance. *p,0.05, **p,0.01 denotes statistically

significant differences.

Gene IDs for proteins mentioned in the text
The following are the GeneIDs (Database: Entrez Gene) for

each gene analyzed in this manuscript, given as gene name (official

symbol GeneID: #): T-bet (Tbx21 GeneID: 57765); GATA-3

(Gata3 GeneID: 14462); RORc-t (Rorc GeneID: 19885); FoxP3

(Foxp3 GeneID: 20371); IFN-c (Ifng GeneID: 15978); IL-17A

(Il17a GeneID: 16171); IL-10 (Il10 GeneID: 16153); IL-4 (Il4

GeneID: 16189); CD3c ( Cd3g GeneID: 12502), HPRT ( Hprt1

GeneID: 15452).
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