metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1-ethyl-4,4'-bipyridin-1-ium) bis(1,2dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Yao Chen, Wei-hua Ning and Jian-Lan Liu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: njutljl@163.com

Received 27 May 2013; accepted 4 June 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.051; wR factor = 0.128; data-to-parameter ratio = 18.7.

In the anion of the title compound, $(C_{12}H_{13}N_2)[Ni(C_4N_2S_2)_2]$, the Ni^{II} atom is coordinated by four S atoms from two 1,2dicyanoethene-1,2-dithiolate (mnt) ligands in a suqare-planar geometry. Weak C-H···N and C-H···S hydrogen bonds between the 1-ethyl-4,4'-bipyridin-1-ium cations and mnt anions and weak π - π interactions between the pyridine rings of the cations [centroid–centroid distances = 3.808 (3) and 3.972 (3) Å] lead to a two-dimensional network parallel to (010).

Related literature

For general background to bis(1,2-dithiolene) complexes acting as magnetic materials or showing non-linear optical properties, see: Duan *et al.* (2010); Kato (2004). For the synthesis of the compound, see: Pei *et al.* (2010). For related structures, see: Duan *et al.* (2011); Liu *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{ll} (C_{12}H_{13}N_2)[Ni(C_4N_2S_2)_2] & \gamma = 80.344 \ (2)^{\circ} \\ M_r = 709.58 & V = 1634.2 \ (5) \ \text{\AA}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 7.4505 \ (13) \ \text{\AA} & \text{Mo } K\alpha \text{ radiation} \\ b = 12.793 \ (2) \ \text{\AA} & \mu = 0.89 \ \text{mm}^{-1} \\ c = 17.745 \ (3) \ \text{\AA} & T = 296 \ \text{K} \\ \alpha = 78.664 \ (2)^{\circ} & 0.25 \times 0.20 \times 0.15 \ \text{mm} \\ \beta = 86.558 \ (2)^{\circ} \end{array}$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.808, T_{max} = 0.876$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$
$wR(F^2) = 0.128$
S = 0.97
7631 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13\cdots S2^{i}$	0.93	2.78	3.549 (4)	141
$C17 - H17 \cdot \cdot \cdot N4^{i}$	0.93	2.55	3.441 (6)	161
$C21 - H21 \cdot \cdot \cdot N3^{ii}$	0.93	2.42	3.342 (6)	170
C22−H22···N4 ⁱⁱ	0.93	2.50	3.372 (5)	156
C24−H24···N2	0.93	2.46	3.364 (5)	163
C25−H25···N1	0.93	2.52	3.411 (6)	161
$C27 - H27 \cdot \cdot \cdot N4^{ii}$	0.93	2.58	3.498 (6)	172
C30−H30···N2	0.93	2.60	3.526 (6)	176

14954 measured reflections

 $R_{\rm int} = 0.050$

408 parameters

 $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

7631 independent reflections

3616 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center of Testing and Analysis, Nanjing University of Technology, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2630).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duan, H.-B., Ren, X.-M. & Meng, Q.-J. (2010). Coord. Chem. Rev. 254, 1509– 1522.
- Duan, H.-B., Ren, X.-M., Shen, L.-J., Jin, W.-Q. & Zhou, S.-M. (2011). Dalton Trans. 40, 3622–3630.
- Kato, R. (2004). Chem. Rev. 104, 5319-5346.
- Liu, X., Liu, J.-L., Cai, B. & Ren, X.-M. (2011). Inorg. Chem. Commun. 14, 1428–1431.
- Pei, W.-B., Wu, J.-S., Liu, J.-L., Ren, X.-M. & Shen, L.-J. (2010). Spectrochim. Acta Part A, 75, 191–197.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2013). E69, m428 [doi:10.1107/S1600536813015493]

Bis(1-ethyl-4,4'-bipyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$)nickelate(II)

Yao Chen, Wei-hua Ning and Jian-Lan Liu

Comment

Bis(1,2-dithiolene) complexes of transition metals as an important part of the molecular-based materials have been widely studied due to their novel applications in the areas of materials science, medicines and biology (Duan *et al.*, 2010; Kato, 2004). It is known that weak inter- or intramolecular interactions in the complexes could influence on their properties. Herein we report the crystal structure of the title compound. The bond lengths and angles in the title compound (Fig. 1) are within normal ranges (Duan *et al.*, 2011; Liu *et al.*, 2011). Weak C—H···N and C—H···S hydrogen bonds between the 1-ethyl-4,4'-bipyridin-1-ium cations and 1,2-dicyanoethene-1,2-dithiolate anions and weak π - π interactions between the pyridine rings of the cations [centroid–centroid distances = 3.808 (3) and 3.972 (3) Å] lead to a two-dimensional network parallel to (010) (Fig. 2).

Experimental

The title compound was prepared by a method similar to that reported in literature (Pei *et al.*, 2010). Nickel chloride hexahydrate (238 mg, 1.00 mmol) and disodium maleonitriledithiolate (365 mg, 2.00 mmol) were mixed under stirring in water (50 ml) and heated to boiling for about 20 min. After filtering the red solution, an aequeous solution of 1-ethyl-4,4'-bipyridin-1-ium bromide (554 mg, 2.00 mmol) was added dropwise to the filtrate. The immediately formed dark red precipitate was filtered off, washed with water and dried in vacuum oven, giving the crude product (yield: 511 mg, 72%). Red block-like single crystals were obtained by slow evaporation of the crude in an acetonitrile solution at room temperature in about two weeks.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH), 0.97 (CH₂) and 0.96 (CH₃) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$.

Computing details

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram of the title compound viewed down the *a* axis. Dashed lines indicate hydrogen bonds.

Bis(1-ethyl-4,4'-bipyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato- κ^2 S,S')nickelate(II)

Crystal data	
$(C_{12}H_{13}N_2)[Ni(C_4N_2S_2)_2]$ $M_r = 709.58$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.4505 (13) Å b = 12.793 (2) Å c = 17.745 (3) Å $a = 78.664 (2)^{\circ}$ $\beta = 86.558 (2)^{\circ}$ $\gamma = 80.344 (2)^{\circ}$ $V = 1634.2 (5) \text{ Å}^3$	Z = 2 F(000) = 732.0 $D_x = 1.442 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1518 reflections $\theta = 2.3-19.7^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$ T = 296 K Block, red $0.25 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.808$, $T_{max} = 0.876$ 14954 measured reflections 7631 independent reflections 3616 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.050$	$k = -16 \rightarrow 16$
$\theta_{\rm max} = 28.0^{\circ}, \theta_{\rm min} = 1.6^{\circ}$	$l = -23 \rightarrow 20$
$h = -9 \rightarrow 9$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 0.97	H-atom parameters constrained
7631 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0418P)^2]$
408 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.37 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.82715 (7)	0.22869 (4)	0.39454 (3)	0.04134 (16)
S1	0.73997 (14)	0.35458 (7)	0.46177 (6)	0.0484 (3)
S2	0.76184 (16)	0.10350 (7)	0.48848 (6)	0.0547 (3)
S3	0.87246 (15)	0.35324 (8)	0.29580 (6)	0.0528 (3)
S4	0.93428 (17)	0.10088 (8)	0.33202 (6)	0.0613 (3)
C2	0.6768 (5)	0.2822 (3)	0.5502 (2)	0.0441 (9)
C1	0.6135 (6)	0.3411 (3)	0.6099 (2)	0.0499 (10)
C3	0.6833 (5)	0.1733 (3)	0.5608 (2)	0.0440 (10)
C4	0.6232 (6)	0.1130 (3)	0.6311 (2)	0.0551 (11)
C6	0.9759 (5)	0.2797 (3)	0.2284 (2)	0.0465 (10)
C5	1.0367 (6)	0.3382 (3)	0.1563 (2)	0.0565 (12)
C7	1.0008 (5)	0.1697 (3)	0.2436 (2)	0.0479 (10)
C8	1.0813 (6)	0.1076 (3)	0.1876 (2)	0.0558 (11)
C9	0.2604 (6)	0.3605 (3)	0.4593 (3)	0.0606 (12)
Н9	0.2870	0.4231	0.4273	0.073*
C10	0.1955 (5)	0.3644 (3)	0.5330 (3)	0.0576 (12)
H10	0.1772	0.4301	0.5497	0.069*
C11	0.1563 (5)	0.2723 (3)	0.5835 (2)	0.0461 (10)
C12	0.1837 (6)	0.1787 (3)	0.5540 (2)	0.0577 (12)
H12	0.1594	0.1148	0.5850	0.069*
C13	0.2461 (6)	0.1784 (3)	0.4801 (3)	0.0609 (12)
H13	0.2615	0.1140	0.4618	0.073*
C14	0.0815 (5)	0.2768 (3)	0.6632 (2)	0.0481 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	0.0630 (6)	0.3698 (3)	0.6932 (3)	0.0672 (13)
H15	0.1012	0.4316	0.6645	0.081*
C16	-0.0124 (6)	0.3709 (4)	0.7661 (3)	0.0713 (14)
H16	-0.0215	0.4345	0.7849	0.086*
C17	-0.0516 (7)	0.1977 (4)	0.7814 (3)	0.0785 (15)
H17	-0.0891	0.1368	0.8117	0.094*
C18	0.0220 (6)	0.1890 (3)	0.7087 (3)	0.0645 (13)
H18	0.0309	0.1244	0.6911	0.077*
C19	0.3576 (6)	0.2552 (4)	0.3530(2)	0.0682 (13)
H19A	0.4785	0.2126	0.3566	0.082*
H19B	0.2795	0.2159	0.3312	0.082*
C20	0.3667 (7)	0.3600 (4)	0.3003 (3)	0.0956 (17)
H20A	0.2507	0.4057	0.3006	0.143*
H20B	0.3972	0.3476	0.2491	0.143*
H20C	0.4582	0.3943	0.3170	0.143*
C21	0.2644 (6)	0.2746 (4)	0.9515 (3)	0.0754 (14)
H21	0.2103	0.3136	0.9883	0.090*
C22	0.2539 (6)	0.1671 (4)	0.9611 (2)	0.0686 (13)
H22	0.1919	0.1345	1.0040	0.082*
C23	0.3346 (5)	0.1053 (4)	0.9076 (2)	0.0567 (11)
C24	0.4248 (6)	0.1605 (4)	0.8456 (2)	0.0688 (13)
H24	0.4823	0.1231	0.8085	0.083*
C25	0.4311 (7)	0.2679 (4)	0.8376 (3)	0.0796 (15)
H25	0.4917	0.3027	0.7951	0.095*
C26	0.3254 (6)	-0.0126 (4)	0.9179 (2)	0.0572 (11)
C27	0.2592 (6)	-0.0700 (4)	0.9857 (3)	0.0676 (13)
H27	0.2166	-0.0359	1.0264	0.081*
C28	0.2581 (6)	-0.1785 (4)	0.9909 (3)	0.0759 (14)
H28	0.2132	-0.2155	1.0367	0.091*
C29	0.3719 (8)	-0.1787 (5)	0.8721 (3)	0.0989 (19)
H29	0.4079	-0.2151	0.8318	0.119*
C30	0.3822 (7)	-0.0688 (4)	0.8589 (3)	0.0785 (15)
H30	0.4259	-0.0341	0.8121	0.094*
C31	0.3614 (8)	0.4438 (4)	0.8812 (3)	0.0931 (17)
H31A	0.3367	0.4788	0.8284	0.112*
H31B	0.2689	0.4765	0.9140	0.112*
C32	0.5411 (9)	0.4616 (4)	0.9009 (4)	0.120 (2)
H32A	0.5715	0.4209	0.9512	0.181*
H32B	0.5383	0.5370	0.9005	0.181*
H32C	0.6308	0.4386	0.8640	0.181*
N1	0.5638 (5)	0.3873 (3)	0.6585 (2)	0.0711 (11)
N2	0.5710 (6)	0.0624 (3)	0.6863 (2)	0.0819 (13)
N3	1.0878 (6)	0.3863 (3)	0.1002 (2)	0.0855 (13)
N4	1.1447 (6)	0.0573 (3)	0.1433 (2)	0.0788 (13)
N5	0.2860 (4)	0.2673 (3)	0.4330 (2)	0.0513 (9)
N6	-0.0723 (5)	0.2883 (3)	0.8109 (2)	0.0716 (11)
N7	0.3506 (5)	0.3244 (3)	0.8906 (2)	0.0708 (11)
N8	0.3154 (6)	-0.2354 (4)	0.9367 (3)	0.0889 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
Ni1	0.0509 (3)	0.0353 (3)	0.0370 (3)	-0.0089 (2)	0.0064 (2)	-0.0055 (2)
S1	0.0639 (7)	0.0369 (5)	0.0446 (6)	-0.0108 (5)	0.0060 (5)	-0.0085 (4)
S2	0.0809 (8)	0.0356 (6)	0.0452 (7)	-0.0104 (5)	0.0182 (6)	-0.0072 (5)
S3	0.0705 (8)	0.0391 (6)	0.0450 (7)	-0.0087 (5)	0.0151 (6)	-0.0043 (5)
S4	0.0992 (10)	0.0382 (6)	0.0447 (7)	-0.0145 (6)	0.0226 (6)	-0.0081 (5)
C2	0.045 (2)	0.046 (2)	0.041 (2)	-0.0056 (18)	0.0023 (19)	-0.0091 (18)
C1	0.055 (3)	0.049 (2)	0.045 (3)	-0.006(2)	0.001 (2)	-0.009(2)
C3	0.051 (3)	0.041 (2)	0.037 (2)	-0.0031 (19)	0.0066 (19)	-0.0056 (18)
C4	0.069 (3)	0.048 (2)	0.045 (3)	-0.005 (2)	0.014 (2)	-0.009(2)
C6	0.054 (3)	0.049 (2)	0.034 (2)	-0.009(2)	0.003 (2)	-0.0032 (18)
C5	0.077 (3)	0.048 (3)	0.043 (3)	-0.008(2)	0.010(2)	-0.010 (2)
C7	0.065 (3)	0.044 (2)	0.036 (2)	-0.010 (2)	0.009 (2)	-0.0108 (18)
C8	0.079 (3)	0.050 (3)	0.035 (3)	-0.012 (2)	0.002 (2)	0.000(2)
C9	0.064 (3)	0.047 (3)	0.070 (3)	-0.015 (2)	-0.001 (3)	-0.004 (2)
C10	0.066 (3)	0.035 (2)	0.074 (3)	-0.014 (2)	0.003 (3)	-0.011 (2)
C11	0.047 (2)	0.035 (2)	0.057 (3)	-0.0102 (18)	-0.007 (2)	-0.0064 (19)
C12	0.075 (3)	0.040 (2)	0.059 (3)	-0.015 (2)	0.002 (3)	-0.007 (2)
C13	0.077 (3)	0.046 (3)	0.061 (3)	-0.012 (2)	0.002 (3)	-0.011 (2)
C14	0.045 (2)	0.041 (2)	0.058 (3)	-0.0047 (19)	0.000(2)	-0.011 (2)
C15	0.086 (4)	0.048 (3)	0.070 (3)	-0.014 (2)	0.012 (3)	-0.018 (2)
C16	0.089 (4)	0.054 (3)	0.075 (4)	-0.016 (3)	0.004 (3)	-0.021 (3)
C17	0.101 (4)	0.057 (3)	0.076 (4)	-0.019 (3)	0.014 (3)	-0.008 (3)
C18	0.083 (3)	0.046 (3)	0.064 (3)	-0.013 (2)	0.003 (3)	-0.009 (2)
C19	0.056 (3)	0.092 (4)	0.053 (3)	-0.020 (3)	-0.005 (2)	0.005 (3)
C20	0.098 (4)	0.098 (4)	0.093 (4)	-0.020 (3)	0.003 (3)	-0.021 (4)
C21	0.083 (4)	0.089 (4)	0.047 (3)	-0.003 (3)	0.016 (3)	-0.010 (3)
C22	0.078 (3)	0.080 (3)	0.041 (3)	-0.007 (3)	0.017 (2)	-0.007(2)
C23	0.049 (3)	0.075 (3)	0.042 (3)	-0.002 (2)	0.002 (2)	-0.009 (2)
C24	0.086 (4)	0.077 (3)	0.043 (3)	-0.016 (3)	0.017 (3)	-0.012 (2)
C25	0.090 (4)	0.088 (4)	0.054 (3)	-0.013 (3)	0.020 (3)	-0.007 (3)
C26	0.049 (3)	0.081 (3)	0.041 (3)	-0.010 (2)	0.003 (2)	-0.013 (2)
C27	0.066 (3)	0.085 (4)	0.049 (3)	-0.014 (3)	0.012 (2)	-0.008 (3)
C28	0.071 (4)	0.090 (4)	0.064 (4)	-0.018 (3)	0.001 (3)	-0.007 (3)
C29	0.121 (5)	0.095 (4)	0.086 (4)	-0.027 (4)	0.033 (4)	-0.031 (4)
C30	0.100 (4)	0.082 (4)	0.053 (3)	-0.017 (3)	0.022 (3)	-0.017 (3)
C31	0.109 (5)	0.070 (4)	0.084 (4)	0.010 (3)	-0.003 (4)	0.005 (3)
C32	0.144 (6)	0.083 (4)	0.137 (6)	-0.017 (4)	-0.003 (5)	-0.026 (4)
N1	0.094 (3)	0.067 (3)	0.054 (3)	-0.006(2)	0.009 (2)	-0.026 (2)
N2	0.112 (3)	0.075 (3)	0.051 (3)	-0.016 (2)	0.025 (2)	-0.001 (2)
N3	0.124 (4)	0.074 (3)	0.053 (3)	-0.024 (3)	0.029 (3)	-0.001 (2)
N4	0.123 (4)	0.062 (3)	0.052 (3)	-0.014 (2)	0.023 (2)	-0.021 (2)
N5	0.046 (2)	0.047 (2)	0.060 (2)	-0.0098 (17)	-0.0047 (18)	-0.0043 (18)
N6	0.088 (3)	0.062 (3)	0.068 (3)	-0.011 (2)	0.006 (2)	-0.020 (2)
N7	0.078 (3)	0.073 (3)	0.052 (3)	0.001 (2)	0.005 (2)	-0.003 (2)
N8	0.101 (4)	0.087 (3)	0.080 (3)	-0.022 (3)	0.013 (3)	-0.018 (3)

Geometric parameters (Å, °)

Ni1—S1	2.1796 (11)	C17—H17	0.9300	
Nil—S2	2.1668 (11)	C18—H18	0.9300	
Ni1—S4	2.1703 (11)	C19—C20	1.485 (6)	
Ni1—S3	2.1760 (11)	C19—N5	1.515 (5)	
S1—C2	1.740 (4)	C19—H19A	0.9700	
S2—C3	1.723 (4)	C19—H19B	0.9700	
S3—C6	1.731 (4)	C20—H20A	0.9600	
S4—C7	1.730 (4)	C20—H20B	0.9600	
C2—C3	1.362 (5)	С20—Н20С	0.9600	
C2—C1	1.431 (5)	C21—N7	1.331 (5)	
C1—N1	1.149 (4)	C21—C22	1.367 (6)	
C3—C4	1.422 (5)	C21—H21	0.9300	
C4—N2	1.148 (5)	C22—C23	1.398 (5)	
C6—C7	1.362 (5)	C22—H22	0.9300	
C6—C5	1.440 (5)	C23—C24	1.388 (5)	
C5—N3	1.143 (5)	C23—C26	1.496 (6)	
С7—С8	1.434 (5)	C24—C25	1.362 (6)	
C8—N4	1.145 (5)	C24—H24	0.9300	
C9—N5	1.346 (5)	C25—N7	1.350 (5)	
C9—C10	1.374 (5)	С25—Н25	0.9300	
С9—Н9	0.9300	C26—C27	1.390 (5)	
C10—C11	1.395 (5)	C26—C30	1.390 (5)	
C10—H10	0.9300	C27—C28	1.374 (6)	
C11—C12	1.378 (5)	С27—Н27	0.9300	
C11—C14	1.498 (5)	C28—N8	1.326 (5)	
C12—C13	1.366 (5)	C28—H28	0.9300	
C12—H12	0.9300	C29—N8	1.317 (6)	
C13—N5	1.338 (5)	C29—C30	1.394 (6)	
C13—H13	0.9300	С29—Н29	0.9300	
C14—C18	1.370 (5)	C30—H30	0.9300	
C14—C15	1.379 (5)	C31—C32	1.468 (7)	
C15—C16	1.380 (6)	C31—N7	1.519 (6)	
C15—H15	0.9300	C31—H31A	0.9700	
C16—N6	1.316 (5)	C31—H31B	0.9700	
C16—H16	0.9300	C32—H32A	0.9600	
C17—N6	1.346 (5)	C32—H32B	0.9600	
C17—C18	1.388 (6)	C32—H32C	0.9600	
S2—Ni1—S4	87.25 (4)	C20—C19—H19B	108.9	
S2—Ni1—S3	175.30 (5)	N5-C19-H19B	108.9	
S4—Ni1—S3	91.97 (4)	H19A—C19—H19B	107.7	
S2—Ni1—S1	92.18 (4)	C19—C20—H20A	109.5	
S4—Ni1—S1	175.51 (5)	C19—C20—H20B	109.5	
S3—Ni1—S1	88.96 (4)	H20A—C20—H20B	109.5	
C2—S1—Ni1	102.87 (13)	C19—C20—H20C	109.5	
C3—S2—Ni1	103.49 (13)	H20A—C20—H20C	109.5	
C6—S3—Ni1	103.08 (13)	H20B—C20—H20C	109.5	
C7—S4—Ni1	103.58 (13)	N7—C21—C22	121.2 (4)	

C3—C2—C1	121.6 (3)	N7—C21—H21	119.4
C3—C2—S1	120.4 (3)	C22—C21—H21	119.4
C1—C2—S1	117.9 (3)	C21—C22—C23	121.3 (4)
N1—C1—C2	179.2 (5)	C21—C22—H22	119.4
C2—C3—C4	121.5 (3)	С23—С22—Н22	119.4
C2—C3—S2	121.0 (3)	C24—C23—C22	115.5 (4)
C4—C3—S2	117.5 (3)	C24—C23—C26	122.8 (4)
N2—C4—C3	177.3 (5)	C22—C23—C26	121.7 (4)
C7—C6—C5	121.0 (3)	C25—C24—C23	121.6 (4)
C7—C6—S3	121.0 (3)	С25—С24—Н24	119.2
C5—C6—S3	118.0 (3)	C23—C24—H24	119.2
N3—C5—C6	177.9 (5)	N7—C25—C24	120.8 (5)
C6—C7—C8	121.7 (3)	N7—C25—H25	119.6
C6—C7—S4	120.3 (3)	C24—C25—H25	119.6
C8—C7—S4	118.0 (3)	C27—C26—C30	117.4 (4)
N4—C8—C7	179.4 (5)	C27—C26—C23	122.0 (4)
N5—C9—C10	120.8 (4)	C30—C26—C23	120.6 (4)
N5—C9—H9	119.6	C28—C27—C26	118.4 (5)
С10—С9—Н9	119.6	С28—С27—Н27	120.8
C9—C10—C11	121.6 (4)	С26—С27—Н27	120.8
С9—С10—Н10	119.2	N8—C28—C27	125.9 (5)
C11—C10—H10	119.2	N8—C28—H28	117.0
C12—C11—C10	115.7 (4)	С27—С28—Н28	117.0
C12—C11—C14	122.7 (3)	N8—C29—C30	125.5 (5)
C10—C11—C14	121.6 (3)	N8—C29—H29	117.3
C13—C12—C11	121.0 (4)	С30—С29—Н29	117.3
C13—C12—H12	119.5	C26—C30—C29	118.0 (5)
C11—C12—H12	119.5	С26—С30—Н30	121.0
N5-C13-C12	122.4 (4)	С29—С30—Н30	121.0
N5-C13-H13	118.8	C_{32} — C_{31} —N7	111.8 (4)
C12—C13—H13	118.8	C32—C31—H31A	109.3
C12 - C12 - C12	117.0 (4)	N7—C31—H31A	109.3
C18 - C14 - C11	120 9 (4)	C32—C31—H31B	109.3
C15 - C14 - C11	122.0(4)	N7-C31-H31B	109.3
C14-C15-C16	119 7 (4)	$H_{31}A = C_{31} = H_{31}B$	107.9
C14-C15-H15	120.1	C_{31} C_{32} H_{32A}	109.5
C16—C15—H15	120.1	$C_{31} = C_{32} = H_{32}B$	109.5
N6-C16-C15	120.1	$H_{32A} - C_{32} - H_{32B}$	109.5
N6-C16-H16	117.6	C_{31} C_{32} H_{32C}	109.5
C_{15} C_{16} H_{16}	117.6	$H_{32}A = C_{32} = H_{32}C$	109.5
N6-C17-C18	124 4 (4)	$H_{32B} = C_{32} = H_{32C}$	109.5
N6-C17-H17	117.8	$C_{13} N_{5} C_{9}$	118 5 (4)
C18 - C17 - H17	117.8	C13 - N5 - C19	117.0(3)
C_{14} C_{18} C_{17}	119.1 (4)	C9 - N5 - C19	1245(4)
C14 - C18 - H18	120.5	$C_{16} N_{6} C_{17}$	124.3(4) 114.9(4)
C17-C18-H18	120.5	$C_{10} = N_{10} = C_{17}$	1196(4)
C_{20} C_{19} N5	113 4 (4)	$C_{21} = N_{7} = C_{21}$	120 4 (4)
C_{20} C_{19} H_{19A}	108.9	$C_{25} N_{7} C_{31}$	120.1(1)
N5-C19-H19A	108.9	$C_{29} N_{8} C_{28}$	114 7 (5)
	100.7	027 110 020	117.7 (3)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C13—H13…S2 ⁱ	0.93	2.78	3.549 (4)	141
C17—H17…N4 ⁱ	0.93	2.55	3.441 (6)	161
C21—H21…N3 ⁱⁱ	0.93	2.42	3.342 (6)	170
C22—H22···N4 ⁱⁱ	0.93	2.50	3.372 (5)	156
C24—H24…N2	0.93	2.46	3.364 (5)	163
C25—H25…N1	0.93	2.52	3.411 (6)	161
C27—H27…N4 ⁱⁱ	0.93	2.58	3.498 (6)	172
C30—H30…N2	0.93	2.60	3.526 (6)	176

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z+1.