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Sensory properties inform likes and dislikes, but also play an important functional role

in guiding food choice and intake behavior. Odors direct food choice and stimulate

sensory-specific appetites and taste helps to anticipate calorie and nutrient content of

food. Food textures moderate eating rate and the energy consumed to satiation and

post-ingestive metabolism. We summarize how sensory cues moderate intake, and

highlight opportunities to apply sensory approaches to improve dietary behavior. Salt,

sweet and savory taste influence liking, but also influence energy intake to fullness,

with higher taste intensity and duration linked to lower intake. Psycho-physical studies

show it is relatively easy to rank taste intensities at different concentrations but more

challenging to discriminate fat contents, and fat discrimination declines further when

combined with high-taste intensity. Fat has low impact on sensory intensity, but makes

significant contributions to energy content. Combinations of high taste and fat-content

can promote passive energy over-consumption, and adding fat also increases energy

intake rate (kcals/min), reducing opportunities to orally meter consumption. Consumers

adapt their oral processing behaviors to a foods texture, which can influence the rate

and extent of energy intake. Understanding how texture influences eating behaviors

and bolus formation, affords new opportunities to impact eating rate, energy intake and

metabolic response to food. Food formulation has traditionally focused on composition

and sensory appeal. Future research needs to consider the role of sensory properties in

moderating consumer interaction with their food environment, and how they influence

calorie selection, and shape our eating behaviors and intake.

Keywords: sensory, food choice, energy intake, texture, odor, taste

INTRODUCTION; SENSORY CUES AS FUNCTIONAL FOOD

PROPERTIES

A foods sensory appeal is largely determined by the physical and chemical properties that are sensed
before and during consumption, which informs initial acceptance and the degree to which a food
will be consumed (1). High sensory appeal is proposed as the main reason for excessive energy
intakes, yet dietary energy intake patterns are not dominated only by highly palatable foods, and
most energy is consumed from staple foods andmeals with diverse sensory properties. This suggests
that palatability is only one dimension of food intake, and that the sensory properties of food play
an important functional role in guiding intake behavior, beyond simply promoting “liking”. The
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senses of vision and olfaction are involved in the anticipation
of food intake and direct sensory specific appetites and food
choice. By contrast, hearing, taste, retro-nasal olfaction, texture
perception and trigeminal stimulation are directly involved
during consumption, and collectively inform the onset of
satiation and the termination of energy intake (2). These sensory
signals are integrated to form a dynamic perceptual impression
of a food, which determines both our liking and intake behavior
to the point of satiation (3). Sensory cues are operational before
and during a meal, having a direct effect on satiation, with less of
an impact on satiety (4).

This mini-review provides a summary of recent findings on
the role of odor, taste and texture on calorie selection and
energy intake. We highlight the differential role of smell and
taste and texture perception in the initiation and termination
of eating, and the sensory impact of fat in promoting higher
energy intake rates. Food texture can also influence the oral
phase of digestion and subsequent metabolic responses, and
we highlight opportunities to apply an empirical understanding
of the role of sensory cues to moderate food choice, intake
and the eating behaviors associated with the healthiness of the
food supply.

IMPACT OF PALATABILITY, ODORS, AND

TASTE ON ENERGY SELECTION AND

INTAKE

High palatability is a powerful incentive to eat, and the
ingestion of “good tasting foods” has been linked to a multitude
of positive emotions (5). A higher palatability increases the
probability that a particular food will be chosen amongst a set
of alternatives (6), and research has also shown that higher
palatability leads to an increase in energy intake [i.e., (7)].
However, it is an oversimplification to assume that we only
choose and consume foods based on palatability, and food
intake decisions are influenced by a complex set of factors
that go beyond palatability (1). Food choice and intake are
influenced by a multitude of factors and we do not only consume
our “most liked” foods (8). Highly palatable foods are often
regarded as “treats”, and are consumed infrequently and so do
not contribute disproportionately to higher energy intakes. For
example, treat foods such as ice cream contribute a relatively
small proportion (5%) to consumed calories (9). The majority
of daily energy intakes comes from “savory-fatty” foods (10, 11)
and staple foods (12) which often have relatively low hedonic
valence, such as rice, potato or pasta, rather than indulgent
“treat” products often characterized as junk foods or empty
calories (13). Whereas, liking may predict choice, the effect of
higher palatability on intake is not a linear relationship, with
research showing the predictive relationship between liking and
intake tends to diminish at higher levels of palatability. For
example, in a field study with US soldiers, soldiers consumed
100% of served portions when the liking rating on the 9-point
hedonic scale was either a “8” or a “9”, yet the relationship
between liking and intake tended to plateau at ratings above
score of 5–6 (6). Beyond their role in liking, research in

from numerous controlled sensory-feeding behavior studies has
highlighted the role of food sensory properties in calorie selection
and intake.

Research has shown that food related ambient odors can
increase sensory specific appetites and directly influence food
choice (14, 15). For example, when customers at an experimental
restaurant were asked to choose their meals from a menu, the
proportion selecting a fruit dessert increased when choices
were made in the presence of a non-attentively perceived
“pear” odor, than when choices were made without an odor
(16). The implication is that our response, particularly to
unattended odors, are likely to play an important role in food
choices. Similarly, when exposed to odors signaling a specific
“taste” (i.e., sweet/savory) participants had a greater appetite
for congruent sweet/savory food, compared to incongruent
products, suggesting odors can induce “sensory specific
appetites” that influence choice, independently of liking (17, 18).
Although this effect has been reproduced many times, it seems
limited to choice and despite early findings to the contrary
(19, 20), odors do not seem to have a direct impact of energy
intake in realistic consumption conditions (21, 22).

By contrast taste quality and intensity have been shown to
moderate energy selection and intake. Consuming foods with
higher umami intensity has been shown to reduce subsequent
energy intake (23, 24), and foods with congruent savory-taste and
protein content have been shown to enhance post-meal satiety
(25, 26). Taste quality and intensity reflect the concentration of
the taste substrate in the food environment, such that “sweeter”
foods tend to contain more mono- and di-saccharides and salty
foods contain more NaCl. However, there are also exceptions
to this relationship, where fat (which is usually present as
triacylglycerol), has a low sensory impact, but a large impact
on the energy content of foods. Fat sensation affects mouthfeel,
flavor release, and can directly impact the rate of the energy
intake (27). In many cases the widespread use of low and no-
calorie sweeteners nowmeans there can be a strong taste signal in
the absence of any sugar. Humans are largely blind to the primary
macronutrients sources of energy we consume including starch,
protein and triacylglycerol, which have little or no taste activity
(13). As such, the sense of taste is influential in linking what is
perceived during consumption with the positive post-ingestive
consequences of food intake, and through repeated exposure,
taste acquires a predictive capacity where we learn to imprint
preferences and habitual eating habits via a reciprocal effect of
flavor-consequence learning (28, 29).

Whether one taste quality is more satiating than another has
been investigated based on anecdotal reports that “sweet” foods
were wrongly believed to be less satiating than savory foods
on a kcal for kcal basis, and may therefore promote increased
energy intake. Early research on this topic showed no difference
in the short term effect of sweet/non-sweet carbohydrates on
subsequent satiety (30) and later findings support this showing
that energy compensation is no different whether the energy
taste quality was sweet or savory (31). This is further supported
by research on taste and satiation, which showed that ad
libitum intakes were equivalent for sweet and salty/savory tasting
versions of the same meal (32).
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Within a meal, the combined duration and intensity or
“magnitude” of a taste may also affect the onset of satiation.
Studies have investigated the impact of taste duration on ad
libitum intakes, while maintaining a constant intake rate using
a peristaltic pump. In one study, researchers measured individual
concentration-pleasantness curves for salt in tomato soup, and
exposed subjects to equally palatable low and high intensity
salt during separate ad libitum test meals (33, 34). A longer
oro-sensory exposure time and higher salt intensity combined
to decreased food ad libitum intake by ∼9%, though the oro-
sensory exposure had a stronger impact than taste intensity.
Vickers et al. showed that high yogurt sweetness was liked more
than a low sweetness, but consumption showed the opposite
effect, indicating that higher sweetness intensity led to earlier
satiation (35). Lasschuijt et al. showed that higher taste intensity
led to earlier meal termination, but as with previous findings, the
effect of oro-sensory duration had a stronger impact than taste
intensity (36).

SENSORY CONTRIBUTION OF “FAT”;

PERCEPTUALLY BENIGN BUT

ENERGETICALLY POTENT

New techniques have been developed in recent years to profile
dietary energy-intake behaviors based on the predominant taste
properties of the foods consumed. This has produced new
insights on consumer sensory-patterns of dietary intake based
on the preferred taste quality of energy and nutrients consumed
(37). This approach has been described as “sensory-epidemiology”
and it enables comparison of daily energy intakes by clustering
foods by their predominant taste quality, and then comparing the
relative contribution of taste clusters to higher or lower energy
consumed. Whereas, much attention has been directed to role
of sweet foods and added sugar to high energy intakes, findings
suggest that the excess energy intakes are mostly associated
with greater intakes of “savory–fatty” tasting foods, which are
consistently associated with increased energy intakes and higher
rates of overweight (11). The implication is that foods high in
“savory-fat” combinations make a significant contribution to
daily energy intakes. Previous research has shown that our ability
to discriminate between fat levels in food is reasonably linear at
low taste intensity, but this ability dramatically decreases when
fat is presented alongside higher intensity of sweet (38) or salty
(39, 40) tastes. The implication is that when we are unable to
detect increases in energy density due to higher fat, it becomes
more difficult to adjust portion selected or later energy intakes in
response to higher energy consumed from fat (41). It is therefore
relatively easy to “hide” fats in foods without the fat being sensed,
yet it makes a significant contribution to energy intakes. For
example, ad libitum energy intake was∼2,100 kcal on a diet with
15–20% energy from fat compared to 2,600 kcal in a diet of equal
palatability which derived 45–50% energy from fat (42).

Foods with a higher fat content can also lubricate and
agglomerate more rapidly during consumption, which enhances
bolus formation and increases eating rate and the extent of energy
intake (43–45). As we summarize in the following section, this

dual impact of increased eating rate and energy density can also
promote excessive energy intakes.

FOOD TEXTURE, EATING RATE, ENERGY

INTAKE, AND METABOLISM

Eating behaviors emerge in response to the texture challenges
encountered during consumption, where consumers adapts
their microstructural patterns of oral processing to prepare the
initial structure for safe swallow (46). The effect of texture on
satiation/food intake is mainly operational through eating rate,
where harder, chunkier, more viscous textures result in lower
eating rates (47). Previous research on liquid and semi-solid
foods has shown that ad libitum intake of a liquid was ∼30%
higher than that of a semi-solid food (48). Difference in intake
between liquid and semi-solids disappear when eating rates are
set equal, with the help of peristaltic pump (49). There is wide
natural in the eating rate of foods commonly encountered, with
recent comparisons highlighting a range of between 10 and 120
g/min for solid foods, and rates of up to 400–600 g/min for liquids
(50). Energy dense liquids pose a double-risk as they can be easily
over-consumed, but also deliver poor satiety on a kcal for kcal
basis (51).

Significant progress has been made in our understanding
of how food texture influences oral processing (47, 52) and
the specific influence of food textures on food intake (53).
Food texture has been shown to drive eating rate (44, 54,
55) which in turn can influence ad libitum energy intake to
satiation (56), and several studies have shown that faster eating
is associated with the transition to overweight and obesity
and poor cardio-metabolic health (55, 57–59). A meta-analysis
of the food physical and sensory properties that affect intake
concluded that people tend to consume less when solid-foods
were harder, chunkier and more viscous (60). Evidence from
numerous studies (53, 54, 61) now suggest that with a 20%
reduction in eating rate, it is possible to reduce ad libitum
energy intake by 1–14% without a loss in subsequent feelings
of satisfaction (62). Food form and mode of consumption can
also influence the rate and extent of intake, and solids have
been shown to have a higher satiating efficiency than semi-
solids and liquids, unless consumed slowly (as a soup) (63).
Similarly, intakes were ∼100 g lower each day when a semi-
solid food was consumed with a spoon than a straw, highlighting
that slower eating rate can support the onset of satiation for
fewer calories (64). Food can influence eating rate but also
oral processing and saliva-bolus uptake during the oral phase
of digestion. Differences in food oral processing behavior have
been shown to contribute to temporal changes in post-prandial
glucose and insulin, and post-meal satiety responses (65–67).
Slower eating rates result in greater bolus surface area, saliva
uptakes and may have an incretin effect as early glucose release
stimulates greater early insulin release (36, 65). Taken together,
these findings indicate that food texture contributes much more
simply “sensory appeal”, and can effect satiation and satiety by
moderating eating rate, but can also exerts influence on the
oral phase of digestion and the subsequent metabolic response
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to ingested nutrients. Further research is needed to understand
how food texture based differences in eating rate can influence
food intake control and support healthy metabolic responses to
ingested nutrients.

FUTURE OPPORTUNITIES FOR SENSORY

NUTRITION

Public health guidelines recommend reductions in sugar, salt
and fat but rarely consider the functional role of a foods
sensory properties on choice and intake, or opportunities
to incorporate an understanding of sensory cues in guiding
reformulation or eating behavior changes. This review provides
an overview of data that consistently shows how sensory cues
have a reproducible influence on how we select, consume and
feel satisfied from the foods in our diet. Further research is
need to understand whether sensory properties can support
sustained changes in eating behavior and promote healthier
dietary patterns in the longer-term. Future product development
and renovation requires significant reductions in several public
sensitive nutrients (i.e., salt, sugar and fat) alongside enhanced
nutrient density, to support better health and reduce the risk
of diet related chronic disease. Understanding how consumers
perceive and consume a food is central to the success of
efforts to improve dietary behavior. We outline three potential
opportunities for future applications of “sensory-nutrition”
approaches to support improved eating behavior, dietary patterns
and health.

Using food odors to promote healthy food choice: Research has
highlighted the food odors stimulate sensory specific appetites,
and are associated with recalled energy content and memory for
foods. This may influence “foraging” behavior and is likely to
support how we navigate the food environment when making
choices on what to consume (68). Limited research to date has
focused on the application of odor primes to encourage sensory-
appetites and choice for healthier food products, and future
research should aim to explore whether odor cues can be applied
to stimulate consumer appeal and reinforce positive elements of
healthy food choice and consumption.

Application of low-calorie taste compounds to sustain the
appeal reduced energy foods: Extensive research has shown
the impact of no- and low-calorie sweeteners (non-nutritive
sweeteners, NNS) to support sugar reduction, and this has
been particularly effective in removing sugar from soft-drinks.
Numerous meta-analyses of experimental evidence highlight that
applying non-nutritive sweeteners to reduce the sugar content
of the diet can both lower dietary energy density and support
clinically significant reductions in body weight [i.e., see (69)].
However, as demonstrated earlier, “savory-fatty” foods make a
significant contribution to daily energy intakes (11), yet less
research has been focused on how to sustain sensory appeal of
savory foods with reduced energy density. In addition to the
potential application of umami savory enhancers highlighted
in the current review, recent findings suggest that kokumi

may have the potential to enhance sensory appeal, increase
calorie estimates, while supporting energy density reduction (70).
These kokumi compounds are low calorie taste enhancers, often
comprising tri-peptides and yeast extracts, that are known to
enhance sensations of mouthfulness, continuity and complexity,
often mimicking the sensory impact of fat. Preliminary findings
demonstrate that addition of kokumi compounds can enhance
sensory dimensions linked to calorie expectations, and promote
higher estimated calories and expected fullness across a series of
equi-caloric broths. Future research should further explore the
potential of Kokumi compounds to support calorie reduction
while maintaining product sensory appeal.

Texture and Energy Density to reduce intake to satiation;
Evidence from several controlled feeding studies has
demonstrated that energy density (71) and food texture
(53) can independently and in combination influence the rate
and extent of energy intake within meals. Findings from a recent
RCT on ultra-processed foods highlights that higher energy
intake rates (kcals/min) support sustained increases in ad libitum
energy intake (72). These energy intake rates have been shown to
vary widely within the food environment (27). Enhancing food
texture in combination with energy density reductions combine
to produce an 10–14% reduction in energy intakes, with no loss
in meal palatability or post-meal satisfaction (53, 62). Further
research is now needed to demonstrate the sustained effect of
texture-energy density interventions on habitual energy intakes
and subsequent energy balance.

CONCLUSIONS

Knowing that the sensory properties of food influence choice
and intake behavior is important, but this knowledge will have
little impact if we do not apply sensory cues to encourage the
consumption of healthier diets. As illustrated above, a number of
proof of principle studies have clearly shown that it is possible to
change sensory cues in the food environment in such a way that
people consume less calories while maintaining the palatability
of diets. These approaches require further research to understand
the longitudinal impact of sensory properties on energy intake
in the food environment and across a wider population of
consumers. Controlled “sensory-nutrition” intervention studies
are required to further understand how effective these longer
term approaches are in producing sensory optimized foods that
help to moderate the flow of energy though our diets.
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