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Mounting evidence shows that MicroRNAs (miRNAs) and their target

genes are aberrantly expressed in many cancers and are linked to tumor

occurrence and progression, especially in esophageal cancer (EC). This

study purposed to explore new biomarkers related to the prognosis of EC

and to uncover their potential mechanisms in promoting tumor progres-

sion. We identified 162 differentially expressed miRNAs and 4555 differen-

tially expressed mRNAs in EC. Then, a risk model involving three

miRNAs (miR-4521, miR-3682-3p, and miR-1269a) was designed to pre-

dict prognosis in EC patients. Furthermore, 7 target genes (Rho GTPase-

activating protein 24, Chromobox 3, Contactin-associated protein 2,

ELOVL fatty acid elongase 5, LIF receptor subunit alpha, transmembrane

protein 44, and transmembrane protein 67) were selected for Gene Ontol-

ogy and Kyoto Encyclopedia of Genes and Genomes analyses to reveal

their potential mechanisms in promoting EC progression. After a series of

correlation analyses, miRNA target genes were found to be significantly

positively or negatively associated with immune infiltration, tumor

microenvironment, cancer stemness properties, and tumor mutation burden

at different degrees in EC. To further elucidate the role of miRNA signa-

ture in cancer progression, we performed a pan-cancer analysis to deter-

mine whether these genes exert similar effects on other tumors.

Interestingly, the miRNA target genes altered expression on tumor immu-

nity; however, pan-cancer progression was the same as that of EC. Thus,

we explored the immune landscape of the miRNA signature and its target

genes in EC and pan-cancer. These findings demonstrated the versatility

and effectiveness of our model in various cancers and provided a new

direction for cancer management.

1. Introduction

Esophageal cancer (EC) is the 8th most common can-

cer and the leading cause of cancer-associated deaths

globally [1]. Despite great advances in the diagnosis

and treatment of EC, effective biomarkers that

facilitate precision diagnosis and therapy are lacking

[2]. MicroRNAs (miRNAs), small endogenous non-

coding RNAs, can regulate gene expression in the

posttranslational level by directly binding to target

mRNAs [3]. MiRNAs have been implicated in a vari-

ety of biological processes (BP), thus promote tumor
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progression, including EC [4]. For example, in our pre-

vious study, we found that miR-34a-5p could directly

target LEF1 and promote epithelial–mesenchymal

transition and progression in esophageal squamous cell

carcinoma [5]. Some studies also confirmed that

miRNA profiles could be used in predicting the sur-

vival outcome of EC patients [6]. The above findings

indicate that miRNAs may serve as a promising bio-

marker for diagnosis, prediction of survival, and preci-

sion treatment in cancers.

Although the crucial role of miRNAs as biomarkers

in various cancers has been extensively elucidated, the

potential mechanisms of miRNAs and their target genes

in tumor progression and poor patient prognosis remain

elusive. Growing evidence has shown that tumor

microenvironment (TME) participates in tumor pro-

gression and metastasis of various cancers [7]. All com-

ponents of TME including cancer cells and noncancer

cells (infiltration immune cells, stromal cells, and extra-

cellular matrix) have been revealed to play important

roles in crosstalk with tumor cells to affect tumor pro-

gression and invasion. Numerous studies have shown

that tumor-associated stromal cells are involved in the

progression and invasion of various cancers [8]. The

response of immune treatment could be evaluated by

nonimmune cell components in TME. For instance, the

elimination of immune cells in TME and the resistance

to chemotherapy is affected by transforming growth fac-

tor-b (TGF-b) secreted by fibroblasts [9].

Also, immune cells infiltrated in TME can kill tumor

cells via various mechanisms. More importantly, miR-

NAs also pose their indispensable role in the regulation

of TME. Recent studies have demonstrated that miR-

NAs and their target genes are expressed in both stro-

mal and tumor cells, promoting tumor development and

progression. Thus, both miRNAs and target genes could

serve as modulators between different types of infil-

trated immune and tumor cells. However, miR-155

which is a widely explored miRNA in immune cells was

shown to be down-regulated in tumor-associated macro-

phages (TAMs) which consequently promoted the

expression of IL-10 by targeting C/EBPb, hence

enhanced its immunosuppressive function in cancer [10].

Cancer stem cells (CSCs), generated during cancer

progression, are considered for cancer recurrence,

chemotherapy resistance, and tumor progression [11].

Our previous study explicitly elucidated the role of tran-

scriptional factor LEF1 and protein arginine methyl-

transferase-1 in the regulation of cancer stem-like

properties and resistance to chemotherapy in esophageal

squamous carcinoma cell [12,13]. Moreover, CSCs were

reported to have tight crosstalk with TME and immune

response. Evidence from ovarian cancer showed that

marrow-derived suppressor cells, an inhibitor of other

immune cells in TME, could promote phenotype of

CSCs by inducing miR-101 expression [14]. CSCs from

patients with head and neck squamous cell carcinoma

and melanoma were confirmed to recruit regulatory T

cells with immunosuppressive and tumor-promoting

effects and promoted in vitro proliferation [15]. More-

over, miRNAs could correlate with cancer stem-like

properties in various tumors. Specifically, miR-181b

directly binds to STAT3 and activates downstream

CYLD pathways regulating the proliferation of CSCs in

esophageal squamous cell carcinoma [16]. Therefore,

exploring the role of miRNAs and target genes in CSCs

would facilitate an in-depth understanding of tumor

progression and precision therapy.

Immune therapy is recently considered as a promising

novel method for EC treatment in terms of immune

checkpoint inhibitors, tumor vaccine, and adoptive T-

cell treatment. Notably, programmed cell death protein-

1 (PD-1) and programmed cell death protein ligand 1

(PD-L1) blockages were the widely used immune check-

point inhibitors. Tumor mutation burden (TMB), which

was revealed to be related to the generation of neoanti-

gens, has been applied to predict the response to PD-1

and PD-L1 blockages in various tumors. Recent studies

also demonstrated that differentially expressed miRNA-

based signature and its target genes were associated with

TMB levels in lung adenocarcinoma [17]. Thus, explor-

ing a more effective miRNA signature is imperative to

facilitate the prediction of immune therapy in EC.

In the present study, we constructed and validated a

three miRNA-based signature that effectively predicted

the overall survival (OS) of EC patients in the TCGA

database. Functional of Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis indicated some potential biological functions

and signaling pathways involved in the three miRNA

signature. We further explored the immunological role

of the three miRNAs and target genes in EC patients.

Moreover, we detected whether three miRNA markers

and their target genes in pan-cancer had the same

prognostic and immunological effects in EC, which

could facilitate an in-depth understanding of tumor

progression and precision immune treatment.

2. Materials and methods

2.1. Data download and processing

We downloaded RNA-seq data of mRNA and miRNA

expression profile, clinical information, and single

nucleotide polymorphism data of EC from the TCGA
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database (https://cancergenome.nih.gov/). The mRNA

data of 171 samples included 160 tumor samples and 11

normal samples. The miRNA data of 198 samples

included 185 tumor samples and 13 normal samples. All

mature miRNA sequences were downloaded in Fasta

format from the miRBase database (http://www.mirba

se.org/) [18] to obtain sequence data. The TCGA pan-

cancer data were downloaded from the UCSC Xena

database (https://xenabrowser.net/datapages/) [19],

including RNA-seq, patients’ clinical data, stemness

scores based on mRNA (RNAss) and DNA methylation

(DNAss), and immune subtypes. The TCGA pan-cancer

data included 33 cancer types, and they are ACC,

BLCA, BRCA, ESCA, CCA, CESC, COAD, DLBC,

GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG,

LIHC, RCA, LUAD, LUSC, MESO, OV, PAAD,

PCPG, PRAD, READ, SARC, SKCM, TGCT, THCA,

THYM, UCEC, UCS, and UVM. A total of 11 058

samples were enrolled in our study, and the number of

samples in each cancer type ranged from 45 for CCA to

over 1000 for breast cancer. Notably, 18 types of can-

cers had more than five normal samples and were used

to assess altered gene expression profiles.

2.2. Identification of DEGs, DEMs, and their

association with patient prognosis

The ‘edgeR’ package [20] was used to normalize raw

count data and to compare differential expressed genes

(DEGs) and differential expressed miRNAs (DEMs)

between tumor samples and normal samples, with a

false discovery rate (FDR) < 0.05, and |log2FC| > 1.

Then, we combined standardized and differentially

expressed data with clinical information. Subsequently,

we used the ‘caret’ package [21] to randomly group all

samples with combined information into the training

dataset and test dataset with a ratio of 0.7 and further

applied the univariate Cox regression analysis to find

prognosis related miRNAs in the training group. A

total of 14 miRNAs were selected and were all sub-

jected to multivariate Cox regression analysis followed

by LASSO analysis. Three miRNA-based signature

was finally filtered, and the risk score was calculated

by the expression value of each miRNA and their

coefficient. Consequently, the Kaplan–Meier curve was

used to analyze the EC patient prognosis based on the

median value of risk score in the training, test, and all

patient groups. The predictive power of the miRNA

signature was evaluated by AUC of 3 years dependent

ROC curve using the ‘survivalROC’ package [22]. The

relationship of the risk score based on the three

miRNA signature and clinical features (gender, age,

stage, T stage, lymph nodes invasion, and metastasis)

with patient prognosis was analyzed through univari-

ate and multivariate Cox regression.

2.3. Predicting target genes of three miRNAs

and potential functions

Target genes of three miRNAs were predicted using

TargetScan (http://www.targetscan.org/) [23], miRDB

(http://www.mirdb.org/miRDB/) [24], and miRWalk

(http://mirwalk.umm.uni-heidelberg.de/) [25] online

analysis tools. The candidate genes presented in three

databases were regarded as potential miRNA target

genes. Meanwhile, CYTOSCAPE 3.6.0 software (Institute

for Systems Biology, Seattle, WA, USA) [26] was uti-

lized to demonstrate regulation relationships between

miRNAs and target genes. To clarify whether the target

genes of these miRNAs are likely to participate in the

progression of EC, we took the intersections of these

target genes and differentially expressed genes, then fil-

tered the intersected genes with the criteria of expressing

negatively association with corresponding miRNAs.

KEGG signaling pathway and GO enrichment analysis

were adopted to reveal potential mechanisms in these

intersection genes using ‘clusterProfiler’ package in R

[27]. Gene set enrichment analysis (GSEA) was also

analyzed using ‘clusterProfiler’ package.

2.4. Tumor microenvironment analysis

The ESTIMATE immune, stromal, and estimate scores

were used to analyze the infiltration levels of both

immune and stromal cells and the purity of tumors in

various cancers [28]. This novel algorithm was based

on the expression profiles of the TCGA database and

proved to be effective in prediction. The association

between target gene expression and those scores was

tested with Spearman correlation. Moreover, we

detected six immune types (C1-C6) involved in EC and

pan-cancer samples. The Analysis of variance

(ANOVA) was used to test the correlation between

immune subtypes and target gene expression obtained

from TCGA EC and pan-cancer data. Cancer stem

cell-like properties of each patient obtained from epi-

genetic and transcriptomic data were used to measure

stemness features of tumor cells. The correlation

between stemness characteristics and target genes was

tested with Spearman analysis.

2.5. Evaluating immune infiltration cells in the

tumor microenvironment

Recently, Aaron et al. developed a new algorithm to

analyze 22 types of immune cells involved in the TME
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and named it CIBERSORT [29]. In our study, we cal-

culated the proportion of 22 tumor-infiltration immune

cells in each EC and pan-cancer patients based on

CIBERSORT score. Moreover, the association

between target gene expression and immune infiltration

score was assessed to determine which immune cells

are significant in different types of cancers.

2.6. Drug sensitivity analysis

The NCI-60 database, containing data from 60 cancer

cell lines, was analyzed by CELLMINER website (https://

discover.nci.nih.gov/cellminer/) [30,31]. The expression

status of target genes and z-score for cell sensitivity

data (GI50) was downloaded from the website and

assessed through Pearson correlation analysis to deter-

mine the correlation between target gene expression

and drug sensitivity.

2.7. Tumor mutation burden analysis

After successfully downloading somatic mutation data

from the UCSC database, we calculated the mutation

frequency with the number of variants/the length of

exons (38 million) for each patient via Perl scripts

based on the JAVA9 platform. Then, we used Spear-

man correlation analysis to evaluate the association

between target gene expression and TMB information

in each patient of EC and pan-cancer.

2.8. Statistical analysis

All statistical analyses were based on R language 3.6.1

version and the attached packages. Wilcox test was

used to identify differentially expressed genes and dif-

ferentially expressed miRNAs. Comparisons of gene

expression in all the tumors across all cancer types and

between the normal and tumors in the 18 cancer types

which had more than five associated adjacent normal

samples were performed using linear mixed-effects

models. Continuous variables were analyzed using Stu-

dent’s t-test. ANOVA was used to test the association

between gene expression and immune infiltrate sub-

types and cancer subtypes. Log-rank tests and

Kaplan–Meier curve were used to analyze the associa-

tion between gene or miRNAs expression and patient

OS. Spearman correlation method was used to calcu-

late correlation between two variables, such as target

genes and all immune-related traits. Univariate or mul-

tivariate Cox regression analyses were performed to

evaluate correlation of miRNAs or gene expression

with patient survival. The hazard ratio (HR) and 95%

confidence interval (CI) were calculated to identify

genes associated with OS. P < 0.05 was considered sta-

tistically significant.

3. Results

3.1. Identification of differential expressed

miRNAs (DEMs) and genes (DEGs) in ESCC

Here, we explored the DEMs and mRNA (DEGs)

based on the TCGA-ESCA dataset, including 185tu-

mor/13normal samples and 160tumor/11normal samples,

respectively. The clinical information of these patients

including age, gender, stage, T stage, lymph node inva-

sion, and metastasis information was also downloaded.

As results, the top 30 up- and down-regulated miR-

NAs are shown in Fig 1A. The 162 differentially

expressed miRNAs were identified according to the cri-

teria of FDR < 0.05 and |log2FC| > 1.0 (Fig. 1B).

Similarly, 4555 differentially expressed mRNAs were

detected by the ‘edgeR’ package and shared similar fil-

ter criteria with DEMs (Fig. 1C,D).

3.2. Construction and evaluation of three

miRNA-based signature for prognostic prediction

in ESCC

Patients with mature miRNA expression information

were randomly grouped into training and test datasets

with a ratio of 0.7. After performing a univariate Cox

regression analysis, we identified 14 miRNAs that were

associated with poor patient prognosis in the training

group (Fig. 1E). Subsequently, multivariate Cox

regression analysis followed by LASSO analysis

selected three miRNAs (miR-4521, miR-3682-3p, and

miR-1269a) to construct prediction model with their

coefficient as follows: miRNA risk score = (0.26 9 ex-

pression of miR-4521) + (0.34 9 expression of miR-

3682-3p) + (0.07 9 expression of miR-1269a). The

Fig. 1. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs)in EC. (A) Top 20 of up-regulated and down-

regulated DEMs in EC. (B) Volcano plot of DEMs in EC. (C) Top 20 of up-regulated and down-regulated DEGs in EC. (D) Volcano plot of

DEGs in EC. (E) Forest plot of univariate Cox analysis of DEMs filtered 14 miRNAs. (F) Three miRNAs associated with OS in EC patients

using Kaplan–Meier curves and log-rank tests. (G) Kaplan–Meier curves validated and evaluated three miRNA signature in the training group

(left panel), test group (median panel), and all group (right panel).
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Kaplan–Meier curve pointed out that the high expres-

sions of miR-4521, miR-3682-3p, and miR-1269a were

associated with poor prognosis of EC patients

(Fig. 1F). According to the median value grouping of

the miRNA risk score, we found a high-risk group in

the training dataset exhibiting an overall poor survival

rate compared with the low-risk group (Fig. 1G, left

panel). Meanwhile, similar significant results were

found in the test and entire groups (Fig. 1G, median,

and right panel). The survival status in three groups

showed that the high-risk score patients had higher

mortality rates than the low-risk group (Fig. 2A). The

AUC of the ROC curve for three miRNA signature

(Fig. 2B) elucidated better efficiency in EC patient sur-

vival risk prediction. Univariate and multivariate Cox

regression analyses indicated that three miRNA signa-

ture-based risk score could serve as an independent

risk factor for OS of EC patients compared with other

clinical features, such as age, gender, T stage, lymph

node invasion, and metastasis (Fig. 2C,D). Thus,

results indicated a high possibility that this risk model

could serve as a prognostic marker in the future. The

ROC curve for risk model and nomogram is presented

in Fig. 2E,F.

3.3. Exploration of target genes and further

functional enrichment analysis

To further explore the target genes for the three miR-

NAs, we applied three prediction databases including

miRDB, TargetScan, and miRWalk to enhance the

reliability of bioinformatics analysis. The overlapping

target genes in the Venn diagram implicated 110, 113,

and 119 genes presented in three databases as potential

target genes for miR-4521, miR-3682-3p, and miR-

1269a, respectively (Fig. 2G). Further filtration of tar-

get genes using the negative correlation criteria [(a)

miRNA should be targeted to the genes; (b) the gene

expression should be opposite to miRNA expression;

(c) the target genes should belong to DEGs)] was pre-

sented between the expression level of miRNAs and

corresponding target genes. As a result, 177 genes were

identified including 91 up-regulated genes and 86

down-regulated genes. The subnetworks of the

regulation relationship between three miRNAs and

their target genes are shown in Fig. 3A. Taken

together, these results provided with promising miR-

NAs and its target genes for further analysis.

After selecting the target genes, potential mecha-

nisms promoting EC progression were detected. The

GO analysis results including BP, cellular component

(CC), and molecular function (MF) are shown in

Fig. 3B–D. Through BP analysis, the carboxylic acid

biosynthetic process, as well as the organic acid

biosynthetic process, was the most enriched in EC pro-

gression. Some of these BPs have not been reported

involved in the progression of EC. The CC analysis

contained the synaptic membrane and the external side

of the plasma membrane. Moreover, the MF analysis

mainly contained steroid binding and cytokine recep-

tor activity. Besides, the KEGG analysis demonstrated

that cell adhesion molecules (CAMs), neuroactive

ligand–receptor interaction, JAK-STAT signaling

pathway, calcium signaling pathway, and gastric acid

secretion were the top five enriched pathways

(Fig. 3E). Collectively, we identified 177 miRNA-re-

lated target genes and adopted GO and KEGG analy-

sis to elucidated their potential mechanism and

provide a novel direction in the treatment and diagno-

sis of EC.

3.4. Seven miRNA signature targets were

associated with patient prognosis in ESCC

In total, 177 genes were analyzed by K-M survival

analysis whereby the expression of seven genes [Rho

GTPase-activating protein 24 (ARHGAP24), Chro-

mobox 3 (CBX3), Contactin-associated protein 2

(CNTNAP2), ELOVL fatty acid elongase 5

(ELOVL5), LIF receptor subunit alpha (LIFR), trans-

membrane protein 44 (TMEM44), and transmembrane

protein 67 (TMEM67)] was revealed to be significantly

associated with patient poor prognosis (Fig. 3G).

Notably, CBX3, CNTNAP2, TMEM44, and

TMEM67 were positively correlated with survival

prognosis in EC patients, whereas the high expression

level of ARHGAP24, ELOVL5, and LIFR showed

poor patient survival (Fig. 3F,G). The role of these

Fig. 2. Validation and evaluation of the predictive three miRNA signature and prediction of miRNA target genes. (A) Survival status of high-

and low-risk patients in training group (left panel), test group (median panel), and all group (right panel). Red dots represent death and green

dots represent alive. (B) The ROC of 3-year dependent curve in training group (left panel), test group (median panel), and all group (right

panel). (C-D) Forest plot of univariate (C) and multivariate (D) Cox regression analysis showed the risk score was an independent risk factor

compared with other clinical features. (E) Comparison of risk score and other clinical characteristics in predicting the accuracy of patient

prognosis by ROC curve. (F) Nomogram of three miRNA-based signature for prediction of patient prognosis in EC. (G) Venn diagram of

target genes for three miRNAs in EC.
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genes in progression of EC has not well elucidated

except for CBX3. The deep investigation of these genes

is therefore urgent which enhance better understanding

of EC development and precise treatment. Chromobox

3 (CBX3) was reported to be targeted by miR-30b and

promoted proliferation, migration and inhibit apopto-

sis of EC cell via activating the JAK2/STAT3 signaling

pathway [32]. In summary, we eventually selected

seven target genes to carry out a further analysis which

both meet a negative correlation with miRNA expres-

sion and played an important role in EC patient prog-

nosis.

3.5. Association of miRNA signature target

genes with immune response, tumor

microenvironment, and immune infiltration in EC

Herein, we explored the immunological role of seven

miRNA target genes involved in the regulation of

immune response and TME in EC. The association

between the tumor stage of EC patients and seven tar-

get genes is shown in Fig. 4A. The TMEM44 and

TMEM67 were found to be significantly correlated

with the tumor stage in EC. To understand the associ-

ation of these target genes with immune components,

we examined the correlation of immune infiltration

types with target genes in EC. We found six types of

immune infiltration in human cancers, including C1

(wound healing), C2 (INF-r dominant), C3 (inflamma-

tory), C4 (lymphocyte depleted), C5 (immunologically

quiet), and C6 (TGFb dominant). Based on the results

in Fig. 4B, high expression of CBX3 was suggested to

correlate with C1, C2, and C4 infiltration types, indi-

cating its tumor facilitator role.

The TME plays a crucial role in cancer development

and progression. We assessed the association of target

genes with the presence of infiltration stromal cells and

immune cells through ESTIMATE analysis. Notably,

the LIFR showed highest association with stromal

score in EC (r = 0.37, P < 0.001), followed by ARH-

GAP24 (r = 0.36, P < 0.001), ELOVL5 (r = 0.31,

P < 0.001), and TMEM67 (r = 0.18, P = 0.021)

(Fig. 4C). In addition, LIFR exhibited highest correla-

tion with immune score in EC (r = 0.28 and

P < 0.001) followed by CBX3 (r = �0.18, P = 0.022).

The ESTIMATE score, combination of stromal and

immune score, indicated that high expression levels of

LIFR, ARHGAP24, and ELOVL5 were significantly

associated with lower tumor purity, whereas CBX3

exerted an inverse effect (Fig. 4C). Thereafter, we

applied the CIBERSORT algorithm to reveal the asso-

ciation between the expression of target genes and the

infiltration of 22 immune cells. Since the expression of

LIFR was strongly associated with TME, we focused

on LIFR and found that naive B cells, activated den-

dritic cells, M0 and M1 macrophages, activated and

rest mast cells, and activated memory CD4-T cells

were significantly related with the expression level of

LIFR. The top two immune-infiltrated cell types

among seven genes in EC are shown in Fig. 4D and

Table 1. Overall, these findings elucidated the impact

of target genes on the immune response in the TME,

thus could provide an in-depth understanding of the

role of an individual gene in immune therapy.

3.6. Association of miRNA signature target

genes with stem-like properties and tumor

mutation burden in EC

Recently, CSCs have been found to potentially interact

with immune cells in the TME and can facilitate tumor

progression in many cancers. Our previous study also

found that LEF1 of the Wnt signaling pathway could

directly bind to the promoter of ID1 and promoted

cancer stem-like properties in ESCC [12]. Conse-

quently, after detecting the role of target genes in

TME and immune infiltration, we further explored

their role in regulating esophageal CSCs by measuring

mRNA expression (RNAss) and DNA methylation

pattern (DNAss). As shown in Fig. 4C (upper panel),

LIFR was revealed as the only key gene that was sig-

nificantly associated with both RNAss and DNAss,

with r = �0.66 and r = �0.26, respectively. In addi-

tion, ARHGAP24 (r = �0.28, P < 0.001), CBX3

(r = 0.37, P < 0.001), and ELOVL5 (r = �0.29,

P < 0.001) were closely related to esophageal CSCs.

These results indicated that higher expression of LIFR

and ARHGAP24 correlated with reduced cancer cell

stemness, which concurred with the fact that increased

expression of these genes favored better survival in

EC. Previous investigations discovered that the TMB

was tightly associated with immunotherapy in many

cancer types (16, 17). For instance, Yuan et al.

reported that TMB was correlated to Tregs cell

Fig. 3. Functional analysis for three miRNA-based signature and its target genes. (A) Network showing mRNAs negatively regulated by

miRNAs. Red denotes up-regulated; green denotes down-regulated. (B-D) Bubble plots showing GO analysis of target genes for BP (B), CC

(C), and MF (D). (E) KEGG pathway analysis of the pathway-gene network presented by cnetplot. (F) Univariate Cox analysis of seven target

genes in EC. (G) The association of seven target genes with patients’ prognosis of EC.

1096 Molecular Oncology 15 (2021) 1088–1109 ª 2021 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

A novel prognostic mRNA/miRNA signature Y. Zhao et al.



1097Molecular Oncology 15 (2021) 1088–1109 ª 2021 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Y. Zhao et al. A novel prognostic mRNA/miRNA signature



infiltration and served as an independent risk factor

for EC patient prognosis, suggesting TMB as a prog-

nostic marker for EC patients. As shown in Fig. 5A,

ELOVL5 (r = �0.398, P < 0.001) demonstrated the

highest correlation with TMB in EC patients, followed

by ARHGAP24 (r = �0.26, P < 0.001) and LIFR

(r = �0.17, P = 0.035). In summary, these results indi-

cated that lower expression levels of ELOVL5, ARH-

GAP24, and LIFR promoted a higher TMB,

suggesting the three genes as potential biomarkers for

immune therapy. Meanwhile, we detected multiple

functions of individual target genes in EC to identify

their potential mechanisms in the regulation of

immune response and stem-like properties. Following

GSEA analysis, the LIFR were highly enriched in the

calcium signaling pathway, chemokine signaling path-

way, complement and coagulation cascades, focal

adhesion, and pathway in cancer (Fig. 5B). The GSEA

results of the rest of the genes whose pathway items

were more than three are shown in Fig. 5B. With deep

insight into these signaling pathways, it might reveal

potential mechanisms involved in tumor development

and knowledgeable understanding of miRNA-based

signature networks in target treatment.

3.7. The immune landscape of target genes in

pan-cancer

From the aforementioned results, we suggested an

important immunological role of target genes in EC.

To further understand the intrinsic expression pattern

of seven target genes and their association with

patients’ survival, TME, immune response, stem-like

properties, and TMB in pan-cancer, we downloaded

33 cancer types from the TCGA dataset for analysis.

First, we examined the landscape of the expression

pattern of the target genes. The striking inter- and

intratumor heterogeneity regarding the expression

levels of target genes is shown in Fig. 6A. For

instance, ARHGAP24 and LIFR showed higher inter-

tumor heterogeneity with some tumors expressed in

significantly low levels (COAD, READ), while others

were characterized by high expression levels (KIRC,

KICH). The other target genes showed degrees of

great heterogeneity. Meanwhile, the expression distri-

bution of seven target genes across all 33 cancer types

is shown in Fig. 6B. These results showed that intrin-

sic differences in the expression of target genes exist

between different tumors, suggesting the need for in-

depth research on each tumor.

Then, we further explored the expression levels of

target genes in all 33 tumor types including EC, and

selected 18 tumors with the normal sample more than

five for further study. The expression levels of

TMEM44, TMEM67, CBX3, and ELOVL3 in tumor

tissue were higher than in normal tissue, which was

consistent with the trend in EC. The direction of the

Table 1. The association of immune infiltration cells with target

gene expression.

Correlation (R) P-value

ARHGAP24

Mast cells activated 0.25 0.0016

Mast cells resting 0.26 0.0016

Monocytes 0.23 0.0053

Neutrophils 0.21 0.0095

CBX3

B-cell memory �0.17 0.038

Macrophages M0 0.22 0.008

Mast cells activated 0.18 0.029

Mast cells resting �0.27 0.00077

T-cell CD8 �0.16 0.047

T-cell follicular helper 0.21 0.012

CNTNAP2

NK cells activated �0.19 0.019

ELOVL5

B-cell naive �0.3 0.00021

Dendritic cells activated 0.26 0.0013

Dendritic cells resting 0.28 0.00057

Monocytes 0.32 0.00006

Neutrophils �0.17 0.037

T-cell regulatory (Tregs) �0.44 <<0.0001

LIFR

B-cell naive 0.22 0.0079

Dendritic cells activated �0.27 0.00095

Macrophages M0 �0.35 <<0.0001

Macrophages M1 0.19 0.022

Mast cells activated �0.26 0.0016

Mast cells resting 0.32 <0.0001

T-cell CD4 memory activated 0.18 0.024

TMEM44

Mast cells activated �0.19 0.019

Monocytes 0.19 0.02

TMEM67 Non Non

Fig. 4. Association of expression of target genes with multiple factors. (A) Association of target genes with clinical stage of EC. (B)

Association of target genes expression with immune subtypes in EC patients. (C) Correlation of expression of target genes with cancer

stem cell-like properties (RNAss, DNAss) and TME (Stromal score, Immune score, and ESTIMATE score). *, **, *** represent P < 0.05,

P < 0.01, and P < 0.0001, respectively. Spearman correlation analysis was used to calculate the association. (D) The top two significant

immune-infiltrated cells from each target genes are shown. No immune cell infiltration was associated with TMEM67 expression.
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Fig. 5. Association of expression of target genes with TMB and its function in tumor progression. (A) The correlation of expression of target

genes with TMB in EC patients. (B) GSEA analysis indicating the most enriched pathways of each gene in EC. Spearman correlation

analysis was used to calculate the association.
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Fig. 6. Expression of pan-cancer target genes. (A) Boxplot showing the expression level of target genes in tumor tissue compared with

normal tissue in 18 cancer types which were composed of at least five normal samples. (B) Boxplot showing the expression distribution of

target genes across pan-cancer.
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altered expression of LIFR, ARHGAP24, and

CNTNAP2 varied in each cancer type. Whereas

CNTNAP2 was overexpressed in 18 tumors, the LIFR

and ARHGAP24 expression levels were down-regu-

lated with few exceptions (Fig. 7A). Moreover, we

found that the pairs LIFR and ELOVL5 (r = 0.36,

P < 0.01), ARHGAP24, and LIFR (r = 0.36,

P < 0.01) had the highest association, indicating that

they may share common functions (Fig. 7B).

In previous results of this study, we found seven tar-

get genes were significantly associated with the OS of

EC patients. Herein, we were prompted to further

investigate which target genes promoted or inhibited

patient survival in which cancer type through K-M

curve and Cox regression analysis across 32 cancer

types. The top two cancer types from the seven target

genes are shown in Fig. 7C except for EC. Further-

more, we used univariate Cox proportional hazard

regression models to determine the altered expressions

of seven target genes associated with patient survival,

and the direction of association varied depending on

cancer types (Fig. 9A).

The seven target genes have been proved to be asso-

ciated with the TME, immune subtype, immune infil-

tration, and stem-like properties in EC. However,

there was also a lack of relevant researches that

focused on the landscape of miRNA-based target

genes that participates in immune response and tumor

progression in pan-cancer. In this section, we first

investigated the association of target gene expression

with six immune subtypes. Results indicated that all

seven genes were strongly associated with immune sub-

types in pan-cancer (Fig. 8A). More specifically, the

pan-cancer distribution of expression levels of target

genes in immune types was mainly consistent with that

in EC. For instance, patients showed more invasion

and aberrant prognosis subtype (C1, C2, C4) as CBX3

was up-regulated in pan-cancer. The landscape of cor-

relation of target genes with the immune and stromal

score, cancer stem-like properties, and TMB is dis-

played in Fig. 8B–E. Distinctly, the target genes

showed various levels of association with these charac-

teristics in different cancer types, but the directions of

correlation were mainly similar to EC. Specifically, we

found a significantly positive correlation of ARH-

GAP24 expression with the stromal score in pan-can-

cer, whereas it was negatively associated with RNAss.

All the seven target genes were strongly associated

with RNAss and TMB in THYM; this showed the

optimal prediction role of these genes. Although

TMEM44 and TMEM67 were less relevant to TME,

RNAss, and TMB in EC, they were found to be signif-

icant in LAML, KICH, THYM, and DLBC. The

radar plots of correlation between each target genes

and pan-cancer are shown in Fig. 9B.

We assessed the influence of target genes on drug

sensitivity using CellMiner database, which could facil-

itate better precision treatment. Drug sensitivity was

measured by z-score, and the higher the scores implied

that cells were more sensitive to the drug treatment

(Fig. 9C). Notably, elevated expression of target genes,

especially LIFR, CBX3, and ARHGAP24, was associ-

ated with drug resistance in different cell lines to sev-

eral chemotherapy drugs (Fig. 9C). For example,

LIFR was associated with cell resistance to the treat-

ment of tamoxifen (treatment for BRCA). Further-

more, we noticed that different genes had similar

associations with the same drug. For example, CBX3

and ELOVL5 were both associated with increased sen-

sitivity of cells to chelerythrine (treatment for STAD).

4. Discussion

Esophageal cancer is one of the most aggressive malig-

nant tumors with a high possibility of metastasis and

the leading cause of cancer-related deaths globally [33].

Despite advances in precision diagnosis and treatment,

the 5-year OS rate of EC remains low, especially in

East Asia [34]. Therefore, there is an urgent need to

develop more specific and sensitive prognostic

biomarkers for EC patients. Recently, extensive studies

found that miRNAs could regulate downstream gene

expression, playing an important role in tumor devel-

opment and prognosis [35]. In particular, recent

researches have revealed that miRNA expression pro-

files could promote EC progression and metastasis

[36,37]. In our study, we found that miR-34a-5p

directly targeted LEF1 and inactivated the Hippo sig-

naling pathway, which inhibited invasion and migra-

tion of ESCC [5]. MiRNAs could widely be used as

prognostic biomarkers in various types of cancers,

including miR-191, miR-1908, and miR-217. However,

due to the insufficient specificity and sensitivity, more

miRNA signatures and their mechanisms in promoting

cancers need to be explored, especially by developing

multiple miRNAs combined signature. Due to the

merits of multiple miRNA-based signature and the

lack of relevant studies in EC, we identified a prognos-

tic miRNA signature that enhanced prediction of

patient prognosis in EC patients and guides on preci-

sion treatment.

In this study, bioinformatics analysis was applied to

identify the optimal prognostic miRNA signature. We

downloaded mature miRNA and mRNA expression

profiles, and corresponding patient clinical information

on EC from the TCGA database. Exactly 162
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Fig. 7. Expression levels of seven target genes in cancers and adjacent normal tissues. (A) Heatmap showing the expression level of target

genes in tumor tissue compared with normal tissue in 18 cancer types which were composed of more than five normal samples. (B)

Correlation plot based on Spearman correlation analysis showing the correlation of gene expression among the seven target genes across

all 33 cancer types. (C) The association of seven target genes with patients’ prognosis in pan-cancer. The representative top two cancer

types among target genes are shown according to the P-value.
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Fig. 8. Association of expression of target genes with immune subtypes, TME, cancer stemness, and TMB in pan-cancer. (A) Association of

expression of target gene with immune infiltrate subtypes across all the cancer types tested with ANOVA. (B-C) Correlation matrix between

TME stromal scores (B) and immune scores (C) and target genes expression by ESTIMATE algorithm. (D) Correlation matrix plots showing

the association between target genes expression and cancer stemness RNAss score.

1103Molecular Oncology 15 (2021) 1088–1109 ª 2021 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Y. Zhao et al. A novel prognostic mRNA/miRNA signature



differentially expressed miRNAs (DEMs) and 4555 dif-

ferentially expressed genes (DEGs) were identified

using the ‘edgeR’ package. Patients were randomly

classified into the training and test groups. A three

miRNA-based prediction signature including miR-

4521, miR-3682-3p, and miR-1269a was obtained in

the training group by univariate Cox and multivariate

Cox analysis. The miRNA signature model was vali-

dated in the test and the entire group. Kaplan–Meier

analysis showed that the high-risk score group exhib-

ited poorer patient prognosis of EC compared with

the low-risk group. The efficacy of this prediction

model was evaluated by ROC curve and the AUC

showed a better prediction power. Moreover, we found

that a risk score based on the miRNA signature model

was an independent risk factor compared with other

clinical features, such as the T stage, lymph node inva-

sion, and metastasis. Among these three miRNAs,

studies have reported on the role of three signature

miRNAs in the development and progression of vari-

ous cancers, especially for EC. This indicated that in-

depth insight into three miRNAs is recommended in

the future. A study by Feng and colleagues demon-

strated that the miR-4521-FAM129A axis played an

important role in the progression of renal cell carci-

noma [38]. However, MiR-1269a could directly bind to

the downstream target of SOX6 and act as an onco-

miRNA in the progression of non-small-cell lung can-

cer [39].

To further understand the regulatory mechanisms

involved in the three miRNA signature, we explored

the target genes of three miRNAs by an intersection

with three different databases (miRDB, TargetScan,

and miRWalk). Then, we intersected the prediction

genes with differentially expressed genes from TCGA.

The intersection target genes which were negatively

correlated with the expression of these miRNAs were

finally selected. Furthermore, the GO and KEGG

analyses were applied after 177 target genes were

obtained. Results indicated that the carboxylic acid

biosynthetic process and organic acid biosynthetic pro-

cess were the most enriched process involved in EC

progression. Chen et al. found that citric acid as an

important organic acid prevent EC cell growth via

inhibiting cell proliferation and apoptosis, which could

serve as a novel therapeutic target for the treatment of

EC [40]. The CC analysis was mainly contained synap-

tic membrane and external side of the plasma mem-

brane. MF analysis mainly contained steroid binding

and cytokine receptor activity. The KEGG analysis

showed that CAMs, neuroactive ligand–receptor inter-

action, JAK-STAT signaling pathway, calcium signal-

ing pathway, and gastric acid secretion were the top

five enriched pathways. Elsewhere, You et al. demon-

strated that pJAK-1 and pSTAT-3 were up-regulated

in esophageal squamous cell carcinoma patients and

associated with aberrant clinicopathological features,

which promoted progression and invasion of ESCC

[41]. It was also reported that the calcium signaling

pathway not only played a crucial role in progression

and sensitivity to cell death but also in the establish-

ment and maintenance of multidrug resistance and the

TME [42]. These signaling pathways critically impact

on various tumors in varying degrees, which might

explain potential mechanisms that lay behind our three

miRNA-based model.

A recent study reported that cancer patients could

be grouped into six immune infiltration subtypes [43],

including C1 (wound healing), C2 (INF-r dominant),

C3 (inflammatory), C4 (lymphocyte depleted), C5 (im-

munologically quiet), and C6 (TGFb dominant). The

immune subtypes showed a strong association with OS

and progression-free survival, with C3 owing the opti-

mal survival and C1 and C2 representing poor progno-

sis. Meanwhile, six types of immune subtype were

associated with several somatic mutations, such as

copy number variation and homologous recombination

deficiency. In our study, we explored the association of

seven target genes with immune infiltration subtypes

according to patient immune types in the TCGA-

ESCA dataset. High expression of CBX3 was found to

be strongly associated with a more aggressive subtype

of C1, C2, and C6, implicating CBX3 as a potential

tumor promoter in EC.

A wealth of studies has revealed that TME plays a

crucial role in tumor metastasis and progression [44].

Cancer cells and noncancer cells are made up of TME,

including stromal cells, immune cells, extracellular

matrix, and so on [45]. The stromal cells and immune

cells in TME potentially affect immune therapy

response. Previous studies showed that stromal cells

are related to the exocrine phenotype of T cells in

bladder cancer and the existence of immune cells facili-

tated the elimination of tumor cells via various mecha-

nisms [46]. Other reports revealed that immune activity

and immune cell infiltration in TME could be quanti-

fied by tumor gene expression profiles [47]. Therefore,

digging into tumor gene expression profiles could

explore the relationship between TME and patient

prognosis as well as to evaluate the immune treatment

response. In the present study, we found that LIFR

showed the highest association with stromal score in

EC (r = 0.37, P < 0.001), followed by ARHGAP24

(r = 0.36, P < 0.001), ELOVL5 (r = 0.31, P < 0.001),

and TMEM67 (r = 0.18, P = 0.021). In addition,

LIFR exhibited the highest correlation with immune
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score in EC with r = 0.28 and P < 0.001, followed by

CBX3 (r = �0.18, P = 0.022). ESTIMATE score

demonstrated that high expression levels of LIFR,

ARHGAP24, and ELOVL5 were significantly associ-

ated with lower tumor purity, whereas CBX3 exerted

an inverse effect. Moreover, LIFR was significantly

associated with na€ıve B cells, activated dendritic cells,

M0 and M1 macrophages, activated and rest mast

cells, and activated memory CD4-T cells infiltration.

Taken together, these findings showed that low expres-

sion of LIFR signified higher immune cells and stro-

mal cell infiltration in TME and lower tumor purity in

EC. More specifically, as LIFR is down-regulated by

miR-3682-3p and less M1 macrophages infiltrate into

TME, the ability of EC progression was enhanced,

suggesting the role of LIFR in tumor progression.

Similar results were found with ARHGAP24 and

ELOVL5.

Cancer stem cells were generated during cancer pro-

gression whereby tumor cells were transformed from

differentiated phenotype to progenitor and conse-

quently acquired stem cell-like features [48]. We also

reported that CSCs were associated with immune

response and TME. For instance, TAMs could

enhance the proliferation of CSCs derived from hepa-

tocellular carcinoma through IL-6-induced STAT3

activation. STAT3 further stimulated the production

of cytokines, forming a positive feedback loop that

promoted cancer stem cell self-renewal [49]. Moreover,

CSCs could drive tumorigenesis and progression by

regulating the activity of immune cells. Glioblastoma

CSCs have been shown to express various cytokines

(including colony-stimulating factor, TGF-b, and

macrophage inhibitory cytokines), thus promoting

polarization of macrophages to M2 type [38]. There-

fore, an in-depth understanding of the role of target

genes in the crosstalk between CSCs, immune

response, and TME is a promising aspect for cancer

treatment. In our study, LIFR was found to be signifi-

cantly associated with both RNAss and DNAss, with

r = �0.36 and r = �0.26, respectively. ARHGAP24

(r = �0.28, P < 0.001), CBX3 (r = 0.37, P < 0.001),

and ELOVL5 (r = �0.29, P < 0.001) were also closely

related to esophageal CSCs.

Due to many limitations of standard therapy for EC

treatment, promising new roads for EC treatment have

been surged recently, including immune checkpoint

inhibitors, tumor vaccine, and adoptive T-cell treat-

ment [50]. However, the EC immunotherapies also

result in mixed outcomes, mainly caused by the

absence of an efficient biomarker to predict immune

response [51]. TMB, which was related to the genera-

tion of neoantigens, has been applied to predict the

response to PD-1 and PD-L1 blockages in various

tumors. Herein, we demonstrated that ELOVL5

(r = �0.398, P < 0.001) showed the highest correlation

with TMB in EC patients, followed by ARHGAP24

(r = �0.26, P < 0.001) and LIFR (r = �0.17,

P = 0.035). Of note, these observations demonstrated

that lower expression levels of ELOVL5, ARHGAP24,

and LIFR promoted higher TMB, an implication that

these three genes and the relevant miRNAs are poten-

tial biomarkers for immune therapy.

In summary, we elucidated the immunological role

of seven target genes and found that LIFR, ARH-

GAP24, ELOVL5, and CBX3 were extremely promi-

nent in EC. More specifically, taking LIFR as an

example, we revealed that miR-3682-3p was up-regu-

lated in EC and associated with poor patient progno-

sis. Additionally, high expression of miR-3682-3p

contributed to low LIFR expression and was corre-

lated with various immune cell infiltration and stromal

components in the TME as well as enhancing stem-like

properties in EC. Low expression of LIFR was also

correlated with high TMB. Therefore, targeting the

miR-3682-3p-LIFR axis or other target gene axis

might impede tumor development in EC. Taken

together, these findings showed that the miRNA/

mRNA-based signature could serve as important

biomarkers for tumor progression and prediction of

the immune response in EC.

Although the role of miRNA/mRNA signature is

comprehensively elucidated in EC, no systemic study

has been conducted on these genes in different human

cancers. Each gene was only studied in a few types of

cancers and most of those studies used cell lines and

animal models. Next, we wound probe into the

immunological role of miRNA signature in the pan-

cancer analysis. We downloaded 32 cancer expression

profiles, mutation, and clinical information from the

TCGA dataset except for ESCA. Firstly, the landscape

of the expression pattern of target genes was assessed,

Fig. 9. Association of expression of target genes with patient prognosis, drug sensitivity, and TMB in pan-cancer. (A) The forest plots with

95% CIs and HRs for OS for different cancer types in pan-cancer. (B) Radar graph indicating the detailed information of the association

between target gene expression and TMB in pan-cancer. (C) The scatter plot indicates the correlation between target gene expression and

drug sensitivity (the z-score of the CellMiner interface) for the Pearson correlation test using NCI-60 cell line data. Top 16 associations are

shown, ordered by P-value.
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and results showed the striking inter- and intratumor

heterogeneity regarding the expression levels of target

genes. However, the directions of the altered expres-

sion of these genes in pan-cancer were mainly consis-

tent with that of EC, which indicated a similar

function of these genes in pan-cancer. We further

examined the association between the expression of the

target genes with patient OS in 33 cancer types and

found that the direction of association is cancer type-

dependent. Moreover, LIFR was mainly negatively

associated with the prognosis of ACC, KIRC, KIRP,

LAML, LUAD, while the remaining genes had an

antagonistic association with survival (both an advan-

tage and a disadvantage). Interestingly, the results

demonstrated that all target genes were significantly

associated with immune infiltrating subtypes in the

TME, notably, CBX3 and TMEM44 correlated with

more aggressive subtypes (C1, C2, C6), whereas LIFR,

ARHGAP24, and ELVLO5 associated with more pro-

tective subtypes (C3, C5). Target genes were also cor-

related with the level of infiltration of immune cells

and stromal cells, cancer stemness, and TMB at vari-

ous degrees based on ESTIMATE and other algo-

rithms. For instance, the association between the

expression of target genes and tumor stemness score as

well as with the drug sensitivity score indicated that

CBX3 may mainly play tumor promotor roles during

tumorigenesis as they are positively associated with

tumor stemness and drug resistance scores. These find-

ings mainly coincided with the observations reported

in EC, suggesting that these genes may be utilized as

direct therapeutic targets or help in predicting the effi-

cacy of immune checkpoint modulators in cancer

patients.

5. Conclusion

This study demonstrated that the three miRNA-based

signature and target genes were primarily associated

with patient prognosis and played important immuno-

logical roles in cancer progression and metastasis,

especially for EC. Therefore, we presented potential

therapeutic targets for precision cancer treatment.
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