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Mounting evidence shows that MicroRNAs (miRNAs) and their target
genes are aberrantly expressed in many cancers and are linked to tumor
occurrence and progression, especially in esophageal cancer (EC). This
study purposed to explore new biomarkers related to the prognosis of EC
and to uncover their potential mechanisms in promoting tumor progres-
sion. We identified 162 differentially expressed miRNAs and 4555 differen-
tially expressed mRNAs in EC. Then, a risk model involving three
miRNAs (miR-4521, miR-3682-3p, and miR-1269a) was designed to pre-
dict prognosis in EC patients. Furthermore, 7 target genes (Rho GTPase-
activating protein 24, Chromobox 3, Contactin-associated protein 2,
ELOVL fatty acid elongase 5, LIF receptor subunit alpha, transmembrane
protein 44, and transmembrane protein 67) were selected for Gene Ontol-
ogy and Kyoto Encyclopedia of Genes and Genomes analyses to reveal
their potential mechanisms in promoting EC progression. After a series of
correlation analyses, miRNA target genes were found to be significantly
positively or negatively associated with immune infiltration, tumor
microenvironment, cancer stemness properties, and tumor mutation burden
at different degrees in EC. To further elucidate the role of miRNA signa-
ture in cancer progression, we performed a pan-cancer analysis to deter-
mine whether these genes exert similar effects on other tumors.
Interestingly, the miRNA target genes altered expression on tumor immu-
nity; however, pan-cancer progression was the same as that of EC. Thus,
we explored the immune landscape of the miRNA signature and its target
genes in EC and pan-cancer. These findings demonstrated the versatility
and effectiveness of our model in various cancers and provided a new
direction for cancer management.

1. Introduction

facilitate precision diagnosis and therapy are lacking
[2]. MicroRNAs (miRNAs), small endogenous non-

Esophageal cancer (EC) is the 8th most common can-
cer and the leading cause of cancer-associated deaths
globally [1]. Despite great advances in the diagnosis
and treatment of EC, effective biomarkers that

Abbreviations

coding RNAs, can regulate gene expression in the
posttranslational level by directly binding to target
mRNAs [3]. MiRNAs have been implicated in a vari-
ety of biological processes (BP), thus promote tumor

ARHGAP24, Rho GTPase-activating protein 24; CBX3, Chromobox 3; CNTNAP2, Contactin-associated protein 2; ELOVL5, ELOVL fatty acid
elongase 5; LIFR, LIF receptor subunit alpha; TMEM44, transmembrane protein 44; TMEMG67, transmembrane protein 67.
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progression, including EC [4]. For example, in our pre-
vious study, we found that miR-34a-5p could directly
target LEF1 and promote epithelial-mesenchymal
transition and progression in esophageal squamous cell
carcinoma [5]. Some studies also confirmed that
miRNA profiles could be used in predicting the sur-
vival outcome of EC patients [6]. The above findings
indicate that miRNAs may serve as a promising bio-
marker for diagnosis, prediction of survival, and preci-
sion treatment in cancers.

Although the crucial role of miRNAs as biomarkers
in various cancers has been extensively elucidated, the
potential mechanisms of miRNAs and their target genes
in tumor progression and poor patient prognosis remain
elusive. Growing evidence has shown that tumor
microenvironment (TME) participates in tumor pro-
gression and metastasis of various cancers [7]. All com-
ponents of TME including cancer cells and noncancer
cells (infiltration immune cells, stromal cells, and extra-
cellular matrix) have been revealed to play important
roles in crosstalk with tumor cells to affect tumor pro-
gression and invasion. Numerous studies have shown
that tumor-associated stromal cells are involved in the
progression and invasion of various cancers [8]. The
response of immune treatment could be evaluated by
nonimmune cell components in TME. For instance, the
elimination of immune cells in TME and the resistance
to chemotherapy is affected by transforming growth fac-
tor-p (TGF-P) secreted by fibroblasts [9].

Also, immune cells infiltrated in TME can kill tumor
cells via various mechanisms. More importantly, miR-
NAs also pose their indispensable role in the regulation
of TME. Recent studies have demonstrated that miR-
NAs and their target genes are expressed in both stro-
mal and tumor cells, promoting tumor development and
progression. Thus, both miRNAs and target genes could
serve as modulators between different types of infil-
trated immune and tumor cells. However, miR-155
which is a widely explored miRNA in immune cells was
shown to be down-regulated in tumor-associated macro-
phages (TAMs) which consequently promoted the
expression of IL-10 by targeting C/EBPf, hence
enhanced its immunosuppressive function in cancer [10].

Cancer stem cells (CSCs), generated during cancer
progression, are considered for cancer recurrence,
chemotherapy resistance, and tumor progression [11].
Our previous study explicitly elucidated the role of tran-
scriptional factor LEF1 and protein arginine methyl-
transferase-1 in the regulation of cancer stem-like
properties and resistance to chemotherapy in esophageal
squamous carcinoma cell [12,13]. Moreover, CSCs were
reported to have tight crosstalk with TME and immune
response. Evidence from ovarian cancer showed that
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marrow-derived suppressor cells, an inhibitor of other
immune cells in TME, could promote phenotype of
CSCs by inducing miR-101 expression [14]. CSCs from
patients with head and neck squamous cell carcinoma
and melanoma were confirmed to recruit regulatory T
cells with immunosuppressive and tumor-promoting
effects and promoted in vitro proliferation [15]. More-
over, miRNAs could correlate with cancer stem-like
properties in various tumors. Specifically, miR-181b
directly binds to STAT3 and activates downstream
CYLD pathways regulating the proliferation of CSCs in
esophageal squamous cell carcinoma [16]. Therefore,
exploring the role of miRNAs and target genes in CSCs
would facilitate an in-depth understanding of tumor
progression and precision therapy.

Immune therapy is recently considered as a promising
novel method for EC treatment in terms of immune
checkpoint inhibitors, tumor vaccine, and adoptive T-
cell treatment. Notably, programmed cell death protein-
1 (PD-1) and programmed cell death protein ligand 1
(PD-L1) blockages were the widely used immune check-
point inhibitors. Tumor mutation burden (TMB), which
was revealed to be related to the generation of neoanti-
gens, has been applied to predict the response to PD-1
and PD-L1 blockages in various tumors. Recent studies
also demonstrated that differentially expressed miRNA-
based signature and its target genes were associated with
TMB levels in lung adenocarcinoma [17]. Thus, explor-
ing a more effective miRNA signature is imperative to
facilitate the prediction of immune therapy in EC.

In the present study, we constructed and validated a
three miRNA-based signature that effectively predicted
the overall survival (OS) of EC patients in the TCGA
database. Functional of Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis indicated some potential biological functions
and signaling pathways involved in the three miRNA
signature. We further explored the immunological role
of the three miRNAs and target genes in EC patients.
Moreover, we detected whether three miRNA markers
and their target genes in pan-cancer had the same
prognostic and immunological effects in EC, which
could facilitate an in-depth understanding of tumor
progression and precision immune treatment.

2. Materials and methods

2.1. Data download and processing

We downloaded RNA-seq data of mRNA and miRNA
expression profile, clinical information, and single
nucleotide polymorphism data of EC from the TCGA
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database (https://cancergenome.nih.gov/). The mRNA
data of 171 samples included 160 tumor samples and 11
normal samples. The miRNA data of 198 samples
included 185 tumor samples and 13 normal samples. All
mature miRNA sequences were downloaded in Fasta
format from the miRBase database (http://www.mirba
se.org/) [18] to obtain sequence data. The TCGA pan-
cancer data were downloaded from the UCSC Xena
database (https://xenabrowser.net/datapages/) [19],
including RNA-seq, patients’ clinical data, stemness
scores based on mRNA (RNAss) and DNA methylation
(DNAss), and immune subtypes. The TCGA pan-cancer
data included 33 cancer types, and they are ACC,
BLCA, BRCA, ESCA, CCA, CESC, COAD, DLBC,
GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG,
LIHC, RCA, LUAD, LUSC, MESO, OV, PAAD,
PCPG, PRAD, READ, SARC, SKCM, TGCT, THCA,
THYM, UCEC, UCS, and UVM. A total of 11 058
samples were enrolled in our study, and the number of
samples in each cancer type ranged from 45 for CCA to
over 1000 for breast cancer. Notably, 18 types of can-
cers had more than five normal samples and were used
to assess altered gene expression profiles.

2.2. ldentification of DEGs, DEMs, and their
association with patient prognosis

The ‘edgeR’ package [20] was used to normalize raw
count data and to compare differential expressed genes
(DEGs) and differential expressed miRNAs (DEMs)
between tumor samples and normal samples, with a
false discovery rate (FDR) < 0.05, and [log,FC| > 1.
Then, we combined standardized and differentially
expressed data with clinical information. Subsequently,
we used the ‘caret’ package [21] to randomly group all
samples with combined information into the training
dataset and test dataset with a ratio of 0.7 and further
applied the univariate Cox regression analysis to find
prognosis related miRNAs in the training group. A
total of 14 miRNAs were selected and were all sub-
jected to multivariate Cox regression analysis followed
by LASSO analysis. Three miRNA-based signature
was finally filtered, and the risk score was calculated
by the expression value of each miRNA and their
coefficient. Consequently, the Kaplan—Meier curve was
used to analyze the EC patient prognosis based on the
median value of risk score in the training, test, and all
patient groups. The predictive power of the miRNA
signature was evaluated by AUC of 3 years dependent
ROC curve using the ‘survivalROC’ package [22]. The
relationship of the risk score based on the three
miRNA signature and clinical features (gender, age,
stage, T stage, lymph nodes invasion, and metastasis)
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with patient prognosis was analyzed through univari-
ate and multivariate Cox regression.

2.3. Predicting target genes of three miRNAs
and potential functions

Target genes of three miRNAs were predicted using
TargetScan (http://www.targetscan.org/) [23], miRDB
(http://www.mirdb.org/miRDB/) [24], and miRWalk
(http://mirwalk.umm.uni-heidelberg.de/) [25] online
analysis tools. The candidate genes presented in three
databases were regarded as potential miRNA target
genes. Meanwhile, cyTtoscApe 3.6.0 software (Institute
for Systems Biology, Seattle, WA, USA) [26] was uti-
lized to demonstrate regulation relationships between
miRNAs and target genes. To clarify whether the target
genes of these miRNAs are likely to participate in the
progression of EC, we took the intersections of these
target genes and differentially expressed genes, then fil-
tered the intersected genes with the criteria of expressing
negatively association with corresponding miRNAs.
KEGG signaling pathway and GO enrichment analysis
were adopted to reveal potential mechanisms in these
intersection genes using ‘clusterProfiler’ package in R
[27]. Gene set enrichment analysis (GSEA) was also
analyzed using ‘clusterProfiler’ package.

2.4. Tumor microenvironment analysis

The ESTIMATE immune, stromal, and estimate scores
were used to analyze the infiltration levels of both
immune and stromal cells and the purity of tumors in
various cancers [28]. This novel algorithm was based
on the expression profiles of the TCGA database and
proved to be effective in prediction. The association
between target gene expression and those scores was
tested with Spearman correlation. Moreover, we
detected six immune types (C1-C6) involved in EC and
pan-cancer samples. The Analysis of variance
(ANOVA) was used to test the correlation between
immune subtypes and target gene expression obtained
from TCGA EC and pan-cancer data. Cancer stem
cell-like properties of each patient obtained from epi-
genetic and transcriptomic data were used to measure
stemness features of tumor cells. The correlation
between stemness characteristics and target genes was
tested with Spearman analysis.

2.5. Evaluating immune infiltration cells in the
tumor microenvironment

Recently, Aaron et al. developed a new algorithm to
analyze 22 types of immune cells involved in the TME
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and named it CIBERSORT [29]. In our study, we cal-
culated the proportion of 22 tumor-infiltration immune
cells in each EC and pan-cancer patients based on
CIBERSORT score. Moreover, the association
between target gene expression and immune infiltration
score was assessed to determine which immune cells
are significant in different types of cancers.

2.6. Drug sensitivity analysis

The NCI-60 database, containing data from 60 cancer
cell lines, was analyzed by cELLMINER website (https://
discover.nci.nih.gov/cellminer/) [30,31]. The expression
status of target genes and z-score for cell sensitivity
data (GI50) was downloaded from the website and
assessed through Pearson correlation analysis to deter-
mine the correlation between target gene expression
and drug sensitivity.

2.7. Tumor mutation burden analysis

After successfully downloading somatic mutation data
from the UCSC database, we calculated the mutation
frequency with the number of variants/the length of
exons (38 million) for each patient via Perl scripts
based on the JAVAO9 platform. Then, we used Spear-
man correlation analysis to evaluate the association
between target gene expression and TMB information
in each patient of EC and pan-cancer.

2.8. Statistical analysis

All statistical analyses were based on R language 3.6.1
version and the attached packages. Wilcox test was
used to identify differentially expressed genes and dif-
ferentially expressed miRNAs. Comparisons of gene
expression in all the tumors across all cancer types and
between the normal and tumors in the 18 cancer types
which had more than five associated adjacent normal
samples were performed using linear mixed-effects
models. Continuous variables were analyzed using Stu-
dent’s t-test. ANOVA was used to test the association
between gene expression and immune infiltrate sub-
types and cancer subtypes. Log-rank tests and
Kaplan—Meier curve were used to analyze the associa-
tion between gene or miRNAs expression and patient
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OS. Spearman correlation method was used to calcu-
late correlation between two variables, such as target
genes and all immune-related traits. Univariate or mul-
tivariate Cox regression analyses were performed to
evaluate correlation of miRNAs or gene expression
with patient survival. The hazard ratio (HR) and 95%
confidence interval (CI) were calculated to identify
genes associated with OS. P < 0.05 was considered sta-
tistically significant.

3. Results

3.1. Identification of differential expressed
miRNAs (DEMs) and genes (DEGs) in ESCC

Here, we explored the DEMs and mRNA (DEGs)
based on the TCGA-ESCA dataset, including 185"
mor/I3normal  gamples and  160™™°7/11"°™2! samples,
respectively. The clinical information of these patients
including age, gender, stage, T stage, lymph node inva-
sion, and metastasis information was also downloaded.
As results, the top 30 up- and down-regulated miR-
NAs are shown in Fig 1A. The 162 differentially
expressed miRNAs were identified according to the cri-
teria of FDR < 0.05 and |log,FC|] > 1.0 (Fig. 1B).
Similarly, 4555 differentially expressed mRNAs were
detected by the ‘edgeR’ package and shared similar fil-
ter criteria with DEMs (Fig. 1C,D).

3.2. Construction and evaluation of three
miRNA-based signature for prognostic prediction
in ESCC

Patients with mature miRNA expression information
were randomly grouped into training and test datasets
with a ratio of 0.7. After performing a univariate Cox
regression analysis, we identified 14 miRNAs that were
associated with poor patient prognosis in the training
group (Fig. 1E). Subsequently, multivariate Cox
regression analysis followed by LASSO analysis
selected three miRNAs (miR-4521, miR-3682-3p, and
miR-1269a) to construct prediction model with their
coefficient as follows: miRNA risk score = (0.26 x ex-
pression of miR-4521) + (0.34 x expression of miR-
3682-3p) + (0.07 x expression of miR-1269a). The

Fig. 1. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs)in EC. (A) Top 20 of up-regulated and down-
regulated DEMs in EC. (B) Volcano plot of DEMs in EC. (C) Top 20 of up-regulated and down-regulated DEGs in EC. (D) Volcano plot of
DEGs in EC. (E) Forest plot of univariate Cox analysis of DEMs filtered 14 miRNAs. (F) Three miRNAs associated with OS in EC patients
using Kaplan—Meier curves and log-rank tests. (G) Kaplan—-Meier curves validated and evaluated three miRNA signature in the training group

(left panel), test group (median panel), and all group (right panel).
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Kaplan—Meier curve pointed out that the high expres-
sions of miR-4521, miR-3682-3p, and miR-1269a were
associated with poor prognosis of EC patients
(Fig. 1F). According to the median value grouping of
the miRNA risk score, we found a high-risk group in
the training dataset exhibiting an overall poor survival
rate compared with the low-risk group (Fig. 1G, left
panel). Meanwhile, similar significant results were
found in the test and entire groups (Fig. 1G, median,
and right panel). The survival status in three groups
showed that the high-risk score patients had higher
mortality rates than the low-risk group (Fig. 2A). The
AUC of the ROC curve for three miRNA signature
(Fig. 2B) elucidated better efficiency in EC patient sur-
vival risk prediction. Univariate and multivariate Cox
regression analyses indicated that three miRNA signa-
ture-based risk score could serve as an independent
risk factor for OS of EC patients compared with other
clinical features, such as age, gender, T stage, lymph
node invasion, and metastasis (Fig. 2C,D). Thus,
results indicated a high possibility that this risk model
could serve as a prognostic marker in the future. The
ROC curve for risk model and nomogram is presented
in Fig. 2E,F.

3.3. Exploration of target genes and further
functional enrichment analysis

To further explore the target genes for the three miR-
NAs, we applied three prediction databases including
miRDB, TargetScan, and miRWalk to enhance the
reliability of bioinformatics analysis. The overlapping
target genes in the Venn diagram implicated 110, 113,
and 119 genes presented in three databases as potential
target genes for miR-4521, miR-3682-3p, and miR-
1269a, respectively (Fig. 2G). Further filtration of tar-
get genes using the negative correlation criteria [(a)
miRNA should be targeted to the genes; (b) the gene
expression should be opposite to miRNA expression;
(c) the target genes should belong to DEGs)] was pre-
sented between the expression level of miRNAs and
corresponding target genes. As a result, 177 genes were
identified including 91 up-regulated genes and 86
down-regulated genes. The subnetworks of the
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regulation relationship between three miRNAs and
their target genes are shown in Fig. 3A. Taken
together, these results provided with promising miR-
NAs and its target genes for further analysis.

After selecting the target genes, potential mecha-
nisms promoting EC progression were detected. The
GO analysis results including BP, cellular component
(CC), and molecular function (MF) are shown in
Fig. 3B-D. Through BP analysis, the carboxylic acid
biosynthetic process, as well as the organic acid
biosynthetic process, was the most enriched in EC pro-
gression. Some of these BPs have not been reported
involved in the progression of EC. The CC analysis
contained the synaptic membrane and the external side
of the plasma membrane. Moreover, the MF analysis
mainly contained steroid binding and cytokine recep-
tor activity. Besides, the KEGG analysis demonstrated
that cell adhesion molecules (CAMs), neuroactive
ligand-receptor interaction, JAK-STAT signaling
pathway, calcium signaling pathway, and gastric acid
secretion were the top five enriched pathways
(Fig. 3E). Collectively, we identified 177 miRNA-re-
lated target genes and adopted GO and KEGG analy-
sis to elucidated their potential mechanism and
provide a novel direction in the treatment and diagno-
sis of EC.

3.4. Seven miRNA signature targets were
associated with patient prognosis in ESCC

In total, 177 genes were analyzed by K-M survival
analysis whereby the expression of seven genes [Rho
GTPase-activating protein 24 (ARHGAP24), Chro-
mobox 3 (CBX3), Contactin-associated protein 2
(CNTNAP2), ELOVL fatty acid elongase 5
(ELOVLYS), LIF receptor subunit alpha (LIFR), trans-
membrane protein 44 (TMEM44), and transmembrane
protein 67 (TMEMG67)] was revealed to be significantly
associated with patient poor prognosis (Fig. 3G).
Notably, CBX3, CNTNAP2, TMEM44, and
TMEMG67 were positively correlated with survival
prognosis in EC patients, whereas the high expression
level of ARHGAP24, ELOVLS, and LIFR showed
poor patient survival (Fig. 3F,G). The role of these

Fig. 2. Validation and evaluation of the predictive three miRNA signature and prediction of miRNA target genes. (A) Survival status of high-
and low-risk patients in training group (left panel), test group (median panel), and all group (right panel). Red dots represent death and green
dots represent alive. (B) The ROC of 3-year dependent curve in training group (left panel), test group (median panel), and all group (right
panel). (C-D) Forest plot of univariate (C) and multivariate (D) Cox regression analysis showed the risk score was an independent risk factor
compared with other clinical features. (E) Comparison of risk score and other clinical characteristics in predicting the accuracy of patient
prognosis by ROC curve. (F) Nomogram of three miRNA-based signature for prediction of patient prognosis in EC. (G) Venn diagram of

target genes for three miRNAs in EC.
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genes in progression of EC has not well elucidated
except for CBX3. The deep investigation of these genes
is therefore urgent which enhance better understanding
of EC development and precise treatment. Chromobox
3 (CBX3) was reported to be targeted by miR-30b and
promoted proliferation, migration and inhibit apopto-
sis of EC cell via activating the JAK2/STAT3 signaling
pathway [32]. In summary, we eventually selected
seven target genes to carry out a further analysis which
both meet a negative correlation with miRNA expres-
sion and played an important role in EC patient prog-
nosis.

3.5. Association of miRNA signature target
genes with immune response, tumor
microenvironment, and immune infiltration in EC

Herein, we explored the immunological role of seven
miRNA target genes involved in the regulation of
immune response and TME in EC. The association
between the tumor stage of EC patients and seven tar-
get genes is shown in Fig. 4A. The TMEM44 and
TMEMG67 were found to be significantly correlated
with the tumor stage in EC. To understand the associ-
ation of these target genes with immune components,
we examined the correlation of immune infiltration
types with target genes in EC. We found six types of
immune infiltration in human cancers, including C1
(wound healing), C2 (INF-r dominant), C3 (inflamma-
tory), C4 (lymphocyte depleted), C5 (immunologically
quiet), and C6 (TGFB dominant). Based on the results
in Fig. 4B, high expression of CBX3 was suggested to
correlate with C1, C2, and C4 infiltration types, indi-
cating its tumor facilitator role.

The TME plays a crucial role in cancer development
and progression. We assessed the association of target
genes with the presence of infiltration stromal cells and
immune cells through ESTIMATE analysis. Notably,
the LIFR showed highest association with stromal
score in EC (r = 0.37, P <0.001), followed by ARH-
GAP24 (r=0.36, P <0.001), ELOVL5 (r=0.31,
P <0.001), and TMEM67 (r=0.18, P =0.021)
(Fig. 4C). In addition, LIFR exhibited highest correla-
tion with immune score in EC (r=0.28 and
P <0.001) followed by CBX3 (r = —0.18, P = 0.022).
The ESTIMATE score, combination of stromal and
immune score, indicated that high expression levels of

Y. Zhao et al.

LIFR, ARHGAP24, and ELOVLS5 were significantly
associated with lower tumor purity, whereas CBX3
exerted an inverse effect (Fig. 4C). Thereafter, we
applied the CIBERSORT algorithm to reveal the asso-
ciation between the expression of target genes and the
infiltration of 22 immune cells. Since the expression of
LIFR was strongly associated with TME, we focused
on LIFR and found that naive B cells, activated den-
dritic cells, MO and M1 macrophages, activated and
rest mast cells, and activated memory CD4-T cells
were significantly related with the expression level of
LIFR. The top two immune-infiltrated cell types
among seven genes in EC are shown in Fig. 4D and
Table 1. Overall, these findings elucidated the impact
of target genes on the immune response in the TME,
thus could provide an in-depth understanding of the
role of an individual gene in immune therapy.

3.6. Association of miRNA signature target
genes with stem-like properties and tumor
mutation burden in EC

Recently, CSCs have been found to potentially interact
with immune cells in the TME and can facilitate tumor
progression in many cancers. Our previous study also
found that LEF1 of the Wnt signaling pathway could
directly bind to the promoter of ID1 and promoted
cancer stem-like properties in ESCC [12]. Conse-
quently, after detecting the role of target genes in
TME and immune infiltration, we further explored
their role in regulating esophageal CSCs by measuring
mRNA expression (RNAss) and DNA methylation
pattern (DNAss). As shown in Fig. 4C (upper panel),
LIFR was revealed as the only key gene that was sig-
nificantly associated with both RNAss and DNAss,
with r = —0.66 and r = —0.26, respectively. In addi-
tion, ARHGAP24 (r=-0.28, P <0.001), CBX3
(r=0.37, P<0.001), and ELOVLS5 (r= -0.29,
P <0.001) were closely related to esophageal CSCs.
These results indicated that higher expression of LIFR
and ARHGAP24 correlated with reduced cancer cell
stemness, which concurred with the fact that increased
expression of these genes favored better survival in
EC. Previous investigations discovered that the TMB
was tightly associated with immunotherapy in many
cancer types (16, 17). For instance, Yuan et al.
reported that TMB was correlated to Tregs cell

Fig. 3. Functional analysis for three miRNA-based signature and its target genes. (A) Network showing mRNAs negatively regulated by
miRNAs. Red denotes up-regulated; green denotes down-regulated. (B-D) Bubble plots showing GO analysis of target genes for BP (B), CC
(C), and MF (D). (E) KEGG pathway analysis of the pathway-gene network presented by cnetplot. (F) Univariate Cox analysis of seven target
genes in EC. (G) The association of seven target genes with patients’ prognosis of EC.
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Table 1. The association of immune infiltration cells with target
gene expression.

Correlation (R) P-value
ARHGAP24
Mast cells activated 0.25 0.0016
Mast cells resting 0.26 0.0016
Monocytes 0.23 0.0053
Neutrophils 0.21 0.0095
CBX3
B-cell memory -0.17 0.038
Macrophages MO 0.22 0.008
Mast cells activated 0.18 0.029
Mast cells resting —-0.27 0.00077
T-cell CD8 -0.16 0.047
T-cell follicular helper 0.21 0.012
CNTNAP2
NK cells activated -0.19 0.019
ELOVL5S
B-cell naive -0.3 0.00021
Dendritic cells activated 0.26 0.0013
Dendritic cells resting 0.28 0.00057
Monocytes 0.32 0.00006
Neutrophils -0.17 0.037
T-cell regulatory (Tregs) —-0.44 <<0.0001
LIFR
B-cell naive 0.22 0.0079
Dendritic cells activated -0.27 0.00095
Macrophages MO -0.35 <<0.0001
Macrophages M1 0.19 0.022
Mast cells activated -0.26 0.0016
Mast cells resting 0.32 <0.0001
T-cell CD4 memory activated 0.18 0.024
TMEM44
Mast cells activated -0.19 0.019
Monocytes 0.19 0.02
TMEM67 Non Non

infiltration and served as an independent risk factor
for EC patient prognosis, suggesting TMB as a prog-
nostic marker for EC patients. As shown in Fig. 5A,
ELOVLS5 (r= —0.398, P <0.001) demonstrated the
highest correlation with TMB in EC patients, followed
by ARHGAP24 (r= —0.26, P <0.001) and LIFR
(r=-0.17, P = 0.035). In summary, these results indi-
cated that lower expression levels of ELOVLS, ARH-
GAP24, and LIFR promoted a higher TMB,
suggesting the three genes as potential biomarkers for
immune therapy. Meanwhile, we detected multiple

Y. Zhao et al.

functions of individual target genes in EC to identify
their potential mechanisms in the regulation of
immune response and stem-like properties. Following
GSEA analysis, the LIFR were highly enriched in the
calcium signaling pathway, chemokine signaling path-
way, complement and coagulation cascades, focal
adhesion, and pathway in cancer (Fig. 5B). The GSEA
results of the rest of the genes whose pathway items
were more than three are shown in Fig. 5B. With deep
insight into these signaling pathways, it might reveal
potential mechanisms involved in tumor development
and knowledgeable understanding of miRNA-based
signature networks in target treatment.

3.7. The immune landscape of target genes in
pan-cancer

From the aforementioned results, we suggested an
important immunological role of target genes in EC.
To further understand the intrinsic expression pattern
of seven target genes and their association with
patients’ survival, TME, immune response, stem-like
properties, and TMB in pan-cancer, we downloaded
33 cancer types from the TCGA dataset for analysis.
First, we examined the landscape of the expression
pattern of the target genes. The striking inter- and
intratumor heterogeneity regarding the expression
levels of target genes is shown in Fig. 6A. For
instance, ARHGAP24 and LIFR showed higher inter-
tumor heterogeneity with some tumors expressed in
significantly low levels (COAD, READ), while others
were characterized by high expression levels (KIRC,
KICH). The other target genes showed degrees of
great heterogeneity. Meanwhile, the expression distri-
bution of seven target genes across all 33 cancer types
is shown in Fig. 6B. These results showed that intrin-
sic differences in the expression of target genes exist
between different tumors, suggesting the need for in-
depth research on each tumor.

Then, we further explored the expression levels of
target genes in all 33 tumor types including EC, and
selected 18 tumors with the normal sample more than
five for further study. The expression levels of
TMEM44, TMEM67, CBX3, and ELOVL3 in tumor
tissue were higher than in normal tissue, which was
consistent with the trend in EC. The direction of the

Fig. 4. Association of expression of target genes with multiple factors. (A) Association of target genes with clinical stage of EC. (B)
Association of target genes expression with immune subtypes in EC patients. (C) Correlation of expression of target genes with cancer
stem cell-like properties (RNAss, DNAss) and TME (Stromal score, Immune score, and ESTIMATE score). *, **, *** represent P < 0.05,
P <0.01, and P < 0.0001, respectively. Spearman correlation analysis was used to calculate the association. (D) The top two significant
immune-infiltrated cells from each target genes are shown. No immune cell infiltration was associated with TMEM®67 expression.

1098 Molecular Oncology 15 (2021) 1088-1109 © 2021 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.



Y. Zhao et al. A novel prognostic mMRNA/miRNA signature

A ARHGAP24 CBX3 CNTNAP2
P =0.6082,r=-0.04

3 P =0.0025, r=-0.2412 8 P =0.8567,r = -0.01462

ELOVLS LIFR TMEM44 TMEM67
P <0.0001,r=-04 =0. , r==0. B P =0.7802,r = —0.02 P=0.1293,r=-0.12

Runrng Emichment Score

W ‘\‘ HI‘I \lll\‘ | > \H | | H H I HH\‘ 11 | ] | [ 11 (1] ‘H \ 0T IIH i
D‘lll:lllll I‘Illlll‘ll\l‘lllll ’I ] ‘\ | ‘|]II\L“I‘H‘ H\IH :IIIIHII’H :‘I :H\IIH IIIII\I\!IIIIllllI‘IllI-. wulmllt.m‘l Ilh i HJ”H I ‘\“M[ I‘IH‘ II‘&”" m“’\‘l‘lﬂl! I \‘H‘\hHlllH oA
j i
g V ARHGAP24 % E CBX3

Rank in Ordared Dataset

Runring Endchment Score
Runring Envichment Score:

it

FZMNMWL$MMHNMJJLIn[MM”“mmm“MI ]w NVMMMM“HAVMMW“V'%N%

_,| CNTNAP2 o{ LIFR

Ranked st metric

Ranked list metic

Rank in Ordered Dataset

Runring Enrichment Score.

Rurning Envichment Score

I}AWIMhI%HI

UJ%|||{||:H|||um||mulnwnmnll ﬂ“ﬁhﬂhﬂiﬂNWNMlMW“llNl”H

Ranked list metic

Raked st metic

| TMEM44 o, TMEM67

Rank in Ordered Dataset Rank in Ordered Dataset

Fig. 5. Association of expression of target genes with TMB and its function in tumor progression. (A) The correlation of expression of target
genes with TMB in EC patients. (B) GSEA analysis indicating the most enriched pathways of each gene in EC. Spearman correlation
analysis was used to calculate the association.
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normal tissue in 18 cancer types which were composed of at least five normal samples. (B) Boxplot showing the expression distribution of

Fig. 6. Expression of pan-cancer target genes. (A) Boxplot showing the expression level of target genes in tumor tissue compared with
target genes across pan-cancer.
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altered expression of LIFR, ARHGAP24, and
CNTNAP2 varied in each cancer type. Whereas
CNTNAP2 was overexpressed in 18 tumors, the LIFR
and ARHGAP24 expression levels were down-regu-
lated with few exceptions (Fig. 7A). Moreover, we
found that the pairs LIFR and ELOVLS5 (r = 0.36,
P <0.01)), ARHGAP24, and LIFR (r=0.36,
P < 0.01) had the highest association, indicating that
they may share common functions (Fig. 7B).

In previous results of this study, we found seven tar-
get genes were significantly associated with the OS of
EC patients. Herein, we were prompted to further
investigate which target genes promoted or inhibited
patient survival in which cancer type through K-M
curve and Cox regression analysis across 32 cancer
types. The top two cancer types from the seven target
genes are shown in Fig. 7C except for EC. Further-
more, we used univariate Cox proportional hazard
regression models to determine the altered expressions
of seven target genes associated with patient survival,
and the direction of association varied depending on
cancer types (Fig. 9A).

The seven target genes have been proved to be asso-
ciated with the TME, immune subtype, immune infil-
tration, and stem-like properties in EC. However,
there was also a lack of relevant researches that
focused on the landscape of miRNA-based target
genes that participates in immune response and tumor
progression in pan-cancer. In this section, we first
investigated the association of target gene expression
with six immune subtypes. Results indicated that all
seven genes were strongly associated with immune sub-
types in pan-cancer (Fig. 8A). More specifically, the
pan-cancer distribution of expression levels of target
genes in immune types was mainly consistent with that
in EC. For instance, patients showed more invasion
and aberrant prognosis subtype (C1, C2, C4) as CBX3
was up-regulated in pan-cancer. The landscape of cor-
relation of target genes with the immune and stromal
score, cancer stem-like properties, and TMB is dis-
played in Fig. 8B-E. Distinctly, the target genes
showed various levels of association with these charac-
teristics in different cancer types, but the directions of
correlation were mainly similar to EC. Specifically, we
found a significantly positive correlation of ARH-
GAP24 expression with the stromal score in pan-can-
cer, whereas it was negatively associated with RNAss.
All the seven target genes were strongly associated
with RNAss and TMB in THYM,; this showed the
optimal prediction role of these genes. Although
TMEM44 and TMEMG67 were less relevant to TME,
RNAss, and TMB in EC, they were found to be signif-
icant in LAML, KICH, THYM, and DLBC. The

A novel prognostic mMRNA/miRNA signature

radar plots of correlation between each target genes
and pan-cancer are shown in Fig. 9B.

We assessed the influence of target genes on drug
sensitivity using CellMiner database, which could facil-
itate better precision treatment. Drug sensitivity was
measured by z-score, and the higher the scores implied
that cells were more sensitive to the drug treatment
(Fig. 9C). Notably, elevated expression of target genes,
especially LIFR, CBX3, and ARHGAP24, was associ-
ated with drug resistance in different cell lines to sev-
eral chemotherapy drugs (Fig. 9C). For example,
LIFR was associated with cell resistance to the treat-
ment of tamoxifen (treatment for BRCA). Further-
more, we noticed that different genes had similar
associations with the same drug. For example, CBX3
and ELOVLS were both associated with increased sen-
sitivity of cells to chelerythrine (treatment for STAD).

4. Discussion

Esophageal cancer is one of the most aggressive malig-
nant tumors with a high possibility of metastasis and
the leading cause of cancer-related deaths globally [33].
Despite advances in precision diagnosis and treatment,
the S5-year OS rate of EC remains low, especially in
East Asia [34]. Therefore, there is an urgent need to
develop more specific and sensitive prognostic
biomarkers for EC patients. Recently, extensive studies
found that miRNAs could regulate downstream gene
expression, playing an important role in tumor devel-
opment and prognosis [35]. In particular, recent
researches have revealed that miRNA expression pro-
files could promote EC progression and metastasis
[36,37]. In our study, we found that miR-34a-5p
directly targeted LEF1 and inactivated the Hippo sig-
naling pathway, which inhibited invasion and migra-
tion of ESCC [5]. MiRNAs could widely be used as
prognostic biomarkers in various types of cancers,
including miR-191, miR-1908, and miR-217. However,
due to the insufficient specificity and sensitivity, more
miRNA signatures and their mechanisms in promoting
cancers need to be explored, especially by developing
multiple miRNAs combined signature. Due to the
merits of multiple miRNA-based signature and the
lack of relevant studies in EC, we identified a prognos-
tic miRNA signature that enhanced prediction of
patient prognosis in EC patients and guides on preci-
sion treatment.

In this study, bioinformatics analysis was applied to
identify the optimal prognostic miRNA signature. We
downloaded mature miRNA and mRNA expression
profiles, and corresponding patient clinical information
on EC from the TCGA database. Exactly 162
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. 7. Expression levels of seven target genes in cancers and adjacent normal tissues. (A) Heatmap showing the expression level of target

genes in tumor tissue compared with normal tissue in 18 cancer types which were composed of more than five normal samples. (B)
Correlation plot based on Spearman correlation analysis showing the correlation of gene expression among the seven target genes across
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differentially expressed miRNAs (DEMs) and 4555 dif-
ferentially expressed genes (DEGs) were identified
using the ‘edgeR’ package. Patients were randomly
classified into the training and test groups. A three
miRNA-based prediction signature including miR-
4521, miR-3682-3p, and miR-1269a was obtained in
the training group by univariate Cox and multivariate
Cox analysis. The miRNA signature model was vali-
dated in the test and the entire group. Kaplan—Meier
analysis showed that the high-risk score group exhib-
ited poorer patient prognosis of EC compared with
the low-risk group. The efficacy of this prediction
model was evaluated by ROC curve and the AUC
showed a better prediction power. Moreover, we found
that a risk score based on the miRNA signature model
was an independent risk factor compared with other
clinical features, such as the T stage, lymph node inva-
sion, and metastasis. Among these three miRNAs,
studies have reported on the role of three signature
miRNAs in the development and progression of vari-
ous cancers, especially for EC. This indicated that in-
depth insight into three miRNAs is recommended in
the future. A study by Feng and colleagues demon-
strated that the miR-4521-FAMI129A axis played an
important role in the progression of renal cell carci-
noma [38]. However, MiR-1269a could directly bind to
the downstream target of SOX6 and act as an onco-
miRNA in the progression of non-small-cell lung can-
cer [39].

To further understand the regulatory mechanisms
involved in the three miRNA signature, we explored
the target genes of three miRNAs by an intersection
with three different databases (miRDB, TargetScan,
and miRWalk). Then, we intersected the prediction
genes with differentially expressed genes from TCGA.
The intersection target genes which were negatively
correlated with the expression of these miRNAs were
finally selected. Furthermore, the GO and KEGG
analyses were applied after 177 target genes were
obtained. Results indicated that the carboxylic acid
biosynthetic process and organic acid biosynthetic pro-
cess were the most enriched process involved in EC
progression. Chen et al. found that citric acid as an
important organic acid prevent EC cell growth via
inhibiting cell proliferation and apoptosis, which could
serve as a novel therapeutic target for the treatment of
EC [40]. The CC analysis was mainly contained synap-
tic membrane and external side of the plasma mem-
brane. MF analysis mainly contained steroid binding
and cytokine receptor activity. The KEGG analysis
showed that CAMs, neuroactive ligand-receptor inter-
action, JAK-STAT signaling pathway, calcium signal-
ing pathway, and gastric acid secretion were the top

Y. Zhao et al.

five enriched pathways. Elsewhere, You et al. demon-
strated that pJAK-1 and pSTAT-3 were up-regulated
in esophageal squamous cell carcinoma patients and
associated with aberrant clinicopathological features,
which promoted progression and invasion of ESCC
[41]. Tt was also reported that the calcium signaling
pathway not only played a crucial role in progression
and sensitivity to cell death but also in the establish-
ment and maintenance of multidrug resistance and the
TME [42]. These signaling pathways critically impact
on various tumors in varying degrees, which might
explain potential mechanisms that lay behind our three
miRNA-based model.

A recent study reported that cancer patients could
be grouped into six immune infiltration subtypes [43],
including C1 (wound healing), C2 (INF-r dominant),
C3 (inflammatory), C4 (lymphocyte depleted), C5 (im-
munologically quiet), and C6 (TGFB dominant). The
immune subtypes showed a strong association with OS
and progression-free survival, with C3 owing the opti-
mal survival and C1 and C2 representing poor progno-
sis. Meanwhile, six types of immune subtype were
associated with several somatic mutations, such as
copy number variation and homologous recombination
deficiency. In our study, we explored the association of
seven target genes with immune infiltration subtypes
according to patient immune types in the TCGA-
ESCA dataset. High expression of CBX3 was found to
be strongly associated with a more aggressive subtype
of Cl1, C2, and C6, implicating CBX3 as a potential
tumor promoter in EC.

A wealth of studies has revealed that TME plays a
crucial role in tumor metastasis and progression [44].
Cancer cells and noncancer cells are made up of TME,
including stromal cells, immune cells, extracellular
matrix, and so on [45]. The stromal cells and immune
cells in TME potentially affect immune therapy
response. Previous studies showed that stromal cells
are related to the exocrine phenotype of T cells in
bladder cancer and the existence of immune cells facili-
tated the elimination of tumor cells via various mecha-
nisms [46]. Other reports revealed that immune activity
and immune cell infiltration in TME could be quanti-
fied by tumor gene expression profiles [47]. Therefore,
digging into tumor gene expression profiles could
explore the relationship between TME and patient
prognosis as well as to evaluate the immune treatment
response. In the present study, we found that LIFR
showed the highest association with stromal score in
EC (r=0.37, P <0.001), followed by ARHGAP24
(r=0.36, P <0.001), ELOVLS5 (r=0.31, P <0.001),
and TMEMG67 (r=0.18, P=0.021). In addition,
LIFR exhibited the highest correlation with immune
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score in EC with r = 0.28 and P < 0.001, followed by
CBX3 (r=-0.18, P =0.022). ESTIMATE score
demonstrated that high expression levels of LIFR,
ARHGAP24, and ELOVLS5 were significantly associ-
ated with lower tumor purity, whereas CBX3 exerted
an inverse effect. Moreover, LIFR was significantly
associated with naive B cells, activated dendritic cells,
MO and M1 macrophages, activated and rest mast
cells, and activated memory CD4-T cells infiltration.
Taken together, these findings showed that low expres-
sion of LIFR signified higher immune cells and stro-
mal cell infiltration in TME and lower tumor purity in
EC. More specifically, as LIFR is down-regulated by
miR-3682-3p and less M1 macrophages infiltrate into
TME, the ability of EC progression was enhanced,
suggesting the role of LIFR in tumor progression.
Similar results were found with ARHGAP24 and
ELOVLS.

Cancer stem cells were generated during cancer pro-
gression whereby tumor cells were transformed from
differentiated phenotype to progenitor and conse-
quently acquired stem cell-like features [48]. We also
reported that CSCs were associated with immune
response and TME. For instance, TAMs could
enhance the proliferation of CSCs derived from hepa-
tocellular carcinoma through IL-6-induced STAT3
activation. STAT3 further stimulated the production
of cytokines, forming a positive feedback loop that
promoted cancer stem cell self-renewal [49]. Moreover,
CSCs could drive tumorigenesis and progression by
regulating the activity of immune cells. Glioblastoma
CSCs have been shown to express various cytokines
(including colony-stimulating factor, TGF-f, and
macrophage inhibitory cytokines), thus promoting
polarization of macrophages to M2 type [38]. There-
fore, an in-depth understanding of the role of target
genes in the crosstalk between CSCs, immune
response, and TME is a promising aspect for cancer
treatment. In our study, LIFR was found to be signifi-
cantly associated with both RNAss and DNAss, with
r=-0.36 and r = —0.26, respectively. ARHGAP24
(r=-0.28, P<0.001), CBX3 (r=0.37, P<0.001),
and ELOVLS (r = —0.29, P < 0.001) were also closely
related to esophageal CSCs.

Due to many limitations of standard therapy for EC
treatment, promising new roads for EC treatment have
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been surged recently, including immune checkpoint
inhibitors, tumor vaccine, and adoptive T-cell treat-
ment [50]. However, the EC immunotherapies also
result in mixed outcomes, mainly caused by the
absence of an efficient biomarker to predict immune
response [51]. TMB, which was related to the genera-
tion of neoantigens, has been applied to predict the
response to PD-1 and PD-L1 blockages in various
tumors. Herein, we demonstrated that ELOVLS5
(r = —0.398, P < 0.001) showed the highest correlation
with TMB in EC patients, followed by ARHGAP24
(r=-026, P<0.001) and LIFR (r=-0.17,
P =0.035). Of note, these observations demonstrated
that lower expression levels of ELOVLS, ARHGAP24,
and LIFR promoted higher TMB, an implication that
these three genes and the relevant miRNAs are poten-
tial biomarkers for immune therapy.

In summary, we elucidated the immunological role
of seven target genes and found that LIFR, ARH-
GAP24, ELOVLS, and CBX3 were extremely promi-
nent in EC. More specifically, taking LIFR as an
example, we revealed that miR-3682-3p was up-regu-
lated in EC and associated with poor patient progno-
sis. Additionally, high expression of miR-3682-3p
contributed to low LIFR expression and was corre-
lated with various immune cell infiltration and stromal
components in the TME as well as enhancing stem-like
properties in EC. Low expression of LIFR was also
correlated with high TMB. Therefore, targeting the
miR-3682-3p-LIFR axis or other target gene axis
might impede tumor development in EC. Taken
together, these findings showed that the miRNA/
mRNA-based signature could serve as important
biomarkers for tumor progression and prediction of
the immune response in EC.

Although the role of miRNA/mRNA signature is
comprehensively elucidated in EC, no systemic study
has been conducted on these genes in different human
cancers. Each gene was only studied in a few types of
cancers and most of those studies used cell lines and
animal models. Next, we wound probe into the
immunological role of miRNA signature in the pan-
cancer analysis. We downloaded 32 cancer expression
profiles, mutation, and clinical information from the
TCGA dataset except for ESCA. Firstly, the landscape
of the expression pattern of target genes was assessed,

Fig. 9. Association of expression of target genes with patient prognosis, drug sensitivity, and TMB in pan-cancer. (A) The forest plots with
95% Cls and HRs for OS for different cancer types in pan-cancer. (B) Radar graph indicating the detailed information of the association
between target gene expression and TMB in pan-cancer. (C) The scatter plot indicates the correlation between target gene expression and
drug sensitivity (the zscore of the CellMiner interface) for the Pearson correlation test using NCI-60 cell line data. Top 16 associations are

shown, ordered by P-value.
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and results showed the striking inter- and intratumor
heterogeneity regarding the expression levels of target
genes. However, the directions of the altered expres-
sion of these genes in pan-cancer were mainly consis-
tent with that of EC, which indicated a similar
function of these genes in pan-cancer. We further
examined the association between the expression of the
target genes with patient OS in 33 cancer types and
found that the direction of association is cancer type-
dependent. Moreover, LIFR was mainly negatively
associated with the prognosis of ACC, KIRC, KIRP,
LAML, LUAD, while the remaining genes had an
antagonistic association with survival (both an advan-
tage and a disadvantage). Interestingly, the results
demonstrated that all target genes were significantly
associated with immune infiltrating subtypes in the
TME, notably, CBX3 and TMEM44 correlated with
more aggressive subtypes (C1, C2, C6), whereas LIFR,
ARHGAP24, and ELVLOS associated with more pro-
tective subtypes (C3, C5). Target genes were also cor-
related with the level of infiltration of immune cells
and stromal cells, cancer stemness, and TMB at vari-
ous degrees based on ESTIMATE and other algo-
rithms. For instance, the association between the
expression of target genes and tumor stemness score as
well as with the drug sensitivity score indicated that
CBX3 may mainly play tumor promotor roles during
tumorigenesis as they are positively associated with
tumor stemness and drug resistance scores. These find-
ings mainly coincided with the observations reported
in EC, suggesting that these genes may be utilized as
direct therapeutic targets or help in predicting the effi-
cacy of immune checkpoint modulators in cancer
patients.

5. Conclusion

This study demonstrated that the three miRNA-based
signature and target genes were primarily associated
with patient prognosis and played important immuno-
logical roles in cancer progression and metastasis,
especially for EC. Therefore, we presented potential
therapeutic targets for precision cancer treatment.
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