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Abstract: Carbon xerogels were synthesized using a soft-template route with resorcinol as the carbon
source and sodium carbonate as the catalyst. The influence of the resorcinol to catalyst ratio in the
range of 500–20,000 on pore structure, graphitic domains, and electronic conductivity of as-prepared
carbon xerogels, as well as their performance in an aluminium ion battery (AIB), was investigated.
After carbonization steps of the polymers up to 800 ◦C, all carbon samples exhibited similar specific
volumes of micropores (0.7–0.8 cm3 g−1), while samples obtained from mixtures with R/C ratios
lower than 2000 led to carbon xerogels with significantly higher mesopore diameters up to 6 nm. The
best results, in terms of specific surface (1000 m2 g−1), average pore size (6 nm) and reversible capacity
in AIB cell (28 mAh g−1 @ 0.1 A g−1), were obtained with a carbon xerogel sample synthetized at a
resorcinol to catalyst ratio of R/C = 500 (CXG500). Though cyclic voltammograms of carbon xerogel
samples did not exhibit any sharp peaks in the applied potential window, the presence of both
oxidation and a quite wide reduction peak in CXG500–2000 cyclic voltammograms indicated pseudo-
capacitance behaviour induced by diffusion-controlled intercalation/de-intercalation of AlCl4− ions
into/from the carbon xerogel matrix. This was confirmed by shifting of the (002) peak towards lower
2θ angle values in the XRD pattern of the CXG500 electrode after the charging step in AIB, whereas
the contribution of pseudocapacitance, calculated from half-cell measurements, was limited to only
6% of overall capacitance.

Keywords: carbon; xerogel; soft-template; resorcinol; aluminium-ion battery; pseudo-capacitance;
intercalation; X-ray diffraction; conductivity; Raman

1. Introduction

The demand for electrically rechargeable energy storage systems has increased sig-
nificantly over the last few years. Apart from classical systems, such as lead-acid and
nickel-metal hydride (NiMH) systems, a huge number of established and merged appli-
cation devices rely on lithium ion batteries (LIB) due to their impressive cell performance
in terms of cell voltage (3–3.6 V), energy density (220 Wh kg−1/450 Wh L−1) and long-
term cycling ability [1]. Because of the enormous demand for LIBs and the consequen-
tial rise in lithium price, as well as for critical materials such as cobalt, shortage in raw
materials within the next decades appears to be inevitable [2,3]. Therefore, there is an
urgent need to develop novel battery systems that rely on highly abundant, non-critical
metals, such as zinc, sodium, magnesium or aluminium. One of the most promising
candidates is the Al-ion battery (AIB) that typically consists of highly graphitic carbon
(natural graphite [4–12], graphene [13–17], graphene oxide [18] or carbon foams [11]) as
the positive electrode for Al-ion intercalation, an AlCl3 containing ionic liquid, such as
1-ethyl-3-methylimidazoliumchloride (EMimCl), as the aprotic electrolyte, and an alu-
minium metal foil as the negative electrode for electrochemical Al deposition/stripping.
The main benefits of AIB are related to the use of highly abundant and cheap graphite
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(1.3 $ kg−1) and aluminium (2 $ kg−1) materials [19,20], extraordinarily high power den-
sities [21] (up to 90 kW kg−1

Carbon), extremely high cycle stability (up to half a million
cycles) [6] and highly efficient Al recycling infrastructure. The main drawbacks and techni-
cal challenges to overcome are related to the highly water-sensitive and corrosive properties
of the EMimCl/AlCl3 electrolyte, aluminium dendrite growth within the glass fibre separa-
tor that acts as an insulator and electrolyte reservoir, as well as graphite delamination issues
over cycling. During the AIB charging step, negatively charged aluminium tetrachloride
ions (AlCl4−) intercalate [22] into the graphite matrix, while, at the same time, aluminium
heptachloride (Al2Cl7−) species are electrochemically reduced to Al0 on the aluminium foil
according to the following reactions:

Cn + AlCl−4
Intercalation−−−−−−−→ Cn[AlCl4] + e−

4 Al2Cl−7 + 3 e−
Deposition−−−−−−→ Al + 7 AlCl−4

Due to the large size of the intercalating anion (5.4 Å for AlCl4− vs. 1.34 Å for Li+) [23],
the graphene layers (distance between two graphene layers: ~3.3 Å) at a certain point un-
dergo irreversible expansion that can led to delamination of the active layer material [11,24].
To overcome this issue, three-dimensional carbon structures, such as foams, were de-
veloped [11]. Due to their open-pore structure, volume expansion/contraction during
successive charging/discharging steps can be minimized. Since commercially available car-
bon products rarely fulfil further prerequisite properties, such as high corrosion resistance
and electronic conductivity that allow both fast reversible intercalation/deintercalation of
large multivalent ions as well as optimal mass transport, much effort has been invested in
designing new carbon structures by hard-template and soft-template routes [25]. Galeano
et al. [26] reported the synthesis of mesoporous carbon hollow spheres via a hard-template
route, in which divinylbenzene as the carbon precursor and iron (III) nitrate as the cata-
lyst were introduced into the pores of silica spheres or colloidal crystals by impregnation,
followed by carbonization and the time-consuming removal of silica using a hot alkali
or hydrofluoric acid solution. Importantly, the pore size and morphology of mesoporous
carbon network (MCN) replicas are difficult to tune due to the limited choice of appropriate
hard-template materials [27], such as polymer microspheres, porous membranes, plastic
foam, ion exchange resin, carbon fibre and porous anodic aluminium oxide [28].

Therefore, soft-template routes appear to be more suitable for designing carbon mate-
rials with tuneable properties. A broad overview of soft-templating routes is provided by
Chuenchom et al. [29]. Commonly, mesostructured carbons are obtained via an organic-
organic self-assembly process induced by hydrogen bonding between a carbon precursor
(e.g., phenolic-formaldehyde resin) and a template (e.g., amphiphilic triblock copolymer
Pluronic F127 (EO106PO70EO106)). Using this kind of soft-template material, mesoporous
carbons can be produced in the form of films, monoliths or particles of micrometre size [30].

Carbon gels are synthetic polymeric carbon materials known for their tuneable poros-
ity, surface area and morphology. Aerogels, cryogels and xerogels are three organic gels that
are synthesized by a sol-gel polycondensation method and differ from each other regarding
drying procedure [31]. While aerogels are produced by a drying procedure with supercriti-
cal CO2 after solvent exchange (acetone or ethanol), cryogels are obtained by freeze-drying
in which the solvent is removed by sublimation under low pressure. However, these two
latter drying procedures are expensive and difficult to handle. In contrast, carbon xerogels
(CXG) are produced by successive simple vacuum drying and resorcinol-formaldehyde
pyrolysis steps. In the last decade, the feasibility of use of carbon xerogels as material for
supercapacitors has been intensively investigated [32–35], as well as for anode material in
Li-ion batteries [36–38].

In this study, the influence of catalyst concentration during the polycondensation of
resorcinol with formaldehyde on carbon xerogel morphology was systematically studied
for different resorcinol to catalyst (R/C) ratios.
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2. Materials and Methods
2.1. Synthesis of Xerogels

Fourteen different xerogel samples were prepared using resorcinol (R) to sodium
carbonate as catalyst (C) ratios in the range of R/C = 50–20,000 and keeping resorcinol to
formaldehyde at a molar ratio of 0.5. First, 1.061 g of sodium-carbonate (Na2CO3) (>99.99%,
Sigma Aldrich, Darmstadt, Germany) was poured into ultrapure water (18.2 MΩ, ELGA
Prelab®, Celle, Germany) to obtain a standard solution of 0.1 M Na2CO3. Then, 1.0 g
of resorcinol (>99%, Sigma Aldrich, Darmstadt, Germany) was dissolved in 1.95 mL of
Na2CO3 catalyst solution for a given R/C molar ratio under stirring conditions. After
complete dissolution, 1.355 mL of 30% formaldehyde solution (35 Vol%, Sigma Aldrich,
Darmstadt, Germany) was added resulting in a molar R/F ratio of 0.5. The polymerization
reaction was carried out in a water bath at 65 ◦C for 72 h. To remove residual water, a
drying step was conducted at 125 ◦C and 0.1 mbar in a self-build Schlenk-line apparatus.
The heating step led to a change in colour of the as-prepared polymers (see Figure 1).
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tion (R/C = 50) on the left side to low concentration (R/C = 20,000) on the right side.

Finally, carbonization of the samples was performed in a tubular oven (ROK 3/30,
W. C. Heraeus, Hanau, Germany) under N2 atmosphere by applying two successive
heating steps at 400 and 800 ◦C for 2h each and using a temperature ramp of 5 K min−1.
The yielded carbons showed differences in density where the highest and lowest values
were observed at CXG50 and CXG20,000, respectively (see values in Table A1). At CXG50
especially, very hard and dense particles were formed. One possible explanation might be
the higher concentration of sodium carbonate in the range of R/C = 50–1500 that favoured
fast formation of large aggregates [39]. Immediately after adding formaldehyde to the
R/C50 solution, the colour started to change from clear white to red/orange. After 2 h,
the polymerization step was completed, resulting in a dark red colour polymer. For R/C
ratios in the range of 500–1500, the whole polymerization was accomplished after 18–24 h.
For R/C > 1500 samples, the polymerization step took 35–45 h due to a slow reaction rate.
It seems that a slow polymerization reaction favoured the formation of small aggregates
which resulted after carbonization in less dense carbon particles. At very low Na2CO3
concentrations, such as those used during R/C10,000 and R/C20,000 synthesis mixtures, the
solution was colourless even after 60 h reaction time.

2.2. Preparation of Cathode Material for AIB Experiments

Five selected carbonized xerogels (CXG) were ball-milled in ethanol at 400 rpm for 2 h
(PM 100, Retsch, Haan, Germany). Then, an appropriate amount of 90 wt% CXG powder
and 10 wt% polytetrafluoroethylene (PTFE, 30 wt% from Quintech, Göppingen, Germany)
were mixed in 70 Vol% isopropanol (VWR, Darmstadt, Germany)/water (ELGA Purelab®,
Celle, Germany) by an Ultra-Turrax® (T-18, IKA, Staufen, Germany) dispersing instrument.
The resulting suspension was spray-coated on a glass fibre-separator (0.25 mm in thick-
ness, GF/A Whatman™/Cytiva, Freiburg, Germany) until a loading of the cathodes of
2–3 mgCXG cm−2 was achieved. As-prepared cathodes were cut in 10 mm discs and dried
at 125 ◦C for at least 12 h to remove all residual water. Electrodes with commercial graphite
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(natural high-conductive graphite, Prographit, Untergriesbach, Germany) were prepared
analogous to CXG electrodes, however, without ball-milling-step.

2.3. Electrochemical Measurements

For half-cell measurements, PTFE T-Cells (Ø = 10 mm, Swagelok-type, EM-Technik,
Maxdorf, Germany) were assembled in a glovebox (UniLab Pro, H2O/O2 < 0.1 ppm,
MBraun, Garching, Germany) by successively stacking a 10 mm glassy carbon (GC)
rod (SIGRADUR®, HTW, Thierhaupten, Germany), a glass fibre-coated carbon xerogel
(~2 mg loading) working electrode, two GF/D separator layers (670 µm thickness,
Whatman™/Cytiva, Freiburg, Germany) impregnated with 350 µL electrolyte
(n(EmimCl):n(AlCl3) = 1:1.5, IoLiTec, Heilbronn, Germany) and an Al-rod (Ø = 10 mm,
99.999%, HMW Hauner, Röttenbach, Germany) as counter electrode. Finally, an Al-rod
(Ø = 6 mm, 99.999%, HMW Hauner, Röttenbach, Germany) was placed in the perpendic-
ular tube of the T-cell that acted as the pseudo-reference electrode. Cyclovoltammetry
measurements were carried out in a glovebox with a potentiostat/galvanostat (Im6EX,
Zahner, Kronach, Germany) at 1 mV s−1 scan rate. (Pseudo)capacitance and Faradaic
contributions were determined by scan-rate variation of cyclic voltammograms according
to Dunn’s method [40]. Charge/discharge and current/voltage measurements of AIB cell
were performed in PTFE straight cells (Ø = 10 mm, Swagelok-type, EM-Technik, Maxdorf,
Germany) with a battery tester (BCS810, Biologic, Seysinet-Pariset, France). The activation
procedure of all AIB cells consisted of 25 cycles at 0.1 A g−1. Afterwards, the performance
of AIB cells was investigated at 0.1–5.0 A g−1 current density for 10 cycles with a lower
voltage limit of 0.4 V during discharge for all cells and an upper voltage limit of 2.3 V during
charge for cells with CXG500 and natural graphite, and 2.4 V for cells with CXG750–2000.

2.4. Instrumental Analysis

XRD and Raman analysis of carbon powder samples was carried out in a diffractometer
(D8 Advance, BRUKER, Karlsruhe, Germany) with CuKα radiation of 1.541874 Å and
Raman microscope (inVia, Renishaw, Pliezhausen, Germany) at 532 nm, respectively. The
intercalation of chloroaluminate into graphite or CXG matrix was studied by ex situ XRD
analysis. For this purpose, a charged graphite or CXG electrode was placed in an air-
tight BRUKER™ specimen holder. The air tightness required to be assured because of the
strong hydrolysis properties of AlCl3−-containing ionic liquid electrolyte. SEM images
were acquired with a field emission microscope (SU5000, Hitachi, Krefeld, Germany).
Conductivity measurements were performed in a pressurized device designed by ZBT
(Zentrum für Brennstoffzellentechnik, Duisburg, Germany). Physisorption measurements
of carbon powder materials were conducted with argon at 87 K (Autosorb iQ Station,
Quantachrome / 3P Instruments, Odelzhausen, Germany). The whole mass-normalized
surface area Asum and pore volume Vsum were calculated by applying DFT-fitting of
cylindrical and spherical pores to measured adsorption isotherms (QSDFT-fit).

3. Results
3.1. Physisorption of CXGs

Plots of samples produced within 350 (a) < R/C < 2000 (b) showed a typical hysteresis
for type IV isotherms indicating the presence of mesopores (Figure 2a). For R/C > 2500,
named (f–n), the isotherm of carbons shifted to type 1a which indicated nearly 100%
microporous textures. This was confirmed by an average pore size distribution of 6.0 nm
for CXG500 and only 1.7 nm for CXG samples with R/C > 2000. The analysis of cumulative
pore volume Vsum in relation to R/C showed that Vsum subsequently decreased with R/C
ratio from 1.0 cm3 g−1 in CXG500 (a) to 0.5 cm3 g−1 in CXG1000 (d) and then amounted
to 0.2–0.3 cm3 g−1 for R/C > 1500 (e–m), see Figure 2b. For the as-prepared carbon
xerogels samples, the contribution of macropores was excluded. The micropore volume
Vmic and surface area Amic were calculated according to the Dubinin–Radushkevich (DR)
equation [41–44]. The mesopore volume Vmes and surface area Ames were consequently
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calculated by subtracting Vsum with DR-derived pore volumes Vmic and surface area Amic,
respectively.
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Figure 2. Characterisation of CXG by isotherms (a), pore size distribution with respect to Vsum (b),
contribution of microporous and mesoporous pore volume and surface area (c) and repartition of
relative mesopore and micropore volume (d).

The mass-normalized surface area Asum was determined to be around 926 m2 g−1

on average with a maximum of 1004 m2 g−1 for CXG500 and a minimum of 894 m2 g−1

for CXG1000. The surface area of all CXG500–10,000 samples were higher than some values
reported in other investigations (300–700 m2 g−1) [34,41,42,45]. Moreover, the overall pore
volume Vsum of 0.2–1.0 cm3 g−1 was similar to values referred to in the literature [34,41,42].

As shown in the bar chart represented in Figure 2c, the specific volume of micropores
Vmic was quite similar for all CXG samples and fluctuated between 0.23–0.26 cm3 g−1 which
was in good accordance with published values [41,42]. As expected from the isotherm
shapes, the mesopore volume Vmes culminated in the CXG500 sample at 0.77 cm3 g−1 and
decreased rapidly to 0.08 cm3 g−1 in CXG1500. Surprisingly, the specific surface area Ames
of the carbon samples did not fluctuate very much (312–141 m2 g−1). A detailed overview
of the textural properties is given in Appendix A Table A2.

The contribution of Vmes and Vmic in selected CXG samples is shown in Figure 2d. We
found that the pore volume of CXG500 consisted of 85% Vmes and 15% Vmic. For CXG750,
80% Vmes were determined. With higher R/C values, the amount of Vmes dropped to 21%
in CXG2000 while the amount of Vmic increased up to 79%.

Since carbon materials with mesoporous domains are usually preferred in electro-
chemical systems due to their ability to enhance better diffusion of electrolyte species to
active sites and consequently overall capacity, only CXG500–2500 samples were considered
further for investigation in AIB laboratory cells.
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3.2. X-ray Diffraction

XRD diffractograms of CXG (see Figure 3a) showed three dominant broad peaks at
2θ = 22 ± 1◦, 43 ± 1◦ and 80 ± 1◦. Broad peaks are typical for amorphous carbons [46,47]
and are a mixture of sp2 and sp3 hybridized carbons [48] with a turbostratic arrangement.
For comparison, a pure natural graphite (natural high conductive graphite, Prographit) is
also shown with a clear visible crystal-plane pattern (green pattern). Since it is difficult
to correctly interpret the crystal structure of amorphous carbons, the peaks with (hkl)
nomenclature should be carefully assigned. Here we followed Maldonado-Hódar et al. [46]
and assigned peaks at 2θ = 22◦ and 43◦ to (002) and (101) planes, respectively. The in-
tense peak at 80◦ in the CXG diffractogram could not be definitively linked to a specific
crystal plane.
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Figure 3. XRD diffractogram of selected CXG and natural graphite (a). Stacking width LA and
stacking height LC of graphene crystallites as a function of R/C ratio during CXG synthesis (b).

From the (002) peak, the layer interspacing value (d002) was determined to be 3.335 Å
for the natural graphite powder, a value comparable to those reported for different graphite
materials (3.35–3.73 Å) in [4,8,49]. The diffractograms of CXG500–2500 were very similar
to each other with small differences of several hundred counts which indicated a similar
structure. The calculated d002 values for all CXG samples varied between 3.6–3.8 Å, values
which were comparable to those extracted from plots of pyrolyzed resorcinol-formaldehyde
resins (3.4–4.1 Å) [46,50–53]. Interestingly, the interspacing values of as-prepared CXG
were 8–14% higher than those of natural graphite which might be advantageous for the
intercalation of large AlCl4− anions.

The (002) peak was induced by the stacking height (LC) of crystallite, while the (101)
peak was induced by the stacking width (LA). From lithium-ion systems, it is well-known
that there is a large difference in the electrochemical activity of basal (lateral size, LA) and
edge surfaces (stacking height, LC). Chung et al. [53], as well as Zaghib et al. [54], showed
that the basal plane area contributes around 7× less to electrochemical activity than the
edge sites which are important for the intercalation process. LC and LA values of different
carbon samples were calculated by applying the Scherrer equation (Equation (1)) for (002)
and (101) reflexes with L = stack height/width, K = Scherrer factor, λ = wavelength X-ray
source, ∆(2θ) = FWHM (full-width at half maximum) of (hkl) reflex, and θ0 the Bragg-reflex.
FWHM values of CXGs were calculated by Gaussian peak deconvolution in Origin® 2020.
Graphitic carbons can have LA values >> 100 nm [54], while non-graphitic carbons (NCG)
have very small particles in the low nanometre-range [48,55].

L =
K · λ

∆(2θ) · cos θ0
(1)
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LC stacking (Figure 3b) increased from 0.96 nm for CXG500 to 1.06 nm for the CXG1500
sample. The corresponding LA values dropped from 1.57 nm in CXG500 to 1.39 nm in
CXG1500. For CXG2000 and CXG2500, the calculated LA value was 1.45 nm. The LC value
of CXG2000 had a minimum height of 0.90 nm, whereas CXG2500 showed a slightly higher
stacking height of 0.94 nm. The maximum LA stacking was observed in CXG500 with
1.57 nm, while the maximum LC stacking for CXG1500 was measured as 1.06 nm. The
average crystallite size in width and height was determined to be 1–2 nm, which is typical
for resin-based NCGs as reported by Pfaff et al. [55]. Overall, it can be concluded that the
resorcinol to carbonate ratio had almost no influence on the carbonized resins.

For comparison, the LC and LA values of crystallite in natural graphite with well-
defined crystal plane patterns were calculated to be 66.3 ± 0.5 nm and 30.2 ± 0.9 nm,
respectively. The overall measured intensity of the (002) plane was not only two magnitudes
higher than for CXG, but also much higher than that of (101) planes, which is an indication
of an LC preferred extension. Quan et al. [56] analysed different graphite samples from
different mining sites and reported LC values between 10 and 18 nm and LA values between
22 and 40 nm. For the LC stacking height, however, they reported values between 10 and
18 nm, which were four to five times lower than those calculated in this investigation, while
reported LA values were in good agreement with our calculations.

After synthesis and carbonization, the yielded carbons showed differences in density,
with the highest for CXG50 and the lowest for CXG20,000. CXG50 especially formed very
hard and dense particles. One possible explanation might be the higher concentration of
sodium carbonate in the range of R/C50–1500 that favoured fast formation of big aggre-
gates [39]. Immediately after adding formaldehyde to the R/C50 solution, the colour started
to change from clear white to red/orange. After 2 h the polymerization was completed,
resulting in a dark red colour. For R/C500–1500 the whole polymerization was finished after
18–24 h. For >R/C1500 the polymerization took 35–45 h due to a slow reaction rate. It
appears that a slow polymerization reaction rate favoured the formation of many small
aggregates which resulted after carbonization in less dense carbon particles. At very low
Na2CO3 concentrations, as in the R/C10,000 and R/C20,000 synthesis mixtures, the solution
was colourless even after 60 h reaction time.

3.3. Raman

The Raman spectra of the CXG samples (see Figure 4a) showed a clear D- and G-band
at 1346 and 1595 cm−1 which were comparable to those for CXGs synthesized by Kakunuri
et al. [47]. An intense D-band mainly arises from the polymerization reaction products of
resorcinol and formaldehyde coming from numerous sp3 orbitals of –CH3, –OH and other
functional groups which result after carbonization in the formation of carbon domains
with multiple defect structures [48,57]. The assignment of D- and G-bands in graphitic
structures, such as natural graphite, is straightforward. The G-band around 1575 cm−1

arises from the E2g mode of all present sp2-hybridized carbons located in-plane in the
carbon chains and rings and can be visualized as bond-stretching, whereas the D-band
in graphitic structures can be explained by a “breathing” of the A1g mode of the carbon
chains and rings [58]. Therefore, the observed G-band of the CXGs can be explained by
bond-stretching of carbon rings. Natural graphite has a true second-order 2D-Band at
2750 cm−1 coming from overtones and disorder induced by in-plane modes [59–62].
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Figure 4. Raman spectra of selected CXG (a). Position of D and G-band as well as ΓD- and ΓG-band as
a function of R/C value (b).

The intensity of a Raman signal is directly linked to the density of the material and
the fourth power of the excitation frequency. Hence, since excitation frequency was kept
constant over the time, sample density played a dominant role. Qualitatively, the strongest
Raman intensity was obtained with the CXG2000 sample, followed by the CXG2500, CXG500
and CXG1500 samples. The intensities of the G-band assigned peak surpassed those of the
D-band signals in all measurements. To obtain more information about carbon composition
regarding the graphitic and non-graphitic domains, the ID/IG peak intensity and corre-
sponding AD/AG peak surface ratio were calculated. For samples with low disorder level,
the calculation of AD/AG ratio is more straightforward because it represents the probability
of the whole phonon-coupling process including uncertainty [63–65]. For samples with
high disorder level the decoupled full-width at half maximum (FWHM) values of the
D-band and G-band (ΓD-Band and ΓG-Band/cm−1) provide more information.

Structural properties of graphitic and non-graphitic carbons, and the correlation of
ΓD-Band and ΓG-Band with the lateral crystal size, have been reported by several
groups [64,66,67]. Schuepfer et al. [48] demonstrated that increase in carbonization temper-
ature up to 3000 ◦C strongly improved the graphitization level, especially in pitch-based
samples, whereas the D-band was still visible for resin-based carbons even at this high tem-
perature level. The authors suggested that a greater ΓG-Band value is correlated with smaller
lateral crystallite sizes. We observed a median ΓD-Band ranging from 224–187 cm−1, while
for ΓG-Band, a median value of 86 cm−1 was recorded (Figure 4b). The highest ΓD-Band of
224 cm−1, as well as a ΓG-Band of 99 cm−1, were measured for CXG1000, while the smallest ΓG
and ΓD-Band values were calculated for CXG2500 at only 82 cm−1 and 188 cm−1, respectively.
It was found that the measured ΓD-Band, as well as the ΓG-Band, followed a similar trend.
The calculated ΓG-Band values were slightly greater than those from Schuepfer et al. [48],
ranging from 40–80 cm−1 for LA > 2 nm. It should be noted that the as-synthesized resins
were not identical. Similar ΓG-Band values around 80 cm−1 were reported for graphene by
Cancado et al. [68]. The corresponding LA values indicated sizes < 1–2 nm which fits well
with the XRD results of this investigation.

The measured ΓD values > 200 cm−1 indicate LD values ≈ 2–1 nm compared with data
from Ferreira et al. [64]. Since the crystallite size of our as-prepared carbon xerogels was
quite similar, accurate differentiation between punctual and edge defects, as well as LD
from LA values, was not possible.

3.4. Electronic Conductivity

Electronic conductivity and density values of as-prepared carbon xerogels plotted in
Figure 5 followed a similar trend. The conductivity increased from 0.249 ± 0.015 S cm−1

in CXG500 to 0.284 ± 0.023 S cm−1 in CXG1500. The lowest conductivity was measured
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for CXG750 with 0.221 ± 0.011 S cm−1. The overall measured conductivity was around
0.260 S cm−1 which was consistent with xerogel values reported by Tondi et al. [69]
(1.13–1.42 S cm−1), while the calculated density was relatively constant around 0.40 g cm−3.
It was observed that the conductivity fluctuated in close accordance with the ΓD and ΓG-Band
values, as calculated from Raman measurements, that can be assigned to the particle size
LA and point-defect distance LD. As the average ΓG was nearly constant over all CXG ratios
(≈86 cm−1), and the measured conductivity fluctuated with little variation between 0.221
and 0.284 S cm−1, we conclude that the through-plane conductivity of carbon xerogels
was mainly influenced by sp2-hybridized carbons, while small changes in conductivity
were a result of changes in LA and LD. For comparison, the natural graphite exhibited a
conductivity of 19.3 S cm−1 which was nearly two magnitudes higher, but only 5–10% of
published values for other natural graphites (152–223 S cm−1) [70,71]. These deviations can
be explained by the difference in the analytical method used, and even more by the analysed
specimen properties (e.g., type, shape, origin). Marinho et al. [72] analysed different types
of graphite, graphene and multi-wall carbon nanotubes (MWCNT) at a pressure of 500 N
cm−2, which was five times higher than the pressure applied in this investigation, and they
found a bulk conductivity of 21.2 S cm−1 that was comparable with our results. A detailed
overview is given in Table A1.
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Figure 5. Conductivity and density values of CXG powders as a function of R/C ratio.

3.5. SEM

Figure 6 shows SEM images of CXG500–2500 at 5 kV acceleration voltage and 15 k
magnification. The mean size of carbon xerogel particles clearly increases with increasing
R/C values from 0.079 µm in CXG500 to 0.804 µm in CXG2500. Similar surface textures have
been reported elsewhere for comparable carbon xerogels [31,73,74]. In contrast, natural
graphite particles consist of very wide stacked two-dimensional platelets with geometric
shape >1 µm.
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3.6. Half-Cell Experiments

With the exception of CXG500 and CXG750 behaviour, the cyclic voltammograms of
most CXG carbons in 1:1.5 EMiMCl:AlCl3 shown in Figure 7a do not exhibit any pro-
nounced redox peaks in comparison to those observed for natural graphite material. The
CV of mesoporous carbon CXG500 reached a maximum current density of 0.7 mA cm−2

at 2.25 V that might be assigned to the intercalation step of AlCl4− ions into the carbon
matrix shortly before the onset potential of electrolyte decomposition. The relatively small
but broad reduction peak at 1.85 V (inset in Figure 7a) might be attributed to a sluggish
de-intercalation process. In the CV of CXG750, a slightly decreased maximum current
density of 0.3 mA cm−2 at 2.25 V and a small reduction peak around 1.4 V can be seen.
As shown in Figure 7b, the onset potential of the presumed AlCl4− intercalation-related
step continuously increased with increasing R/C ratio as mean pore size decreased. The
CV of CXG1000 exhibited a weakly pronounced reduction peak at 1.2–1.3 V. The maximum
current density produced by CXG1500–2500 samples measured at 2.25 V decreased from
0.17 mA cm−2 for CXG1500 to 0.10 mA cm−2 for CXG2500, indicating poor accessibility of
active sites due to the predominantly microporous structure, as explained in Section 3.1. In
contrast, the cyclic voltammograms of natural graphite (Figure 7a) show five distinct oxi-
dation peaks during the oxidation step, where every peak corresponds to an intercalation
step of chloroaluminate anions into graphene sheets. The first peak at 1.8 V can be related
to a stage-6 intercalation in which in every sixth graphene sheet a chloroaluminate anion
was intercalated. The assignment of the peaks is then straightforward: the main-peak at
2.3 V corresponds to stage-3 intercalation in which at every third graphene layer a chloroalu-
minate anion was inserted [75–77]. This stage also represents a fully charged graphite AIB.
The peak at 2.5 V might be an overlapping of the AlCl4− intercalation step with the onset
of electrolyte oxidation. In the cathodic scan, corresponding reduction peaks related to
the reversible deintercalation process are visible. Similar CVs of graphite in AIB cells have
been reported elsewhere [6,78,79], though some divergences with respect to peak number
and peak location may exist depending on the graphite sample used and the applied
potential window.
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Figure 7. CVs of selected CXGs and natural graphite in 1:1.5 n(EmimCl):n(AlCl3) electrolyte
(a) and influence of average pore size on max. current density taken from CVs of selected CXG
at 2.25V (b). Deconvoluted current contribution of non-diffusion limited (pseudo)capacitance and
diffusion-limited Faradaic currents in CXG500||Al (c) and in graphite||Al (d). “(pseudo)capacitance”
designation comprises both EDLC and pseudocapacitance contribution.

To determine the contribution of (pseudo)capacitance and the Faradaic contribution
to overall current, CVs were carried out with CXG500 and graphite materials at differ-
ent scanning rates (see Figure A2a,b) and evaluated using Dunn’s method where the
“(pseudo)capacitance, (Q(Pseudo)cap)” designation implies here both an electrochemical
double-layer capacitance EDLC (QEDLC) and a pseudocapacitive (QPseudocap) contribution.
The resulting deconvoluted CVs are presented in Figure 7c,d. In the potential region of
0.5–2.0 V, the CV of CXG500 shows a broad current vs. voltage profile in comparison
to graphite which can be attributed to a Q(Pseudo)cap value of 475 mC. The contributions
from the QEDLC and QPseudocap were determined to be 445 mC (94%) and 30 mC (6%),
respectively. The latter can be assigned to insertion of chloroaluminate into the carbon
host matrix. This observation is supported by the b-value of 0.86 at 2.25 V determined
by Lindströms method [80] which indicates a mixed regime of fast non-diffusion limited
(b-value = 1.0) and diffusion-limited (b-value = 0.5) reactions which is typical for interca-
lation reactions [81]. At potentials between 1.0 V and 2.0 V, the b-value was in the range
of 0.97–1.01, as expected from the EDLC contribution. The plots and detailed results for
determination of the b-values are shown in Figure A3a,b and Table A3. At higher anodic
potentials than 2.25 V, the diffusion-limited (DL) Faradaic currents rise exponentially up
to 3.4 mA cm−2 due to additional irreversible electrolyte decomposition. In the cathodic
scan, a diffusion-limited reaction was observed between 2.1 V and 1.8 V and assigned
to the deintercalation of chloroaluminate. The discrepancy of measured currents (black
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line) and experimental calculated current (green line) was less than 5%. In Figure 7d the
disentangled current contributions are shown for the natural graphite. The evaluation
of the data was even more complex, since the intercalation peaks drift with scan-rate.
Therefore, we acquired CV scans with very low scan rates at 0.1–0.5 mV s−1 to ensure a
minimal impact of the peak drift. The data shows that the measured charge was dominated
by pseudocapacitive contributions. The b-values (see Figure A3c,d and Table A4) of the
anodic peaks had values between 0.89 (a1) and 0.67 (a5) for the main intercalation peak
at 2.29–2.27 V. This indicates, similarly to CXG500, a mixed regime of non-diffusion and
diffusion limited currents, whereas for the main intercalation peak, the diffusion limitation
dominates. This is supported by the deconvoluted current contributions, where, for each
intercalation peak, diffusion-limited Faradaic currents are found, most intensely around
the main intercalation peak. The mismatch of the measured and disentangled currents is
caused by the peak drift, which was around 27 mV around the main intercalation peak.
The cathodic b-values were around 0.91–0.97 which indicates nearly pure pseudocapacitive
behaviour. The contribution of the EDLC to the overall charge (0.5–2.5V) was 97.6 mC
(8.4%), since the surface area of the graphite was very small compared to that of carbon
xerogels. The contribution of the pseudocapacitance and the Faradaic currents could not be
calculated due to the error in peak shift. The data acquisition and evaluation need to be
optimised. For AIBs, typical values for the contribution of pseudocapacitance, inclusive
of EDLC, are around 70–80%, while for Faradaic currents, values of 30–20% have been
reported [81].

3.7. Cycling Performance of AIB Cells

The most promising carbon xerogels were further tested in the AIB cell with regards
to their capacity behaviour as a function of applied current density up to 5.0 A g−1 and
compared with the performance of a cell with natural graphite. As expected from half-cell
experiments, AIB with CXG500 material exhibited best charge/discharge behaviour up
to 28 mAh g−1 at 0.1 A g−1 with nearly 98% coulombic and 60% energy efficiency (see
Figure 8). This value is in good agreement with recently published values for soft-carbon
(SC) electrodes from Li et al. [82] who found a capacity of 28.2 mAh g−1 at 0.3 A g−1

current density. With increasing R/C ratio, however, the performance of AIB dropped
continuously from about 15–20 mAh g−1 for cells with CXG750 and CXG1000 materials to a
few mAh for the other systems. This can be ascribed to a decrease in average pore size that
seems to hinder active species diffusion to intercalation sites within the carbon matrix. In
comparison, the reversible capacity of the AIB cell with a natural graphite cathode reached
69 mAh g−1. At a maximum current density of 5 A g−1, the calculated specific capacity
of AIB with CXG500 amounted to 10 mAh g−1, one third that measured for the AIB cell
with a natural graphite electrode (30 mAh g−1). In long-term cycling at 1.0 A g−1, the
capacity retention over 500 cycles was around 100%, with a specific measured capacity of
10–11 mAh g−1 (see Figure A1 in Appendix A). Moreover, during the first 35 cycles @
0.1 A g−1, the capacity of all AIBs with carbon xerogels diminished substantially, whereas
the capacity of AIBs with graphite material increased. The change in capacity during the
initial stage might be attributed to the irreversible intercalation of some AlCl4− anions
in the carbon structure [83] leading to a re-arrangement of the host matrix, with either
capacity decrease, in the case of cells with CXG, or capacity increase (activation phase), in
the case of AIBs with NG material. The activation of AIBs with natural graphite is not fully
understood and is the subject of many investigations [5,77,83,84].
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Figure 8. Charging/discharging experiments of CXG500 (a), CXG750 (b), CXG1000 (c), CXG1500 (d),
CXG2500 (e) and natural graphite (f) in Swagelok-type straight-cells with tungsten as cathodic current
collector and aluminium rod as anode in n(EMimCl):n(AlCl3) 1:1.5 electrolyte.

The 35th charge/discharge cycle carried out at 0.1 A g−1 of the different AIB cells
is shown in Figure 9. Among the carbon xerogel materials, AIB with CXG500 showed a
discharge capacity of 28 mAh g−1 at 0.1 A g−1 that can be attributed to its high mesoporous
volume. With decrease in Vmes, the discharge capacity of AIB faded to 12–23.3 mAh g−1

in AIBs with CXG750 and CXG1000, and even lower for materials with R/C values > 1500
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(7–1 mAh g−1). The discharge capacity of AIB with NG amounted to 69 mA g−1. With the
exception of AIBs with CXG1000 material, the cell voltage decreased/increased continu-
ously from open-circuit down to the cut-off voltage in contrast to the polarization curves of
AIBs with NG, in which distinct plateaus were visible. This correlates well with the cyclic
voltammograms shown in Figure 7 and is an additional indication of different intercala-
tion/deintercalation mechanisms of AlCl4− ions due to the differences in gallery/crystallite
length (2 nm for CXG vs. 30 nm for NG). Since aluminium chloride is not involved in
any redox process (only 3+ valence), the strong Lewis acid is assumed to coordinate with
non-bonded electron pair donors [85].
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Figure 9. Charging and discharging curves of AIBs equipped with CXG500–2500 (a) and natural
graphite for comparison (b).

The observed plateaus are related to different staging of chloroaluminate intercalation
compounds into the graphite matrix [75,77]. The main plateau at 2.25 V is assigned to the
stage-3 intercalation and indicates a fully charged AIB in which only one of three graphene
layers is filled with chloroaluminate anions and the two intermediate layers are completely
empty [75].

An ex situ XRD analysis of a fully charged natural graphite and CXG500 electrode is
shown in Figure 10 and compared to that of pristine samples. The (002) peak at 26.5◦ in
pristine graphite vanished completely, while in the charged graphite electrode, three new
peaks at 16.7◦ (d-spacing 5.31 Å), 22.4◦ (d-spacing 3.98 Å) and 28.0◦ (d-spacing 3.18 Å)
appeared which resulted from coordination of the intercalated chloroaluminate anions with
delocalized π-electrons of the sp2 orbitals from the graphite material building, forming so-
called graphite intercalation compounds (GIC), as suggested in [11,75,83]. The assignment
of the GIC peaks in (00l) nomenclature is straightforward: the most dominant peak is
labelled as (00n+1), while the second most dominant peak is (00n+2), where (n) represents
the number of a n-staged GIC. The correlation of the periodic distance (IC) of graphene
layers, the intercalant gallery height (di), the gallery expansion ∆d and the intercalation
stage (n) are given by the following equation [11,83,86–88]:

IC = di + 3.35 Å · (n− 1) = ∆d +
(

3.35 Å · n
)
= l · dobs (2)

The distance 3.35 Å is given for an ideal graphite. The (l) and (dobs) are the (00l) reflex
and d-spacing of the observed GIC peaks, respectively. The intercalation stage (n) can be
obtained by comparing the experimental d(n+2)/d(n+1) ratios with standard values, as listed
in Table 1.
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Figure 10. Ex situ XRD analysis of pristine and fully charged natural graphite and CXG500 electrodes.
Peaks marked with (*) indicate position of (002) peak in both pristine electrodes. The peak marked
with (∆) is assumed to be associated with the (002) peak shift due to intercalated species in CXG500.
Peaks indexed with (♦) are related to GIC-induced peaks in natural graphite sample.

Table 1. Correlation of intercalation stage (n) and theoretical d(n+2)/d(n+1) ratio according to [83,87].

Stage (n) d(n+2)/d(n+1) Ratio Dominant (00l) Peak

1 1.50 002
2 1.33 003
3 1.25 004
4 1.20 005
5 1.17 006
6 1.14 007

The experimentally obtained d-spacing of the observed GIC can then be converted
into an intercalation stage number n. For the peak pair (1) at 2θ (00n+1) = 28.0◦ (d-spacing
3.18 Å) and 2θ (00n+2) = 22.4◦ (d-spacing 3.98 Å), the ratio d(n+2)/d(n+1) was determined to
be 1.25 which can be associated with a stage-3 GIC. For the peak pair (2) at 2θ (00n+1) = 22.4◦

and 2θ (00n+2) = 16.7◦ (d-spacing 5.31 Å), the ratio d(n+2)/d(n+1) was calculated to be 1.33
which was assigned to a stage-2 GIC.

Inserting experimental values in equation (2), the periodic distance IC was calculated as
15.93 Å. The intercalant gallery height (di) for the stage-2 and stage-3 GIC were consequently
determined to be 12.58 Å and 9.23 Å, respectively. The results for the gallery expansion
(∆d), which were directly linked to the intercalant species, was 9.23 Å for stage-2 GIC and
5.88 Å for the stage-3 GIC. Since the radius of the intercalated AlCl4− was around 5.28 Å [23],
the gallery expansion in stage-3 is quite compatible with the AlCl4− radii. The enormous
expansion in stage-2 might suggest ongoing delamination of the graphene sheets. Another
possibility might be the intercalation of larger Al2Cl7− anions which have twice the size of
AlCl4− and can therefore be responsible for the extremely large expansion/delamination.
An overview of our results, as well as some from the literature, is given in Table 2. It seems
that there is a possible confusion between (di) and (∆d) in [11], because the published value
for (di) differs too much between our results and already published values for the same
dominant stage. The claimed (di) seems to be more logical if denoted (∆d).



Materials 2022, 15, 2597 17 of 25

Table 2. Dominant stage and calculated gallery height and expansion from ex situ XRD measurements
of charged graphite electrode.

Peak Pair (1) Peak Pair (2)

2θ (00n+1)/2θ degree 28.0 22.4
2θ (00n+2)/2θ degree 22.4 16.7
dobs(n+1)/Å 3.18 3.98
dobs(n+2)/Å 3.98 5.31
dobs(n+2)/dobs(n+1) 1.25 1.33
Dominant stage (n) 3 2
Periodic distance IC/Å 15.93
AlxCly gallery height (di)/Å 9.23 12.58
AlxCly gallery expansion (∆d)/Å 5.88 9.23

Literature for (di)/Å (dominant stage)
5.7 (4) [11]

9.54 (3) [75]
9.59 (4) [83]

Literature for (∆d)/Å (dominant stage) 6.24 (4) [83]

According to some literature sources, however, stage-2 intercalation should happen
only at voltages higher than 2.6 V [75]. The observed gallery expansion (∆d) value is
comparable with those from Elia et al. [83], where small discrepancies can be a result of
the difference in dominant stage. Additionally, it should be noted that numerous graphite
products/grades are available on the market that make accurate comparison of studies
difficult. The identification of GICs in AIB graphite layers is still a challenge. By evaluating
C K-edge XAS spectra of different charged graphite electrodes, Wang et al. [89] postulated
that the peak at 287.3 eV results from formation of chemical Cl-C bonds after the AlCl4−

intercalation step.
In contrast to graphite, the mechanisms of the intercalation process of AlCl4− species

in CXGs have not yet been studied in detail. Since CXGs do not have a well-ordered
crystal structure, the diffractogram did not show any sharp GIC peaks as in graphite.
Nevertheless, the main peak at 2θ = 22.27◦ (d-spacing 3.98 Å) of pristine CXG500 shifted to
2θ = 19.73◦ (d-spacing 4.50 Å) in a charged state. This shift can be interpreted as a result of
AlCl4− intercalation into the carbon matrix since CXGs also have delocalized π-electrons
from the sp2 orbitals of the aromatic resorcinol ring which are responsible for pseudo-
capacitive behaviour during the intercalation step. This assumption should be confirmed by
XPS analysis.

4. Conclusions

In this study, the feasibility of reversible chloroaluminate anion intercalation into CXG
material during AIB cycling was investigated. The most relevant results of the material
texture and electrochemical charge/discharge experiments are summarized in Table 3.

Table 3. Summary of relevant textural properties of synthesized CXGs and natural graphite tested in
AIB cell with corresponding performance values at 0.1 A g−1.

CXG Spec. Area
m2 g−1

VMe
cm3 g−1

Mean Pore
Size
nm

LA/LC
nm

ΓD-Band
m−1

Conduct.
S cm−1

Qdis @ 0.1 A g−1

30th Cycle
mAh g−1

CE% EE
%

500 1004 0.77 6.0 1.57/0.96 195 0.249 28.7 98.2 60.2
750 919 0.57 5.6 1.45/0.99 205 0.221 11.8 91.5 46.1
1000 894 0.26 3.4 1.45/1.04 224 0.260 23.3. 93.0 44.8
1500 922 0.08 2.1 1.39/1.06 190 0.284 6.6 99.1 35.7
2500 944 0.02 1.7 1.45/0.94 188 0.273 1.4 99.7 41.1
NG 22 0.03 13.0 9.0–41.0 110 19.3 68.8 97.4 84.7
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Synthesis of CXG was carried out using a template-free route with resorcinol as
the carbon source and formaldehyde, followed by a carbonization step at 800 ◦C in
N2 atmosphere. The influence of the resorcinol to NaCO3 catalyst ratio in the range of
500 < R/C < 20,000 during synthesis on CXG particle morphology and electrochemical
performance was studied. Physisorption analysis of carbon powder materials revealed that
CXG500 had the highest mesopore volume (~77%) and pore size (6 nm) that continuously
decreased with higher R/C ratios. For R/C > 2500 samples, micropore domains clearly
predominated (>90%). The surface area of the prepared CXG was around 950 m2 g−1, with
a maximum of 1000 m2 g−1 for CXG500.

The peak positions of the D-band and G-band in Raman spectra remained unchanged
at 1346 cm−1 and 1595 cm−1, respectively, for all synthesized CXG ratios, indicating
similar carbon materials. A detailed analysis of Raman spectra revealed that the synthe-
sized CXG particles had crystallite dimensions smaller than 2 nm. Variations in ΓD-Band
from 224 cm−1 (CXG1000) to 188 cm−1 (CXG2500) were assigned to fluctuations in LA, to-
gether with point-to-point defects LD. The ΓG-Band was almost constant at 86 cm−1 with
99 cm−1 (CXG1000) and 82 cm−1 (CXG2500).

Through-plane conductivity measurements of CXG500–2500 showed conductivity lying
between 0.25–0.28 S cm−1. Variations in conductivities with respect to the CXG ratio could
be ascribed to fluctuations of ΓD-Band while the ΓG-Band was understood to be beneficial
for conductivity.

Crystallographic analysis of CXG showed that the stacking width LA (1.39–1.57 nm)
and stacking height LC (0.94–1.06 nm) were almost independent of catalyst concentration.

The highest discharge capacity of 24–29 mAh g−1 in AIB cells was observed for CXG500
material, compared to 69–73 mAh g−1 for AIB with a graphite electrode. With higher
CXG ratios, the discharge capacity was significantly reduced compared to CXG500 due to
lower porosity.

Ex situ XRD analysis of a charged CXG electrode exhibited a small peak shift of the
main peak from pristine 2θ = 22.27 of about 2.54◦ towards smaller degree that might
be an indication of intercalation of chloroaluminate into the carbon structure. For the
charged graphite electrode, the dominant intercalation steps were determined to be stage-2
and stage-3, with gallery expansion of the adjacent graphene layers of about 5.88 Å and
9.23 Å, respectively.

In this study, we have demonstrated for the first time the feasibility of carbon xero-
gels prepared by a simple and cheap soft-template route as positive electrode material
for aluminium ion batteries, paving the way for future investigations. Further improve-
ments are still needed to enhance the overall capacity of CXGs, and, more particularly,
the contribution of AlCl4− ion intercalation (pseudocapacitance) to overall capacity that
might be achieved by enhancing the graphitization level of CXG through, for example,
graphene doping.

Author Contributions: M.E. performed the laboratory experiments and wrote the article; H.S. con-
ducted the preliminary studies and synthesis; J.-F.D. conceived the research and reviewed and revised
the article. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Federal Ministry of Education and Research, grant number
03XP0128D (ALIBATT).

Acknowledgments: We would like to thank Beatriz Sanchez-Batalla from the DECHEMA research
institute for performing physisorption measurements. We would also like to thank Professor Smarsly
and his group from Justus Liebig University in Gießen for their helpful comments during this
investigation. We would also like to thank all consortium members of the ALIBATT project for their
kind and helpful comments throughout the whole period.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Materials 2022, 15, 2597 19 of 25

Appendix A

Table A1. Electronic conductivity values of carbon xerogels and natural graphite.

CXG Resistance
Ω

Spec. Resistance
Ω cm

Conductivity
S cm−1

Density
g cm−3

50 0.400 2.565 0.390 0.781
500 1.040 4.012 0.249 0.469
750 1.573 4.522 0.221 0.340

1000 1.385 3.846 0.260 0.348
1500 1.252 3.522 0.284 0.334
2000 1.221 3.577 0.280 0.348
2500 1.186 3.665 0.273 0.382
3000 0.900 3.031 0.330 0.402
3500 1.124 3.640 0.275 0.403
4000 0.958 3.885 0.257 0.515
4500 0.905 4.044 0.247 0.555
5000 1.045 4.109 0.243 0.491

10,000 0.905 4.718 0.212 0.628
20,000 0.623 3.551 0.282 0.693

NG 0.017 0.052 19.322 0.782

Table A2. Summary of physisorption measurements of carbon xerogels and natural graphite.

CXG AreaDFT
m2 g−1

Fit Error
%

Amic (DR)
m2 g−1

Ames
m2 g−1

Vsum
cm3 g−1

Vmic (DR)
%

Vmes
%

Pore Size
nm

500 1004 0.418 691 312 1.00 23.1 76.9 6.0
750 919 0.570 778 141 0.83 31.4 68.6 5.6
1000 894 0.194 717 177 0.50 47.8 52.2 3.4
1500 922 0.039 736 187 0.33 75.6 24.4 2.1
2000 918 0.037 716 202 0.27 88.5 11.5 1.7
2500 940 0.019 722 218 0.27 90.8 9.2 1.7
3000 948 0.037 763 184 0.27 95.5 4.5 1.7
3500 975 0.022 739 237 0.25 97.2 2.8 1.6
4000 915 0.131 726 189 0.25 95.3 4.7 1.6
4500 931 0.073 701 230 0.24 99.2 0.8 1.6
5000 934 0.077 717 217 0.24 98.4 1.6 1.6

10,000 926 0.217 724 201 0.25 98.0 2.0 1.6
20,000 911 0.017 689 222 0.25 92.7 7.3 1.6

NG 22 1.298 / 22 0.07 57.1 42.9 13.0

The peaks named a1–a5, as well as c1–c5 in CXG500 CVs, were randomly selected to
give a good overview over the whole CV. Please note that the nomenclature has nothing
to do with the true intercalation or deintercalation peaks with the same nomenclature as
observed with natural graphite.
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Figure A1. Long-term cycling of CXG500 in AIB full-cell setup.
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Figure A2. Scan-rate variation of cyclic voltammograms for CXG500||Al (a) and natural
graphite||Al (b).

Table A3. Overview of results of CXG500||Al experiments reported in Figure A2a.

b-Value
(Lindström’s Method)

Anodic
a1 a2 a3 a4 a5

1.01 0.98 0.98 0.97 0.86

Cathodic
c1 c2 c3 c4 c5

1.50 0.85 0.97 0.98 0.95

Charge
mC

Rel. Charge Ratio
%

QMeasured 968 -
QCalculated * 1019 100
QFarad 544 QFarad/QCalculated 53
Q(Pseudo)cap 475 Q(Pseudo)cap/QCalculated 47
QEDLC 445 QEDLC/Q(Pseudo)cap 94
QPseudocap 30 QPseudocap/Q(Pseudo)cap 6

Error (measured vs. calculated charge/%) 5

* QCalculated = QFarad + Q(Pseudo)capacitance with Q(Pseudo)capacitance = QEDLC + QPseudocapacitance.
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Figure A3. Determination of b-values in CXG500||Al at the anodic (a) and cathodic (b) CV scan and
for natural graphite for intercalation peaks a1–5 (c) and deintercalation peaks c1–4 (d).

Table A4. Overview of results of graphite||Al experiments reported in Figure A2b.

b-Value
(Lindström’s Method)

Anodic
a1 a2 a3 a4 a5

0.89 0.91 0.90 0.91 0.67

Cathodic
c1 c2 c3 c4 c5

0.91 0.97 0.97 0.97 0.97

Charge
mC

Rel. Charge Ratio
%

QMeasured 1110 100
QEDLC 97 QEDLC/QMeasured 8

Since we were not able to calculate the separate contribution of (pseudo)capacitance
and Faradaic currents to overall charge value, QEDLC ratio is referred to as QMeasured.
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