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Abstract
Background: Using a combination of pyrosequencing and conventional Sanger sequencing, the
complete genome sequence of the recently described novel Brucella species, Brucella microti, was
determined. B. microti is a member of the genus Brucella within the Alphaproteobacteria, which
consists of medically important highly pathogenic facultative intracellular bacteria. In contrast to all
other Brucella species, B. microti is a fast growing and biochemically very active microorganism with
a phenotype more similar to that of Ochrobactrum, a facultative human pathogen. The atypical
phenotype of B. microti prompted us to look for genomic differences compared to other Brucella
species and to look for similarities with Ochrobactrum.

Results: The genome is composed of two circular chromosomes of 2,117,050 and 1,220,319 base
pairs. Unexpectedly, we found that the genome sequence of B. microti is almost identical to that of
Brucella suis 1330 with an overall sequence identity of 99.84% in aligned regions. The most significant
structural difference between the two genomes is a bacteriophage-related 11,742 base pairs insert
only present in B. microti. However, this insert is unlikely to have any phenotypical consequence.
Only four protein coding genes are shared between B. microti and Ochrobactrum anthropi but
impaired in other sequenced Brucella. The most noticeable difference between B. microti and other
Brucella species was found in the sequence of the 23S ribosomal RNA gene. This unusual variation
could have pleiotropic effects and explain the fast growth of B. microti.

Conclusion: Contrary to expectations from the phenotypic analysis, the genome sequence of B.
microti is highly similar to that of known Brucella species, and is remotely related to the one of O.
anthropi. How the few differences in gene content between B. microti and B. suis 1330 could result
in vastly different phenotypes remains to be elucidated. This unexpected finding will complicate the
task of identifying virulence determinants in the Brucella genus. The genome sequence of B. microti
will serve as a model for differential expression analysis and complementation studies. Our results
also raise some concerns about the importance given to phenotypical traits in the definition of
bacterial species.
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Background
The genus Brucella comprises important mammal and
human pathogens. Low infectious doses (10 to 100 bacte-
ria, [1]), transmission through aerosols, and a difficult
treatment of the disease by antibiotics, have led Brucella to
be classified as potential bioterrorism agents. The genus
Brucella [2] belongs to the family Brucellaceae within the
order Rhizobiales of the Alphaproteobacteria. Ochrobactrum,
a soil living facultative human pathogen, is the most
closely related genus [3] with a 16S rRNA gene sequence
[Genbank: U70978] more than 98% identical to that of
Brucella spp.

Characterized Brucella comprise six classical Brucella spe-
cies, B. melitensis, B. abortus, B. ovis, B. canis, B. suis, and B.
neotomae, two species of marine mammal origin, namely
B. pinnipedialis and B. ceti, and the recently described spe-
cies B. microti and B. inopinata. B. microti was initially iso-
lated from systemically diseased common voles (Microtus
arvalis) in the Czech Republic [4]. More recently, it has
also been isolated from red foxes in Lower Austria [5] and
even directly from soil in the same geographical area [6].
Importantly, B. microti is thus the only Brucella species
with a known reservoir outside of its mammalian host.
Recent and frequent isolations of B. microti from different
animals from different geographical regions indicate that
B. microti could constitute an emerging pathogen. All Bru-
cella species are genetically highly related, exhibiting iden-
tical 16S rRNA and recA gene sequences [7]. In fact, DNA-
DNA hybridization studies, today's gold standard for bac-
terial species delineation, suggest that all Brucella spp.
should be unified into a single species (B. melitensis) and
not be regarded as different species [8]. The high genetic
relatedness of all Brucella species was further confirmed by
whole genome sequencing [9-11].

Although Brucella spp. are facultative intracellular bacteria
adapted to specific mammalian hosts, the whole genome
sequence of B. suis revealed a clear similarity to that of soil
bacteria associated with plants, such as Agrobacterium and
Rhizobium [11]. It was therefore speculated that the mam-
mal host-adapted Brucella species evolved from a plant-
associated soil living ancestor. The recent isolation of B.
microti directly from soil supported this hypothesis. In
addition to its persistence in soils, B. microti is unique in
sharing other phenotypic traits with its closest phyloge-
netic relative Ochrobactrum. In particular, B. microti is bio-
chemically highly active, at odds with other Brucella
species, but a common feature among Ochrobactrum spe-
cies. We therefore speculated that B. microti might repre-
sent an intermediary stage in Brucella evolution, closer to
the Brucella/Ochrobactrum common ancestor. To substan-
tiate this hypothesis, the whole genome sequence of B.
microti was determined and compared to that of other Bru-
cella and to the genome sequence of O. anthropi. Differ-

ences in gene content that could explain B. microti
phenotypic peculiarities were carefully studied.

Results
The genome sequence of Brucella microti CCM 4915T was
determined (25× coverage) by shotgun analysis using the
GS-FLX pyrosequencing technology and direct Sanger
sequencing of remaining gaps. The genome is composed
of two circular chromosomes of lengths 2,117,050 bp
(base-pairs) and 1,220,319 bp. We predicted the presence
of 3,291 protein coding genes, 55 tRNAs and 9 ribosomal
RNAs. A comparison with the other Brucella genomes
revealed the presence of 60 pseudogenes.

Comparison of genome structures
Dotplots (Figure 1) of the chromosomes of B. microti
against the 8 Brucella genome sequences available at the
time of writing and the genome sequence of O. anthropi
show that: i) the overall genome structures of Brucella are
remarkably conserved, ii) Brucella genomes are markedly
different from that of O. anthropi and iii) based on this
genome structure only, B. microti is more similar to B. suis
1330, B. canis and B. melitensis 16M than to the other
genomes with which it has at least one major difference.
Consistently, phylogenetic reconstruction based on a set
of 1,486 orthologous genes clearly placed B. microti closer
to B. suis 1330 than to any other Brucella (Figure 2). We
thus based our subsequent analyses on the detailed com-
parison of B. microti and B. suis 1330.

Global alignment of the chromosomes
The global alignment of B. suis 1330 and B. microti chro-
mosomes revealed their almost perfect co-linearity. On
chromosome 1, we identified 270 indels (insertions or
deletions) of one or more base-pairs in the alignment
(163 insertions in B. microti and 107 in B. suis 1330). On
chromosome 2, we identified 135 indels (75 insertions in
B. microti and 60 insertions in B. suis 1330). Insertions in
B. microti range in size from 1 bp (61 occurrences) to 845
bp on chromosome 1, and from 1 bp (32 occurrences) to
11,742 bp on chromosome 2 (the second largest insertion
being 1071 bp long). Insertions in B. suis 1330 range in
size from 1 bp (57 occurrences) to 844 bp on chromo-
some 1 and from 1 bp (29 occurrences) to 510 bp on
chromosome 2. The global alignment of the chromo-
somes is given as Additional Files 1 and 2 and the list of
indels between B. microti and B. suis 1330 is reported in
Additional file 3.

Out of a total of 3,312,414 aligned positions, we observed
5213 SNPs, corresponding to 0.16% nucleotide difference
between the two species. In comparison, alignment of B.
suis 1330 with B. melitensis 16M revealed a total of 7307
SNP for a total of 3,237,820 aligned nucleotides (0.23%).
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Dotplots of 7 Brucella and Ochrobactrum anthropi genomes against the two chromosomes of B. microtiFigure 1
Dotplots of 7 Brucella and Ochrobactrum anthropi genomes against the two chromosomes of B. microti. B. microti 
chromosomes are in abscissa of each plot and the corresponding chromosomes of target genomes are in ordinate. In chromo-
some 2 plots, the 12 kbp region specific to B. microti is circled. Plots for B. abortus S19 and B. abortus 9–941 are not shown 
because of their similarity to the plot for B. melitensis biovar abortus 2308. In the case of O. anthropi, the dotplots of the two 
chromosomes of B. microti against the 2 large chromosomes of O. anthropi are shown. O. anthropi plasmids are not shown as 
they have no similarity with B. microti chromosomes.
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The 12 kbp insertion
The largest difference between the genome of B. suis 1330
and that of B. microti is a 12 kbp insertion (11,742 bp),
that is unique to B. microti (Figure 1). This insertion is
located in chromosome 2 (position 1,038,869 to
1,050,617), between a gene for tRNALeu and gene
BMI_II1054, ortholog of BRA1053 in B. suis 1330
genome. A significant, but partial match to a phage inte-
grase (BMI_II1048) was detected at an extremity of this
island (best hit in the genome of Hyphomonas neptunium,
YP_760435.1, 59% identity). This putative integrase is
flanked by an ORF (BMI_II1049) showing similarity with
phage excisionases. Altogether, these findings suggest that
the 12 kbp genome insertion originates from a yet uni-
dentified phage. Moreover, the target for this insertion
was a GGCACCA motif, found both at the end of the
tRNA, and identically conserved at the end of the insert.
Accordingly, most of the other ORFs within this island
exhibit remote similarities with phage ORFs in protein
sequence databases. However, these phage-derived genes
now appear defective, as the sequence homology only
partially cover the ORFs. Interestingly, a predicted gene in
this region (BMI_II1051) has a best match against O.
anthropi (Oan_0220). Finally, this B. microti specific
genomic island bears no similarity with the 26.5 kbp
island recently reported in the genome of B. ovis [12]. The
origin of this insertion remains unclear since its tentative
detection by a recently developed specific PCR [6] with
Brucella phage DNA (Tb, Wb, F1 and F25) as template was
negative. Therefore, it seems unlikely that the insertion
has derived from the most commonly known Brucella
phages.

Insertion sequences
Insertion sequences of the IS711/IS6501 family are com-
monly found in Brucella, but other IS elements are also
present scattered through the genomes. In B. microti, we
identified 13 copies of IS711 elements, 2 IS2020 ele-
ments, 2 IS1953 elements, 2 ISBm1 elements, one of them
disrupted by the insertion of an IS711 element, one
ISBm2 element and one ISBm3 element. The main differ-
ence with respect to B. suis 1330 is the number of IS711
insertion sequences. IS711 Insertion sequences which are
not present in both B. microti and B. suis 1330 are listed in
Table 1. Seven are present in B. microti only and one in B.
suis 1330 only. Interestingly, those changes are all found
on the large chromosome. The insertion site between
BMI_I1295 and cobL has already been reported in B.
microti [7], and the insertion site between tRNAMet and
omp28 (BMI_I1490/BR1475) was previously thought to
be specific of Brucella isolated from marine mammals
[13]. One of those insertions impairs a hypothetical pro-
tein in B. suis 1330 (BR0722) and in two other cases, the
insertion is located in the 5' upstream-region of a gene
(thrS/BMI_I1076 and BMI_I1903) but does not seem to
disrupt a putative promoter [14]. None of the insertions
thus appear to disrupt existing operon structures or inacti-
vate putative promoters.

Tandem Repeat Analysis
The MLVA-15 typing systems [15], based on multilocus
VNTR (Variable Number of Tandem Repeats) and
extended later into MLVA-16 [16] used a set of primer
pairs (Listed in Table 2, [15]), selected for their variability
in a set of three Brucella genomes. We searched for these

Phylogenetic representation of the alignment of 1,486 groups of orthologous genes from 8 available Brucella genome sequences and that of O. anthropiFigure 2
Phylogenetic representation of the alignment of 1,486 groups of orthologous genes from 8 available Brucella 
genome sequences and that of O. anthropi. The long branch leading to O. anthropi has been shortened. Even though B. 
suis and B. microti are not found within the same clade, they both exhibit a slower evolution rate than most other Brucella spe-
cies (as shown by their short branch length) resulting in a high overall similarity at the genome sequence level.
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primers in the genome of B. microti and reported their
positions and the theoretical lengths of the corresponding
PCR products in Additional file 4. Of the 80 primer pairs
reported in [15], 78 had a perfect match to the B. microti
genome sequence, and two exhibited one mismatch in
one of the primers (Bruce07 and Bruce24). The genomic
positions leading to VNTR amplicons of different sizes
between B. microti and B. suis 1330, as well as other indels,
are listed in Additional file 3. On the 16 MLVA-16 primer
pairs, 14 yield PCR fragments of different sizes. This
explains the differences in the MLVA profile of B. microti
with respect to other Brucella

Ribosomal RNA
Brucella contains three copies of the ribosomal RNA
operon. The sequences of 5S and 16S ribosomal RNA
genes are nearly identical among all species. In contrast,
we noticed that the 23S ribosomal RNA gene sequence of
B. microti differs markedly from that of the other Brucella
(Additional file 5), and that the differences map into the
intervening sequence (IVS I) localized in the helix 9,
cleaved by the RNase III during the maturation of the 23S
rRNA. Interestingly, the B. microti IVS region differs from
that of O. anthropi, but is very similar to that of another
fast growing Brucella, B. inopinata sp. nov. strain B01 [17],
whose genome sequence is in the form of 55 contigs on
the Patric Web site [18]. Curiously, the similarity between
B. microti and B. inopinata B01 is limited to this particular
23S rRNA region, whereas the rest of their genome
sequences are notably different, for instance showing dif-
ferent theoretical PCR fragment size for 2 of the 3 MLVA-
16 primer pairs that we were able to locate on the prelim-
inary data (we looked only for exact matches to the prim-
ers). Additionally, a tree built from a fragment of Brucella
genomes (corresponding to the 10,000 first nucleotides of
B. microti chromosome 1 sequence) showed that B. inopi-
nata B01 likely diverged before B. microti from the other

Brucella (Additional file 6). The alignment of the Brucella
IVS I regions is presented in Figure 3 and an analysis of the
secondary structure of the IVS regions in Figure 4. In this
figure, the black boxes correspond to previously identified
conserved motifs [19]. The nucleotides around the puta-
tive cleavage site (red box) are well conserved in all Bru-
cella, except for B. microti where the CUG consensus
cleavage motif is split. In contrast to this IVS I region
which is shared between B. microti and B. inopinata B01, a
second region, between positions 446 and 523 in the
alignment (Figure 3 and Additional file 5), is perfectly
identical between O. anthropi and B. microti, and distinct
from B. inopinata B01 which is identical to other Brucella
in this region.

Gene content analysis and comparison with other Brucella 
and Ochrobactrum anthropi
Genes differentially annotated or presenting notable dif-
ferences between B. microti and B. suis 1330 are listed in
Table 2 (for the genes discussed in the text) and Addi-
tional file 7 (for a complete version). We reported the sta-
tus of each of these genes in the other Brucella and O.
anthropi, as well as the nature of the change at the
sequence level that turns the intact gene in B. microti or B.
suis 1330 into a pseudogene in the other organisms. In
agreement with the observation (Figure 2) that the branch
length leading to B. microti is shorter than those leading to
other Brucella, we note (Additional file 7) that the number
of pseudogenes in B. microti is half that of B. suis 1330.

Genes specific to B. microti and O. anthropi and 
impaired in all other Brucella
In term of metabolic capabilities, B. microti (Table 1 in
[7]) was experimentally found much more similar to O.
anthropi than to other Brucella. We thus examined the gene
content of B. microti to identify genes shared with O.
anthropi but impaired in all other sequenced Brucella.

Table 1: Location of IS711 type insertion sequences specific either of B. microti or B. suis 1330.

Genomic context in B. microti Coordinates in B. microti Genomic context in B. suis 1330 Coordinates in B. suis 1330

Between rpsA (BMI_I28/BR0027) and 
BMI_I31/BR0028

Chr1:33557–34400 Not Present. Chr1: 33555

Inside gene BR0722 (hypothetical protein) Chr1: 708832–709676 Not Present. Chr1: 706394
Between gene BMI_I784/BR0786 and 

BMI_I787/BR0787
Chr1: 771573–772416 Not Present. Chr1: 768256

Between genes thrS (BMI_I1076/BR1071) 
and BMI_I1079/BR1072

Chr1: 1047382–1048225 Not Present. Chr1: 1043121

Between gene BMI_I1295/BR1284 and cobL 
(BMI_I1298/BR1285)

Chr1: 1251779–1252621 No Present. Chr1: 1245497

Between tRNA-Met and omp28 
(BMI_I1490/BR1475)

Chr1: 1436887–1437731 Not Present. Chr1: 1429443

Between genes BMI_I1899/BR1879 and 
BMI_I1902/BR1880

Chr1: 1823468–1824311 Not Present. Chr1: 1815480

Not Present. Chr1: 1626452 Between genes BR1671/BMI_I1694 and 
BR1674/BMI_I1695

Chr1: 1618084–1618927

For each insertion sequence, the genomic position of the insertion sequence and of the inserted position in the cognate genome are given.
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Table 2: Differentiating genes in the genomes of B. suis 1330 and B. microti.

B. microti ID status in 
B. microti

B. suis 
1330 ID

status in 
B. suis 1330

status in 
B. ovis 
ATCC 
25840

status in 
B. suis ATCC 

23445

status in 
B. abortus 

S19

status in 
B. melitensis 

biovar 
Abortus 2308

status in 
B. abortus 

biovar 1 str. 
9–941

status in 
B. melitensis 

16M

status in
B. canis

ATCC 233

Genes impaired in all other Brucella

BMI_I149 + BR0146 fs fs fs fs fs fs fs fs

BMI_I1566 + BR1552 fs fs fs fs fs fs fs fs

BMI_I1599 + BR1586 * (2) *, fs * (1) * (2) *(2) *(2) * (1) *(2)

BMI_II978 + BRA0985 * * * * * * * *

Gene shorter in other Brucella

BMI_I2199 + BR2178 smaller smaller smaller smaller smaller smaller smaller smaller

Genes impaired in almost all other Brucella

BMI_I135 + BR0132 fs + fs fs fs fs fs fs

BMI_I947 + BR0949 * * * + * * * *

BMI_I1332 + BR1320 * fs + * * * * *

BMI_II122 + BRA0122 * 
(small insert)

+ 
(small 
insert)

* 
(small insert)

Mult. fs 
(small 
insert)

Mult. fs 
(small insert)

fs 
(small insert)

fs 
(small insert)

* 
(small inse



Pa
ge

 7
 o

f 1
8

(p
ag

e 
nu

m
be

r n
ot

 fo
r c

ita
tio

n 
pu

rp
os

es
)

NF BMI_II334 ortholog is 
pseudogene BRA0338, 
glutamate decarboxylase 
beta

NF BMI_II335 ortholog is 
pseudogene BRA0339, 
glutamate/gamma-
aminobutyrate antiporter

+ pseudogene BMI_II1124 
ortholog is BRA1118, N- 
acetylglucosamine kinase

+ BMI_II715 ortholog is 
pseudogene BRA0722, 
proline dehydrogenase/
delta-1-pyrroline-5-
carboxylate dehydrogenase

diffs NF B. microti gene is larger, 
outer membrane protein, 
quite variable among 
brucella

+ BMI_I1045 ortholog is 
pseudogene BR1042, 
mechanosensitive ion 
channel family protein

diff BMI_I1334 ortholog is 
pseudogene BR1322, MscS 
mechanosensitive ion 
channel

diffs Mult. diffs BMI_II170 outer membrane 
autotransporter, similar to 
mes:Meso_3532

+ BMI_II422 ortholog is 
pseudogene BRA0425, 
hypothetical protein

ure * NF BMI_II547 hemagglutinin 
ortholog is BRA0553, 
which is shorter than its B. 
microti counterpart.

 the 
le

NF B. microti gene BMI_I1862 is 
longer than BR1846, 
hypothetical protein

e extensive version of this table is given as 

fference, Mult. Fs for multiple frameshifts, NF for 
B
M

C
 G

en
om

ic
s 

20
09

, 1
0:

35
2

ht
tp

://
w

w
w

.b
io

m
ed

ce
nt

ra
l.c

om
/1

47
1-

21
64

/1
0/

35
2

Glutamate metabolism

BMI_II334 + BRA0338 * + 
(diff at the 

beg.)

+ *(2) *(2) *(2) * *

BMI_II335 + BRA0339 fs fs fs + + + + fs

BMI_II1124 fs BRA1118 + + + + + + + +

BMI_II715 + BRA0722 + fs + + + + + +

Membrane proteins

BMI_I75 + BR0072 Mult. diffs Mult. diffs Mult. diffs Mult. diffs Mult. diffs Mult. diffs Mult. diffs Mult. 

BMI_I1045 + BR1042 fs fs fs + + + + fs

BMI_I1334 + BR1322 fs fs + + + + + fs

BMI_II170 + BRA0172/
BRA0173

Mult. diffs Mult. diffs Mult. diffs Mult. diffs Mult. diffs Mult. diffs Mult. diffs Mult. 

BMI_II422 + BRA0425 * + * NF NF NF + *

BMI_II547 + BRA0553 premature * fs + NF NF NF + premat

BMI_I1862 + BR1846 fs Diff. fs fs fs fs fs Diff. in
midd

For each gene, we indicate its status in the other Brucella and O. anthropi. This table only includes the genes that are discussed in the text. A mor
Additional file 7.
Abbreviations include: * for internal stop, a number indicates multiple stops, fs for frameshift, + for an intact sequence, Mult. Diffs for multiple di
not found.

Table 2: Differentiating genes in the genomes of B. suis 1330 and B. microti. (Continued)
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Only 4 such genes were found. Phylogenetic trees for
those genes are shown in Additional file 8(A–D).

BMI_I149 has an ortholog in O. anthropi (Oant_0158)
and is impaired in other Brucella. In B. suis 1330, the cor-
responding pseudogene is BR0146. Homologues for this
gene are found in many Rhizobiales such as Bartonella or
Mezorhizobium (Additional file 8A). The enzyme encoded
by this gene, malate dehydrogenase (oxaloacetate-decar-
boxylating) (NADP+) [EC:1.1.1.40], is involved in pyru-
vate metabolism. The reaction is: (S)- malate + NADP+ =
pyruvate + CO2 + NADPH. This gene has a paralog
BMI_I1020, the orthologs of which are intact in all Bru-
cella and Ochrobactrum (Additional file 8A).

BMI_I1566, corresponding to pseudogene BR1552 in B.
suis 1330, is an aspartyl/asparaginyl beta-hydroxylase

which is intact in B. microti and O. anthropi (Oant_1613)
and impaired in other Brucella (Additional file 8B). The
product of this gene [EC:1.14.11.16] catalyzes the reac-
tion: peptide-L-aspartate + 2-oxoglutarate + O2 = peptide-
3-hydroxy-L-aspartate + succinate + CO2. The succinate
(or succinic acid), product of this reaction, is one of the
compounds used in the physiological reactions that dif-
ferentiate B. microti from other Brucella [7]. Succinate is
involved in many metabolic pathways such as the citrate
cycle (TCA cycle).

BMI_I1599, corresponding to pseudogene BR1586 in B.
suis 1330 is intact in B. microti, impaired in other Brucella,
and intact in O. anthropi (Oant_1582) (Additional file
8C). This gene is predicted to encode an extracellular sol-
ute-binding protein belonging to an ABC-type transport
system probably involved in dipeptide transport. How-

Alignment of the region around intervening sequence (IVS I) in selected Brucella and O. anthropiFigure 3
Alignment of the region around intervening sequence (IVS I) in selected Brucella and O. anthropi. Fragments of 
the alignment where all sequences are identical are not shown. The whole alignment with numbering is given in Additional file 
5. Sequence fragments shared by B. microti and Brucella sp. B01 are in blue. Sequence fragments shared by B. microti and O. 
anthropi are in green. Other regions are in red. Fragments of the alignment highlighted in yellow correspond to the terminal 
nucleotides of the secondary structures represented in Figure 4.

AGCTAGAAAATC---AATTTAGTTGGAGCAACGCTG-TTGGGTTTAGGCCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCGCCCCCCG  

GACTAGAAAATC---TGTTTTGTTGGAGCAACGCTGGATGGGTTTACACCCATACAGACCGCTAGGT--------CGTCGGCCCATGTGGGCCG-CCCCCG  

GACTAGAAAATCAGATGTGTCGTTTAAGGCA------ATAGGGCAATACGGCAGTAGGGCAGTATGTAAGAAACATATTGCCTTATT--------GCCCTA  

GACTAGAAAATCAGATGTGTCGTTTAAGGCA------ATAGGGCAATACGGCAGTAGGGCAGTATGTAAGAAACATATTGCCTTATT--------GCCCTA  

  **********     * * ***  **  *       * **   *  *      **  *  ** **          * * *  **          ***    

  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

GGGCAACCCACCTTAGAT  

******************  

Ochrobactrum anthropi  

Brucella canis  

Brucella suis ATCC 23445  

Brucella suis 1330  

Brucella abortus 9-941  

B. mel. biovar abortus 2308  

Brucella abortus S19  

Brucella ceti  

Brucella melitensis 16M  

Brucella ovis  

Brucella microti  

Brucella inopinata B01  

  

  

  

  

  

CGGAGCGCCAGCAT---CGTAAGATGCGTACGGCGCGTGAGCGAGAACTAAATTAATTTCTAGTTATCGT-  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CGGAGCGCCAGCATTCCTCTGGAATGCGTACGGCGCGTGAGCGAGAACAGCACAGCTTTCTAGTCATCATA  

CTGACTTACTGCCTTTTTGAG--------ACGGCGCATG--------------TGGTTTCTAGTCATCATA  

CTGACTTACTGCCTTTTTGAG--------ACGGCGCATG--------------TGGTTTCTAGTCATCATA  

* **    * ** *               ******* **                 ******** *** *   

  

  

  

CACC  

ACCT  

ACCT  

ACCT  

ACCT  

ACCT  

ACCT  

ACCT  

ACCT  

ACCT  

ACCT  

ACCT  

  *   

  

  

T 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

    

  

  

  

AATAGG  

TTTTGT  
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GAACCTGGAAAGGTTTG  

CGAGTTGGAAAACTCGA  
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CGAGTTGGAAAACTCGA  

TGAGTTGGAAAACTCGA  

CGAGTTGGAAAACTCGA  

CGAGTTGGAAAACTCGA  
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CGAGTTGGAAAACTCGA  
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ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 

ACTATGGGCAACCATAG 
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  * * ****** *    

  
  

TGTGCAAGCA  

GGTGCAAGCC  

GGTGCAAGCC  

GGTGCAAGCC  
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GGTGCAAGCC  
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ACGA  
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TGGCGCCAGCCATTGTGGAGTCAT   

GGGCGCCAGCCTTTGTGGAGTCAC   
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GGGCGCCAGCCTTTGTGGAGTCAC   

GGGCGCCAGCCTTTGTGGAGTCAC   

GGGCGCCAGCCTTTGTGGAGTCAC   

GGGCGCCAGCCTTTGTGGAGTCAC   

GGGCGCCAGCCTTTGTGGAGTCAT   

 ********** ***********    
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 *   
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Predicted secondary structure of the intervening sequence (IVS I)Figure 4
Predicted secondary structure of the intervening sequence (IVS I). The predicted secondary structure of the inter-
vening sequences (IVS I) of the 23S ribosomal RNA in B. microti and Brucella sp. B01 (left), B. suis (middle) and O. anthropi (right). 
Arrows with a dark head represent conserved cleavage sites. Arrows with a thin head represent unconserved cleavage sites. In 
O. anthropi, only the lower part of the cleavage motif is present.
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ever, in the case of B. microti, the nearby dppC gene encod-
ing the permease component of this transport system is
impaired (pseudogene BMI_I1597), with probable conse-
quences on the whole transport system.

BMI_II978, encoding a transcriptional regulator of the
MarR family is present in B. microti and O. anthropi
(Oant_1375) and contains an internal STOP codon in
other Brucella (Additional file 8D). It corresponds to pseu-
dogene BRA0985 in B. suis 1330. This family of transcrip-
tional regulators mediates the response to multiple
environmental stresses and the resistance to multiple anti-
biotics.

Finally, the B. microti hydrolase BMI_I2199/BR2178, is
similar to the one in O. anthropi, while its homologues in
other Brucella species are much shorter, lacking the last 40
amino-acids, which is likely to have functional conse-
quences. Its homologues in B. canis and B. suis ATCC
23365 are annotated as acetyltransferases, part of the ace-
toin cleaving system.

Genes intact in B. microti and O. anthropi and impaired 
in almost all other Brucella
Some genes are intact in B. microti and O. anthropi but are
impaired in almost all Brucella, with some exceptions. For
instance, the ATP-dependent helicase HtrB (BMI_I135),
pseudogene BR0132 in B. suis 1330, presents a frameshift
in all Brucella except B. ovis (BOV_0127) and is intact in
O. anthropi. This is also the case for BMI_I947 correspond-
ing to pseudogene BR0949 in B. suis 1330. This gene
exhibits an internal STOP codon in all Brucella except B.
abortus S19 (BabS19_I09030) and is present in O. anthropi
(Oant_2240). This gene encodes a transport protein
sometimes annotated as outer membrane protein E. The
gene encoding sarcosine dehydrogenase (BMI_I1332,
EC:1.5.99.1), corresponding to pseudogene BR1320 in B.
suis 1330, is intact in B. microti and O. anthropi but
impaired in other Brucella except Brucella suis ATCC
23445. This enzyme catalyzes the following reaction: sar-
cosine + acceptor + H2O = glycine + formaldehyde +
reduced acceptor. The flagellar motor switch gene, fliG
(BMI_II122, pseudogene BRA0122 in B. suis 1330), which
is apparently intact in B. ovis, B. microti and O. anthropi, is
impaired in other Brucella.

Other potentially significant differences in gene content 
between B. microti and other Brucella
Glutamate metabolism
Quite a number of genes involved in glutamate metabo-
lism are missing from certain Brucella species.

The gene of glutamate decarboxylase beta (gadB,
BMI_II334) contains an in-frame STOP codon in B. suis
1330 and appears to be damaged in many Brucella (except
for B. ovis and B. suis ATCC 23445). The product of this

gene catalyzes the decarboxylation of glutamate into
gamma-aminobutyric acid (GABA) and CO2. The nearby
glutamate/gamma-aminobutyrate antiporter (gadC,
BMI_II335) is also impaired in B. suis 1330, presenting an
internal frameshift as in B. ovis, B. canis and B. suis ATCC
23445. Taken together, these two genes are only intact in
B. microti (O. anthropi does not have any of those genes).
These two genes are involved in the generation of a proton
motive force in Lactobacillus strains [20], but also in acid
resistance mechanisms [21-23].

Also involved in glutamate and other amino-acids metab-
olisms, the B. suis 1330 gene (BRA1118) encoding a N-
acetylglucosamine kinase presents a frameshift and is thus
impaired in B. microti (BMI_II1124). This enzyme
[EC:2.7.1.59] catalyzes the following reaction: ATP + N-
acetyl-D-glucosamine = ADP + N-acetyl-D-glucosamine 6-
phosphate.

The proline/dehydrogenase/delta-1-pyrroline-5-carboxy-
late dehydrogenase (BMI_II715) is a pseudogene in B. suis
1330 (BRA0722). This enzyme [EC:1.5.1.12] catalyzes the
reaction: (S)-1-pyrroline-5-carboxylate + NAD(P)+ + 2
H2O = L-glutamate +NAD(P)H + H+ and is involved in
glutamate, arginine and proline metabolism.

Membrane proteins presenting significant differences between B. 
microti and other Brucella
We also observed a number of changes in genes encoding
membrane proteins. The outer membrane protein encod-
ing gene BMI_I75 exhibits large differences in size, being
larger in B. microti than in its counterparts in other Bru-
cella. A small conductance mechanosensitive ion channel
protein encoding gene (BMI_I1045) has frameshifts in B.
suis 1330 (pseudogene BR1042), B. ovis and B. canis and
is intact in B. microti and O. anthropi. A second small con-
ductance mechanosensitive ion channel protein encoding
gene (BMI_I1334) is impaired in B. suis 1330 (pseudog-
ene BR1322), B. canis and B. ovis

An outer membrane autotransporter, encoded by
BMI_II170, is paradoxically most similar to the protein
Meso_3532 in Mesorhizobium sp. BNC1 than to its homo-
logues in all Brucella and Ochrobactrum.

The B. microti membrane protein Bme3, encoded by
BMI_II422, corresponds to pseudogene BRA0425 in B.
suis 1330. Genes at this locus have been reported to be
involved in polysaccharide synthesis [24].

The ortholog of gene BMI_II547, encoding a cell wall sur-
face hemagglutinin in B. microti, presents a premature
STOP codon in B. suis 1330 (BRA0553). Remarkably, a
fragment of this gene, position 534037 to 534117 in B.
microti chromosome 2 sequence, is found multiple times
in Brucella genomes. Its abundance (blastn search [25], no
Page 10 of 18
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filter, E-value < 10-30) ranges between 38 times in B. ovis
to 13 times in B. microti and B. suis ATCC 23445 and 6 to
7 times in the other Brucella studied in this work. This
repeated element could reveal useful for typing purpose.

B. microti gene BMI_I1862 is quite different in length with
respect to its counterparts in other Brucella. The B. microti
version has a 126 nucleotides insert. This gene encodes a
protein with a Yada-like C-terminal domain characteristic
of a family of surface exposed bacterial proteins. O.
anthropi has no homolog for this gene.

Gene clusters encoding the components of the flagellum
All genes involved in flagella assembly and present in O.
anthropi are apparently intact in B. microti, in contrast to
the situation in other Brucella where at least one gene is
impaired (Table 3). However, there is a significant differ-
ence in flagella gene organization between Ochrobactrum
spp. and Brucella spp. In O. anthropi, the flagella genes are
essentially found in two clusters. One contains flhB, fliG,
fliN, fliM, motA, flgF, fliI, flgB, flgC, fliE, flgG, flgA, flgI, flgH,
fliL, fliP and the other contains fliR, flhA, fliQ, flgD, flbT,
flaF, flgL, flgK, flgE, fliK, motC, motB, fliF, fliC. In Brucella, a
15 kb insert containing genes not related to flagella inter-
rupts the first group between genes fliI and flgB (Addi-
tional file 9).

Survival in the soil
Paulsen et al. [11] noticed that the B. suis operon
(BRA0636-BRA0647), encoding an homoprotocatechuate
pathway, is widely distributed among diverse soil micro-
organisms and may contribute to the survival of the bac-
teria outside of its host. Interestingly, 3 of these genes
present a frameshift in B. microti, suggesting that they do
not significantly contribute to its survival in the soil. In
contrast, an other operon cited in the same context
(BRA1155-BRA1162) [11], encoding a beta-ketoadipate
pathway is intact in both B. suis 1330 and B. microti.

Discussion
Voges-Proskauer reaction
In terms of metabolic capabilities, B. microti (Table 1 in
[7]) was found much more similar to O. anthropi than to
other Brucella. One of the tests for which B. microti was
positive is the Voges-Proskauer reaction. The Voges-
Proskauer reaction demonstrates the possibility for an
organism to produce acetoin and 2,3-butanediol and is an
established biochemical test for distinguishing wide
classes of bacteria. The pathway leading to the production
of acetoin is described for instance in [26]. It involves the
transformation of pyruvate into alpha-acetolactate by the
acetolactate synthase, then the conversion of alpha-acetol-
actate to acetoin by the alpha-acetolactate decarboxylase
followed by the conversion of acetoin to 2,3-butanediol.
Brucella species possess genes for the acetolactate synthase

3 (BMI_I1399, large subunit and BMI_I1400, small subu-
nit) and the acetolactate synthase 2 (large subunit only
BMI_II939). The conversion of acetoin to 2,3-butanediol
is performed by the homolog of alsO (VC1591) in Vibrio
cholera which is BMI_I1134. A gene apparently missing
from this pathway is the homolog of alsD (VC1589) in V.
cholera, the alpha-acetolactate decarboxylase. However, as
reported for Bacillus subtilis [27], this reaction can occur
spontaneously at low pH, in absence of alsD. This suggests
that known Brucella species have all the enzymes neces-
sary to produce acetoin. Their negative testing for the
Voges-Proskauer reaction might thus be due to an indirect
cause, such as the lack of a sufficient supply of pyruvate.
Like O. anthropi, but in contrast with other Brucella, B.
microti possesses two paralogs of malate dehydrogenase
(BMI_I149 and BMI_I1020) which catalyzes a reaction
producing pyruvate. It is thus tempting to speculate that
this enzyme duplication might be linked to the positivity
of the Voges-Proskauer reaction in B. microti.

Proton motive force and acid-resistance mechanism
Of notable interest is the presence of the gene tandem
BMI_II334 and BMI_II335 encoding a glutamate decar-
boxylase beta GadB and a glutamate/gamma-aminobu-
tyrate antiporter GadC, respectively. These proteins might
give B. microti the potential to generate a proton motive
force from the decarboxylation of glutamate. This capacity
might have been lost in other Brucella where either of
these genes are found impaired. In Lactococcus lactis [21],
Shigella flexneri [22] and Escherichia coli [23] GadB and
GadC were shown to participate in a glutamate-depend-
ent acid resistance mechanism. Acid resistance mecha-
nisms allow enteric pathogens to overcome acid stress in
the gastrointestinal tract of their host [28]. In the case of
B. microti, this system may help the bacteria to survive in
acid soils. More importantly, it might also play a role in
intracellular survival, as within hosts macrophages, Bru-
cella species reside in a low pH environment, where the
importance of the gadB, gadC, hdeA gene cluster as an acid
resistance locus as already been suggested [29,30].

Motility
Due to their lifestyle, many intracellular bacteria have lost
their capacity to produce functional flagella [31]. Despite
the presence of numerous flagella genes [32], Burkholderia
mallei is non-motile whereas Burkholderia pseudomallei and
Burkholderia thailendensis are motile. The lack of motility
of B. mallei was traced back to a 65 kb insertion within the
fliP gene as well as a frameshift in the flagellar motor gene
motB [32]. Similarly, Yersinia pseudotuberculosis and Yers-
inia enterocolitica are motile [33] whereas Yersinia pestis
KIM is non-motile in spite of the presence of a nearly com-
plete set of flagella genes, but with a truncated gene for
transcription factor FlhD. In each of the above cases, the
host adapted species are non-motile (B. mallei/Y. pestis)
Page 11 of 18
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Table 3: Status of the genes involved in flagella assembly.

Gene name/B. 
microti ID

B. microti B. suis 1330 B. suis 
ATCC 
23445

B. ovis ATCC 
2584 0

B. canis 
ATCC 
23365

B. melitensis 
16M

B. abortus 
S19

B. abortus 
biovar 1 str. 

9–941

B. melitensis 
biovar 

Abortus 
2308

O. anthropi 
ATCC 
49188

flhB/BMI_II121 + + + + + + + + + + Locus 1 in O. 
anthropi

fliG/BMI_II122 + 0 0 + 0 0 a) 0 0 0 +
fliN/BMI_II123 + + + + + + + + + +
fliM/BMI_II125 + + + 0 + + 0 0 0 +
motA/BMI_II126 + + + + + + + + + +
flgF/BMI_II128 + + + + + + + + + +
fliI/BMI_II129 + + + + + + + + + +
flgB/BMI_II149 + + + + + + + + + +
flgC/BMI_II150 + + + + + + + + + +
fliE/BMI_II151 + + + + + + + + + +
flgG/BMI_II152 + + + + + + + + + +
flgA/BMI_II153 + + + + + + + + + +
flgI/BMI_II154 + + + 0 + + 0 0 0 +
flgH/BMI_II156 + + + + + + + + + +
fliL/BMI_II157 + + 0 + + + + + + +
fliP/BMI_II158 + + + + + + + + + +

fliR/BMI_II1137 + + 0 + + + + + + + Locus 2 in O. 
anthropi

flhA/BMI_II1138 + + + + + + 0 0 0 +
fliQ/BMI_II1139 + + + + + + + + + +
flgD/BMI_II1140 + + + + + + + + + +
flbT/BMI_II1141 + + + + + + + + + +
flaF/BMI_II1142 + + + + + + + + + +
flgL/BMI_II1143 + + + + + + + + + +
flgK/BMI_II1144 + + + + + + + + + +
flgE/BMI_II1145 + + + + + + + + + +
fliK/BMI_II1148 + + + + + + + + + +
motC/BMI_II1149 + 0 + + + + + + + +
motB/BMI_II1150 + + + + + + + + + +
fliF/BMI_II1152 + + 0 + + + + + + +
fliC/BMI_II1153 + + + + + + + + + +

Status of the genes involved in flagella assembly in O. anthropi, B. microti and 8 Brucella (+ gene present, 0 gene absent). The genes are grouped in two loci in O. anthropi. The first locus is 
interrupted by a 15 kb insertion in Brucella. a) A gene annotated as fliG is present in the genome sequence of B. melitensis 16M. However, the predicted protein is shorter than it should be and is 
probably a pseudogene (see Table 1). In Brucella, Locus 1 is interrupted by a 15 kbp insert, between fliI and flgB.
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whereas the others are motile. Although all available Bru-
cella genomes possess genes for the flagellum complex,
Brucella are non-motile and display no flagellum under
standard conditions. However, under specific conditions
during early exponential growth phase, B. melitensis 16M
has been reported to express some of the key genes of the
flagellar apparatus and assemble a sheathed flagellum
which is required for virulence in a mouse infection
model [34,35].

The motor switch gene fliG is the gene most often found
impaired in Brucella (Table 3), with exceptions in B. ovis
and B. microti. This rotor protein is essential for the assem-
bly and the function of the flagellar motor [36]. In B. ovis,
fliM, encoding the flagellar C ring protein is impaired (as
in B. abortus S19, B. abortus 9–941 and B. melitensis biovar
Abortus 2308), explaining the lack of flagella in B. ovis. In
contrast with these Brucella species, B. microti does not
present a readily apparent defect among the proteins con-
stituting the flagellar assembly complex. Its lack of a visi-
ble flagellum could thus be due to more subtle causes. In
this context, we noticed that one of the two flagella gene
clusters of O. anthropi is split in Brucella genomes (Addi-
tional file 9). Such a modification might have disrupted
the coordinated expression of those flagella genes. How-
ever, given the integrity of its individual flagellar genes, B.
microti might express a sheathed flagellum under specific
conditions, as observed for B. melitensis 16M [34,35].

The 12 kbp insertion
The specific 12 kbp genomic island of probable phage ori-
gin is of obvious interest for identification purpose, and
has already been used for the recovery of B. microti from
soil samples [6]. Blast (tblastn) searches of nucleotide
sequences within this island against the Genbank data-
base found best matches in O. anthropi, Nitrobacter ham-
burgensis X14 and other Rhizobiales. This suggests that this
element originated from a phage commonly infecting
Rhizobiales. In a recent study [37], evidence of horizontal
gene transfers in Brucella genomes were reported. Those
SARs (Shared Anomalous Regions) consist of regions 2 to
19 kb long, sometimes flanked on one side by a tRNA and
on the other side by a fragment of that tRNA, as found in
the B. microti genomic island. Although some important
genes (e.g. Type IV secretion or LPS [lipopolysaccharide]
synthesis genes) apparently entered the Brucella genomes
through this mechanism, the B. microti island appears
devoid of functional genes. Paradoxically, the most strik-
ing genome structure difference between B. microti and
other Brucella is probably of no phenotypic consequence.

23S ribosomal rna
The cleavage of the 23S rRNA IVSs by RNase III results in
a specific fragmentation pattern. In B. microti, the 5' frag-
ment is predicted to be 127 bp long, the IVS I (helix 9) 153

bp long and the 3' fragment 2.6 kbp long. The IVS is com-
posed of palindrome sequences and repeated motifs
forming stable secondary structures (stem-loop) (Figure
4) [38]. The complementary ends of the IVS are highly
conserved between Brucella species and correspond to
inverted DNA repeats characteristic of mobile genetic ele-
ments [38]. In B. microti, the 23S maturation leading to
the IVS removal may not occur because of sequence varia-
tions at the cleavage site. In Salmonella typhimurium, RNase
III- mutants are viable, suggesting that the removal of the
intervening sequence is not required for 23S function
[39,40]. The fragmentation of 23S rRNA during post-tran-
scriptional processing of precursor rRNA has been
reported for Brucella [41], however, no information is
available concerning B. microti. Concerning the role of the
23S rRNA fragmentation, results in Salmonella [42] indi-
cate that the degree of fragmentation correlates with the
amount of 23S rRNA degradation in stationary phase,
allowing for a post-transcriptional control of ribosome
production. Knowing that two fast-growing Brucella iso-
lates, B. microti and B. inopinata B01, share a similar
change in their 23S rRNA structure, it is tempting to spec-
ulate that this change, impeding IVS removal, could have
an impact on their growth rates. It is surprising that two
phylogenetically distant species of Brucella, as revealed by
sequence analysis of VNTR regions and phylogenetic anal-
ysis (Additional file 6), have exactly the same IVS
sequence. This finding pleads either for an ancestral
nature of this IVS or for a recent exchange of 23S rRNA
sequences between B. inopinata B01 and B. microti. How-
ever, part of the 23S rRNA gene sequence of B. microti was
found identical to that of O. anthropi, this region not being
shared with B. inopinata B01. This mosaic structure of the
23S rRNA gene sequence of B. microti, partly identical to
that of B. inopinata B01 and partly identical to that of O.
anthropi confirms the existence of horizontal gene trans-
fers in Brucella.

Brucella virulence genes
Major virulence factors of Brucella that have been charac-
terized include the Type IV secretion system [43,44], LPS
[45], Omp25 [46], and the BvrS-BvrR two component sys-
tem [47]. All of these virulence gene sequences were
found to be identical in B. microti and B. suis 1330. Inter-
estingly, two ORFs involved in LPS biosynthesis as well as
Omp25 are found in one of the nine genomic islands (GI-
2) which were revealed by whole-genome micro-array
analysis in B. melitensis 16M [48,49].

Phylogeny of the genus Brucella
The newly determined genome sequence of B. microti
allows us to revisit the phylogeny of the Brucella genus.
Our results (Figure 2) are in agreement with previous
works [37,50] which regroup on one hand B. suis 1330, B.
suis ATCC 23445 and B. canis, and on the other hand B.
Page 13 of 18
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abortus S19, B. abortus 9–941 and B. melitensis biovar Abor-
tus 2308 together with B. melitensis 16M. B. microti and B.
ovis separated earlier from those groups. It was claimed
[50] that the B. ovis lineage was "basal" to the rest of the
Brucella lineage, dating the divergence of most Brucella
species from their common ancestor 86,000 to 296,000
years ago. Our analyses now indicate that the B. microti
lineage is at least as "basal" as B. ovis, and anticipating on
the completion of its genome sequence, the divergence of
B. inopinata B01 will probably appear even more ancestral.

Conclusion
Unexpectedly in the light of its numerous phenotypic pecu-
liarities, B. microti was found to have a genome sequence very
close to that of previously characterized Brucella species.
With respect to its closest relative, B. suis 1330, the genome
sequence of B. microti was found 99.84% identical in per-
fectly aligned regions, and no less than 99% identical taking
into account insertion-deletions. Although we identified at
least 4 genes impaired in all studied Brucella but intact in B.
microti and O. anthropi, it is unlikely that these differences
alone could explain the numerous Ochrobactrum-like pheno-
typic traits exhibited by B. microti, as well as its increased vir-
ulence. Additionally, we have identified an unexpected
alteration of the 23S rRNA gene sequence of B. microti, also
shared by an other fast growing novel Brucella species B.
inopinata sp. nov. strain B01. This sequence variation could
have a pleiotropic effect by increasing the number of ribos-
omes per bacterial cell and thus enhance the overall transla-
tion activity. Finally, the phenotypic characteristics of B.
microti might also be due to genome variations in non-cod-
ing (regulatory) regions influencing the expression level of
numerous genes. Our study appears to be the first encounter-
ing a new limitation of the comparative genomic approach
in the elucidation of phenotypic traits: usually even close
(e.g. virulent vs. non virulent) strains display too many differ-
ences in their genomes to allow the straightforward identifi-
cation of the relevant genes. Here, we experienced the
opposite problem, being left with too few gene differences to
explain a large number of phenotypic variations. A differen-
tial analysis of the transcriptome of B. microti vs. that of its
closest genomic relative B. suis 1330 as well as complemen-
tation studies should help reveal how their quasi-identical
gene content could result in two microorganisms exhibiting
so many differences in their metabolic behaviors, life-styles,
and virulence.

Methods
Strain information and Accession Numbers
Brucella microti CCM 4915T genome sequence is deposited
in the Genbank database under accession numbers
CP001578 for the large chromosome and CP001579 for
the small chromosome.

Shotgun sequencing and finishing
An initial shotgun sequencing using GS-FLX produced
414,552 reads of average size 213 bp. Assembly with the
Newbler program resulted in 90 contigs above 500 bp.
Newbler assembler contigs were converted into artificial
Sanger reads. Based on the extensive similarity between
the genomes of Brucella, we were able to determine tenta-
tive primer pairs that were tested by PCR and then used for
sequencing by Sanger technology, allowing us to bridge
the gaps between contigs. The resulting sequences were
subsequently added to the assembly using the Phred/
Phrap/Consed software packages [51-53].

Genomic comparisons
The genomic sequences reported in this article were com-
pared to the available genomic sequences of B. melitensis
16M [NC_003317 (large chromosome) and NC_003318
(small)] [9], B. suis 1330 [NC_004310 (large) and
NC_004311 (small)] [11], B. abortus 9–941 [NC_006932
(large) and NC_006933 (small)] [10], B. melitensis biovar
Abortus 2308 [NC_007618 (large) and NC_007624
(small)], B. ovis [NC_009505 (large) and
NC_009504(small)] [12], B. suis ATCC 23445
[NC_010169 (large) and NC_010167 (small)], B. canis
ATCC 23365 [NC_010103 (large) and NC_010104
(small)] and Brucella abortus S19 [NC_010742 (large) and
NC_010740 (small)]. In addition we used the genomic
sequence of Ochrobactrum anthropi ATCC 49188
[NC_009671 (93,589 bp), NC_009672 (57,138 bp),
NC_009668 (1,895,911 bp), NC_009667 (2,887,297
bp), NC_009670 (101,491 bp), NC_009669 (170,351
bp)]. Dotplots of the genome sequences were performed
using programs from the MUMMER package [54].

Alignment of genomic sequences
Alignment of chromosomes of B. suis 1330 and B. microti
were performed using software from the LAGAN Toolkit
[55]. An in-house program to superimpose annotation on
the alignment was used to have a finer view of the posi-
tion of the differences with respect to the annotated
genomes, and to aid in the annotation of B. microti. The
alignment files are available as Additional Files 1 and 2. A
list of indels computed from those alignments is pre-
sented as Additional file 3.

Genome annotation
Due to the close similarity between the genomes of B. suis
1330 and B. microti, a large use was made of the full align-
ment of sequences that is presented in Additional Files 1
and 2 as well as similarity searches against the complete
genomes of other Brucella. Insertion sequences that were
not present in the genome of B. suis 1330 were identified
with the help of the Biotoul IS-Finder [56,57].
Page 14 of 18
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CP001578
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CP001579


BMC Genomics 2009, 10:352 http://www.biomedcentral.com/1471-2164/10/352
Identification of candidate pseudogenes
Candidate pseudogenes either in B. microti or B. suis 1330
were identified as follows. First, the most similar and
intact version of the homologous ORF was selected
among one of the available Brucella genomes. This
sequence was then used to query (using tblastn [25], no
filter, E-value < 10-50) the remaining Brucella and Ochro-
bactrum genomes to detect the eventual absence or disrup-
tion of the homologous gene (premature STOP codon,
frameshift). 170 cases of premature terminations or
frameshifts were found and are listed in Additional file 7.
Fifty of them correspond to ORFs altered in B. microti and
intact in at least one other Brucella, while 120 correspond
to genes presumably functional in B. microti and altered in
its closest relative B. suis 1330.

Brucella phylogeny
The proteins of the B. microti chromosomes were grouped
with those of 8 other Brucella and O. anthropi in a file con-
taining 33,053 proteins. A blastp [25] search (Evalue < 10-

5) of this set against itself yielded a table of blast results
which was used to cluster proteins using a Markov chain
clustering algorithm [58]. We selected clusters containing
a single protein from each of the initial organism. This
procedure resulted in 1,486 clusters of genes present in
each Brucella and in O. anthropi. The 1,486 Brucella core
proteins were first aligned individually using MUSCLE
(v3.7)[59]. Poorly aligned regions were discarded by
GBLOCKS (v0.91b) [60] using the Phylogeny.fr platform
[61]. The resulting alignments were used as a guide to
align the corresponding DNA sequences on a codon basis.
After cleaning up the nucleotide alignments for poorly
aligned regions, the 1,486 multiple alignments were con-
catenated in a single alignment of 431,655 codons. The
phylogenetic tree was reconstructed using the maximum
likelihood method implemented in the PhyML program
(v3.0 aLRT) [62]. The default nucleotide substitution
model (HKY85) was selected assuming an estimated pro-
portion of invariant sites and 4 gamma-distributed rate
categories to account for rate heterogeneity across sites.
The gamma shape parameter was estimated directly from
the data as well as the transition/transversion ratio. Relia-
bility for internal branches was assessed using the aLRT
test (SH-Like). Graphical representation and edition of
the phylogenetic tree were performed with TreeDyn
(v198.3) [63] and MEGA3 [64].

Phylogeny of 4 genes unique to B. microti and O. 
anthropi
Only 4 genes common to B. microti and O. anthropi but
impaired in all other Brucella were identified. These genes
are a priori the most likely to contribute to the Ochrobac-
trum-like phenotypic traits of B. microti. The correspond-
ing protein sequences were searched against the nr
database with the blastp program (E-value < 10-5) using
the Phylogeny.fr platform [61]. The homologous

sequences were aligned with MUSCLE (v3.7) configured
for highest accuracy (MUSCLE with default settings). After
alignment, ambiguous regions (i.e. containing gaps and/
or poorly aligned) were removed with GBLOCKS
(v0.91b) using the following parameters: minimum
length of a block after gap cleaning of 10, no gap positions
were allowed in the final alignment, all segments with
contiguous non-conserved positions bigger than 8 were
rejected and minimum number of sequences for a flank
position: 85%. The phylogenetic tree was reconstructed
using the maximum likelihood method implemented in
the PhyML program (v3.0 aLRT). The default substitution
model (WAG) was selected assuming an estimated pro-
portion of invariant sites and 4 gamma-distributed rate
categories to account for rate heterogeneity across sites.
The gamma shape parameter was estimated directly from
the data. Reliability for internal branch was assessed using
the aLRT test (SH-Like). Graphical representation and edi-
tion of the phylogenetic tree were performed with
TreeDyn (v198.3).
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Additional file 1
Supplementary File 1: Whole genome alignment with superimposed 
annotation of the large chromosomes of B. microti and B. suis 1330. 
Letter x in the consensus line denotes an indel or a point mutation. In pro-
tein coding regions, the reading frame is indicated.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S1.txt]

Additional file 2
Supplementary File 2: Whole genome alignment with superimposed 
annotation of the small chromosomes of B. microti and B. suis 1330. 
Letter x in the consensus line denotes an indel or a point mutation. In pro-
tein coding regions, the reading frame is indicated.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S2.txt]

Additional file 3
Supplementary Table 1: List of indels between the genomes of B. 
microti and B. suis 1330. The coordinates in B. microti and B. suis are 
given as well as the localization and the putative effect of the indels on 
gene products.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S3.pdf]
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Supplementary Table 2: Distinctive VNTR typing of B. microti as con-
firmed by the genome sequence. For each tandem repeat we listed the 
primer pair, the theoretical length of the amplimer in B. suis 1330, B. 
melitensis 16M, B. abortus 9–941 and B. microti CCM 4915, and the 
location of the theoretical PCR product in the genome of B. microti.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S4.pdf]

Additional file 5
Supplementary Figure 2: Alignment of the 23S ribosomal RNA gene 
sequences in O. anthropi and other Brucella studied in this work. In 
addition, we included the sequences of B. ceti and Brucella inopinata 
B01. Abbreviations: oan, O. anthropi; bcs, B. canis; bmt, B. suis ATCC 
23445; bms, B. suis 1330; bmb, B. abortus 9–941; bmf, B. melitensis 
biovar abortus 2308; bmc, B. abortus S19; bce, B. ceti; bme, B. meliten-
sis 16M; bov, B. ovis; bmi, B. microti and B01, Brucella inopinata 
B01.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S5.pdf]

Additional file 6
Supplementary Figure 1: Phylogenetic representation of the alignment 
of the regions corresponding to the first 10,000 nucleotides of B. 
microti genome sequence, showing that Brucella inopinata sp. nov. 
strain B01 diverged earlier than the other Brucella studied in this 
work. The sequence of B. ceti is also included. B. ceti and Brucella inopi-
nata B01 sequences were obtained from the PATRIC web site [18].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S6.pdf]

Additional file 7
Supplementary Table 3: Extended list of orthologous genes exhibiting 
annotation differences between B. microti and B. suis 1330 (one, or 
both being annotated as pseudogene, or presenting notable differ-
ence). For each gene, we give its identification in B. microti and B. suis 
1330 as well as its status in other Brucella. Abbreviations include: * for 
internal stop, a number indicates multiple stops, fs for frameshift, + for an 
intact sequence, Mult. Diffs for multiple difference, Mult. Fs for multiple 
frameshifts, NF for not found.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S7.pdf]

Additional file 8
Supplementary Figure 4: Phylogenetic tree for the 4 genes conserved 
in B. microti and O. anthropi and impaired in the other Brucella. 
The trees were built using the Phylogeny.fr Web Server [65] using defaults 
settings. A) BMI_I149, malate dehydrogenase (oxaloacetate-decarboxy-
lating) (NADP+) and its paralog BMI_I1020 intact in other Brucella; 
B) BMI_I1566, aspartyl/asparaginyl beta-hydroxylase; C) BMI_I1599, 
extracellular solute-binding protein belonging to an ABC-type transport 
system involved probably in dipeptide transport and D) BMI_II978, 
MarR family transcriptional regulator.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S8.pdf]

Additional file 9
Supplementary Figure 3: Genomic representation of the region around 
the cluster of flagella assembly genes that is contiguous in O. 
anthropi and interrupted in Brucella. Intact genes are represented as 
black arrows, pseudogenes as red arrows.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-352-S9.pdf]
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