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Abstract

This work focuses on the experimental data analysis of electroencephalography (EEG)

data, in which multiple sensors are recording oscillatory voltage time series. The EEG data

analyzed in this manuscript has been acquired using a low-cost commercial headset, the

Emotiv EPOC+. Our goal is to compare different techniques for the optimal estimation of col-

lective rhythms from EEG data. To this end, a traditional method such as the principal com-

ponent analysis (PCA) is compared to more recent approaches to extract a collective

rhythm from phase-synchronized data. Here, we extend the work by Schwabedal and Kantz

(PRL 116, 104101 (2016)) evaluating the performance of the Kosambi-Hilbert torsion (KHT)

method to extract a collective rhythm from multivariate oscillatory time series and compare it

to results obtained from PCA. The KHT method takes advantage of the singular value

decomposition algorithm and accounts for possible phase lags among different time series

and allows to focus the analysis on a specific spectral band, optimally amplifying the signal-

to-noise ratio of a common rhythm. We evaluate the performance of these methods for two

particular sets of data: EEG data recorded with closed eyes and EEG data recorded while

observing a screen flickering at 15 Hz. We found an improvement in the signal-to-noise ratio

of the collective signal for the KHT over the PCA, particularly when random temporal shifts

are added to the channels.

Introduction

Non-invasive techniques such as electroencephalography (EEG), functional magnetic reso-

nance imaging (fMRI) or magnetoencephalography (MEG) are widely used to study the brain

activity [1–3]. Since EEG devices are more portable than MEG and have better time resolution

than fMRI, they are being used in many different clinical and research environments [4, 5].

Accordingly, there is a wide range of prices for EEG devices, from brain—computer interface

systems designed for a specific task to medical-grade devices with hundreds of high quality

electrodes. These measurement devices are all based on the same principle, neurons communi-

cate through chemical neurotransmitters and electrical impulses, giving rise to electromagnetic

waves. Electrodes are then used in EEG to measure oscillatory signals related to action
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potential across different regions of the brain. In EEG devices, it is generally believed that most

of the measured signal is provided by pyramidal neurons of the cortex [6, 7].

Consumer EEG headsets are typically used for gaming and simple brain-computer interface

(BCI) tasks. However, these consumer devices are being used more and more in research

[8–11]. Low-cost EEG devices suffer from several impairments compared to medical-grade

ones, including a lower signal quality and an imprecise timing. Recent work by Matthieu Duvi-

nage et al. suggests that the signal to noise ratio (SNR) is a weak point of these apparatus in

comparison to that present in medical-grade systems [12]. Other aspects such as maintenance

costs and patient comfort are also relevant in the comparison between devices. Here, we focus

on the SNR improvement of the EEG signal from a consumer EEG headset but we do not com-

pare directly to medical-grade devices. In this context, improving the SNR could make some

consumer headsets a reasonable alternative to the medical ones for non-critical tasks.

The raw data measured in EEG is oscillatory, and it is common to examine the data for dif-

ferent frequency bands [13]. A commonly studied frequency band is the alpha band, which

corresponds to neural oscillations in the frequency range of 8–13 Hz. In adults, the activity in

this band is present being awake with the eyes open, and is strongly amplified when our eyes

are closed [14]. Alpha brain waves are also present in some kinds of sleep, reversible coma or

migraine [15]. Other frequency bands of interest include e.g. delta (0.2–3 Hz), theta (4–7 Hz),

beta (13–30 Hz) and gamma (30–70 Hz) brain waves.

The brain activity may exhibit characteristic frequencies for certain tasks, e.g. memory

retrieval or sustained attention [16]. In this context, phase synchronization has been shown to

be a good indicator to characterize normal brain function [17, 18]. In particular, memory-

related operations result in a high degree of phase synchronization in the theta and gamma

bands [19, 20]. This mechanism is thought to facilitate communication between brain regions.

Phase synchronization has also been used as a tool to characterize brain pathologies [18].

Abnormal phase synchronization properties have been observed in the case of schizophrenia

disorders in the gamma band [21] or in epilepsy [22]. In the case of phase synchronization, a

collective rhythm provides valuable information about the activity of the brain in specific fre-

quency bands. A collective rhythm can be obtained when all the signals measured in different

EEG channels are compressed in a single one, obtained as a combination of the individual

recordings. Since EEG recordings consist of multiple and simultaneous measurements of

brain oscillations from different locations, they can be interpreted as a set of measurements

from noisy nonlinear coupled oscillators [23]. Thus, techniques originating from the study of

nonlinear dynamical systems prove valuable in the extraction of a collective brain rhythm

[24–27].

Our work focuses on the analysis and comparison of different techniques for the estimation

of collective rhythms from EEG data measured using a consumer EEG device. More specifi-

cally, we choose the Emotiv EPOC+ for our measurements as it is a user-friendly, comfortable

and non-invasive EEG headset with 14 channels. In what follows, we describe the different

phase extraction methods and compare their benefits. We show that the Kosambi-Hilbert Tor-

sion (KHT) method [27] is extremely effective at estimating a global signal from EEG data. We

evaluate the performance for two sets of measurements: EEG data recorded in a resting state

with eyes closed and EEG data recorded while observing a screen flickering at 15 Hz. For these

sets of data, we expect, respectively, the observation of strong brain activity between 8 and 12

Hz with a maximum near 10 Hz (alpha rhythm), and phase locking in a narrow range of fre-

quencies with a maximum around 15 Hz (screen flickering rate).

Collective signal improvement in an EEG headset
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Materials and methods

Since we intend to improve the SNR of collective oscillations in commercial devices, we first

describe the specifics of the EEG device and the algorithms employed to infer such collective

oscillations. In particular, we utilized an Emotiv EPOC1 headset as the EEG recording device.

For the extraction of a collective phase, we describe the methods of principal component anal-

ysis (PCA) [28], phaser [29], and KHT algorithms [27]. Finally, we define the notions of sig-

nal-to-noise ratio and instantaneous phase as they will be used along the manuscript.

Emotiv

A 14 channel wireless Emotiv EPOC1 headset has been utilized to generate the data we ana-

lyze in the present work. In this device saline based wet sensors are used to register the signal

of each channel. The raw data is collected at 128 samples per second simultaneously for each

channel and sent to the computer in real time via wireless transmission. Each electrode has a

resolution of 0.51 μV and a bandwidth of 43 Hz. In Fig 1, we provide the information about

the location of the electrodes.

Fig 1. Channel locations and labels for the 14 electrodes on the Emotiv device. There are two additional reference

sensors, which are 30 degrees above the ears.

https://doi.org/10.1371/journal.pone.0197597.g001
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Data collection

All procedures performed in studies involving human participants were in accordance with

the ethical standards and with the 1964 Helsinki Declaration and its later amendments or com-

parable ethical standards. All participants gave informed written consent, following the ethics

protocol approved by the Ethics Committee of the University of the Balearic Islands.

We have recorded our own data using the Emotiv device described above. Before placing

the headset on the scalp, the electrodes are slightly wetted with a saline solution that improves

skin contact (higher conductivity). Here, we have performed two types of measurements:

brain activity in a resting state with closed eyes and sitting on a comfortable chair while observ-

ing a screen flickering at 15 Hz.

In the first task, the subject closes his/her eyes and brain activity is measured during 30 sec-

onds. A similar process is repeated for the flickering task, in which the subject looks at a flash-

ing screen with alternating colors (black and white) at a 15 Hz frequency. These tasks are

repeated for five subjects to account for inter-subject variations.

In order to compare the results provided by the different methods that will be introduced, it

is important to choose tasks or experiments that really test their performance in a common

framework. In our case, the experiments have been chosen to test the methods on fundamen-

tally different signals. On the one hand, the brain activity with the eyes closed presents a delo-

calized globally distributed oscillation around the alpha frequency band. The signal measured

in this frequency range is significantly higher with the eyes closed than with the eyes opened.

On the other hand, the brain activity induced by watching a flickering screen (alternating

black and white colors) produces an EEG rhythm at 15 Hz within a narrow frequency range,

i.e. the flicker produces a rather localized oscillation. Thus, we tested the methods on 2 differ-

ent scenarios: signals with a relatively high SNR and a broad spectrum and signals with a rela-

tively low SNR and a narrow spectrum.

We recorded several realizations for each experiment in order to obtain reliable results. In

total, for each subject we recorded 6 independent realizations for the eyes closed experiment

and 6 realizations for the flicker at 15 Hz in order to achieve similar relative errors for both

experiments. Each realization lasts for 30 seconds.

After collecting the data we manually extract 10 seconds of artifact-free recordings for each

subject. An example of the recorded data is shown in Fig 2, in which we can see with a naked

eye that several EEG channels are highly correlated along the time series.

As an example, Fig 3 shows the average SNR of each channel for both experiments obtained

from one of the subjects. In the case of the eyes closed, one can observe a common delocalized,

broadband high activity between 8 and 10 Hz approximately. In the case of the flicker, we can

observe a common localized, narrow band rhythm oscillating at 15 Hz in several channels, in

addition to the activity between 8 and 10 Hz. The activity at 15 Hz is greater in the occipital

lobes. These lobes are fundamentally dedicated to the visual processing [30]. Other subjects

show qualitatively similar spectra, specially in the case of the flicker. In the case of the eyes

closed, we typically observe broadband high activity around the alpha frequency band, but the

maximum activity is not exactly at the same frequency than for the case shown in Fig 3.

Principal component analysis (PCA)

PCA is a standard method useful to reduce the dimensionality of Gaussian distributed data

[28]. In general, a n ×mmatrix can be reduced to k ×m with k = 1, 2, . . ., n. Our aim is to uti-

lize this method to compress the time series corresponding to different sensor locations in a

single one (k = 1), which is the collective rhythm. The goal of PCA is to express this global sig-

nal as the eigensignal with the greatest variance, which is obtained from a linear transformation
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Fig 2. Segment of 3 seconds of normalized EEG time series for two different experiments measured using the Emotiv device. (Left)

Resting state with eyes closed. (Right) Watching a screen displaying a 15 Hz flicker. (Red) Channel locations are shown in Fig 1.

https://doi.org/10.1371/journal.pone.0197597.g002

Fig 3. Mean SNR of the data corresponding to the two different experimental conditions for a subject in the study. (Left) Average over 6 realizations with eyes closed.

(Right) Average over 6 realizations looking at a 15 Hz flickering screen.

https://doi.org/10.1371/journal.pone.0197597.g003
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of the raw data. This eigensignal is the one that retains more information from the original

data. The alternative for non-Gaussian distributed data is independent component analysis

(ICA) [31]. In our case, we checked that the results for PCA and ICA are equivalent since the

first principal components are also independent.

Phaser algorithm

The phaser algorithm applies to the estimation of a global phase from multidimensional data

produced by a locked system of coupled oscillators [29]. The Phaser algorithm was originally

applied to construct a global phase from the Hopf oscillator model and cockroach locomotion

synthetic and empirical data in the body frame of reference [29]. This method turned out to be

successful for the example of the cockroach locomotion but it is not clear if it is suitable in the

case of EEG data. The main difference between the cockroach locomotion and EEG measure-

ments is the measurement noise, which is higher in EEG data. In addition, the channels in the

EEG data can have very different SNR and estimated number of cycles, making the phase

inference more difficult. We note that the phaser estimation algorithm uses similar mathemat-

ical concepts to a previous work carried out by Kraleman et al [32], however the targets are

completely different.

Although the algorithm can be also pre-trained and used with novel data, we only consider

training data to fit a phase estimator. An implementation of the algorithm has been made

available [33] by the original authors, and consists of the following steps (1-4):

1. (Metrization) Transform measurements to z-scores with equal variance [34]. These scores,

zj, are defined such that ||zj|| is the Mahalanobis distance [35] of the (Gaussian) covariance

matrix, CX, of measurements xj − hxji:

zj � C
� 1=2

X ðxj � hxjiÞ ¼ UTL
� 1=2Uðxj � hxjiÞ; ð1Þ

where CX = UTΛU and small bold letters denote time series represented as column vectors.

The scores are linearly uncorrelated because its covariance matrix is the identity. Notice

that diagonalization of CX can be done through SVD of the centered original data, and nor-

malization by C� 1=2

X transforms the original data into time series with uncorrelated mea-

surement noise and similar variance.

2. (Protophases) Compute the individual instantaneous phases for each score time series

using the Hilbert transform [36].

3. (Series correction operator) Apply Fourier series based correction to the individual phases.

This step is more robust to measurement noise in [29] than in [32]. This process is denoted

by the series correction operator, P, which applies to a single phase θi(t) and corrects sys-

tematic errors in θi(t). The entire process of approximating the actual phase, ϕi, from θi is

written as �̂i ¼ P½yi�.

4. (Combine multiple estimates) Combine the individual phase estimates into a single global

phase using PCA. Once the individual phases have been estimated using the series correc-

tion operator, they are combined into a single, improved global phase, �̂ � �, of the phase-

locked system with actual phase ϕ. The combination has the purpose of improving the

SNR. First, an analytic signal with constant amplitude envelope is reconstructed for each
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coordinate as q̂2jðtÞ þ iq̂2jþ1ðyÞ, so that

q̂2jðtÞ � rj sin ð�̂ jðtÞÞ;

q̂2jþ1ðtÞ � rj cos ð�̂ jðtÞÞ;
ð2Þ

where ρj has been previously obtained from the time averaged amplitude envelope of the

corresponding time series, i.e.

rj ¼ hjzjðtÞ þ iH½zjðtÞ�ji; ð3Þ

where zj(t) are the z-scores of the original time series. The magnitudes ρj are expected to be

higher when �̂ j are closer to the actual phase ϕ.

Therefore, since q̂2jðtÞ and q̂2jþ1ðtÞ are orthogonal, we fill a data matrix Q̂ with the time

series q̂jðtÞ organized in columns to perform PCA accounting for small phase shifts. The

first two principal components, v̂~1 ; v̂~2 of Q̂ are used to obtain two orthogonal projections,

which provide a phase estimation that is also series-corrected with the operator P, i.e.

�̂ ¼ P½ arg ðQ̂ðv̂~1 þ iv̂~2ÞÞ�: ð4Þ

Kosambi-Hilbert torsion (KHT)

Schwabedal and Kantz [27] discussed the possible benefits of improved phase inference and

proposed a method called Kosambi-Hilbert torsion (KHT), which optimally infers the phase

dynamics of a collective rhythm. KHT has the same target than the Phaser and PCA algorithms

for k = 1 applied to collective rhythms. KHT is a transformation based on methods proposed

by Kosambi [37] and Hilbert, hence its name. It maximally amplifies the SNR of an oscillatory

signal which is supposed to be common in all channels, trying to avoid spurious phase slips.

Schwabedal and Kantz have made available an implementation of the KHT [38], which con-

sists of the following steps (1-6):

1. (Reference phase) Choose a reference channel, which will lock the phase. We assume that

the phase obtained from the reference channel will be well defined and will be similar to the

(unknown) real collective phase. In our case, we use the channel with the largest SNR as a

reference for the KHT.

2. (Normalization) Compute the noise intensity s2
noise;j for each channel and use it to normalize

each channel xj 7! xj/σnoise,j. This normalization choice makes the SNR to be the optimiza-

tion objective of this method.

3. (Extended phase space) Construct the data matrix X = (x1, x2,H(x2), . . ., xn,H(xn)), where

each component is a column vector containing the time evolution.H(xj) denotes the Hil-

bert transform of the channel xj, and n is the number of channels. Notice thatH(x1) is not

present here.

4. (Filter) Bandpass filter X by columns to obtain Xf at the desired frequency and bandwidth.

In our case, we used sharp bandpass filters.

5. (SVD) Compute V using singular value decomposition (SVD) [39] on the filtered data

matrix Xf ¼ USVT, where U is anm ×m real or complex unitary matrix, S is anm × n
rectangular diagonal matrix with non-negative real numbers on the diagonal, and V is an n
× n real or complex unitary matrix. This problem is equivalent to the diagonalization of the

covariance matrix C � ðXf Þ
TXf ¼ VSTSVT. As a convention, the greatest eigenvalue is the
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first element of the diagonal matrix STS, and the corresponding first component of the

rotation matrix V, as in PCA, is the direction that retains the greatest variance.

6. (Collective rhythm estimation) Apply the orthonormal rotation V to X to get an estimation

of the collective signal: y(t) = (VX)t1, i.e. the original extended data matrix X is rotated in

the direction that retains the greatest variance of the filtered matrix Xf. We keep only the

first column of the result.

In summary, the KHT algorithm computes the optimum torsion that projects a group of

signals onto a component with the largest SNR. This optimum projection is computed at the

extended phase space trajectory of the filtered signals and applied back to the original (unfil-

tered) signals.

Definition of the signal-to-noise ratio

The signal-to-noise ratio (SNR) is a measure of the level of signal compared to the level of

background noise of a time series. Given a time series, the corresponding SNR is computed as

the signal variance divided by the noise variance,

SNR ¼
s2
signal

s2
noise

: ð5Þ

A high SNR indicates high precision data. The noise variance depends on the definition of

noise, which in our case and for an arbitrary signal we define using bandpass filters at different

frequencies and a given bandwidth. The level of noise then corresponds to the out-of-band

variance, following the recommendations in [27]. The procedure to compute the SNR is the

following:

1. Given a time series x(t), select the desired center frequency and bandwidth to apply a band-

pass filter to x(t) and obtain xf(t), which is the filtered signal.

2. Compute the signal variance at the given center frequency, fc, as s2
signal = var[xf(t)].

3. Compute the noise variance at the given center frequency as s2
noise = var[x(t) − xf(t)].

4. Compute the SNR, see Eq (5).

Here, everything that is not the signal within a given frequency range is considered to be

noise. This procedure can be repeated for several center frequencies in the desired range to

obtain the spectrum SNR(fc).

Extraction of an instantaneous phase

The analytic signal is defined as ya(t) = y(t) + iH(y(t)), whereH(y(t)) is the Hilbert transform

of y(t). This analytic signal can also be written as ya(t) = A(t)exp(iϕ(t)), where A(t) is the ampli-

tude envelope and ϕ(t) = arg[ya(t)] is the instantaneous phase [36]. If y(t) is an estimation of a

global signal, then ϕ(t) is an estimation of a global phase.

Addressing non-stationarity

Variations of the signal and noise amplitudes, artifacts, or even brief disconnections are not

features of periodic or quasi-periodic data. These potential drawbacks can make the mean and

variance to be different at two different temporal windows, affecting in turn the performance

of SVD applied to either KHT, phaser or PCA. Typically, EEG data is non-stationary and the

SNR changes in time. To deal with this issue, we use a windowing technique, computing the

Collective signal improvement in an EEG headset

PLOS ONE | https://doi.org/10.1371/journal.pone.0197597 May 24, 2018 8 / 21

https://doi.org/10.1371/journal.pone.0197597


global signal with the corresponding method using 20 oscillations per window and an overlap

of 10 oscillations per window. Then, the resulting signals obtained for each window are

smoothly concatenated, as in [27].

Results

Our aim is to extract a global signal that represents the underlying dynamics of the system out

of the whole set of measured channels. To that end, we have evaluated the performance of the

three methods described above, namely the KHT, Phaser and PCA. The computation of the

global signal allows us to evaluate the corresponding SNR curves, which may have different

shapes for the different experiments and subjects. Other quantities relevant to this study are

the global phase and the extracted number of cycles. In fact, a good criterion to evaluate which

collective rhythm has the best phase estimation is to choose the best method in terms of the

SNR. We have checked that the collective rhythm extracted from the time series is more accu-

rate when choosing the method that generates the best approximation for the phase of the tem-

poral signal. A better phase approximation for the measurement of the number of cycles

implies that forward or backward spurious phase slips are reduced to a minimum. Therefore,

the SNR spectrum corresponding to a better phase extraction method is more accurate. In the

following we compute the global phase and the SNR curves, discussing the main results

obtained from the experimental data. For the sake of clarity in the presentation, we show the

results for a single subject in the first two sections and for all subjects in the third Results

section.

Evaluation of the global phase

The global phase is the instantaneous phase of the global signal that we estimate from the col-

lected experimental data. As described in the Methods section, this phase is obtained from the

analytic signal of the estimated common rhythm. We show results for a single subject in this

section. Other subjects present similar results in terms of the properties of the phase extraction

methods.

Figs 4 and 5 show the evaluation of the global phase for the two experimental conditions.

On the one hand, in the left panels of these two figures, we represent the extracted phases

(solid lines) and the corresponding linear regression (dashed lines) as a function of time for

the estimations obtained from the three methods: PCA (blue), Phaser (green) and KHT (red).

The phase estimation has been obtained from 10 seconds data sets in both cases: eyes closed

(Fig 4) and flicker at 15 Hz (Fig 5). Also, notice that top and bottom panels are different. In the

bottom panels, the phase is approximated using all available channels, while in the top panels,

it is approximated using 5 (2) channels in the case of the eyes closed (flicker). We have manu-

ally picked the number of channels in each scenario such that the attributes of the methods are

better represented.

On the other hand, in the right panels of Figs 4 and 5, we plot the residual phases as a func-

tion of the cycles for each of the three methods, which have been shifted from each other for

clarity. The residual phases are computed as the difference between each phase and the corre-

sponding linear fit, i.e. it evaluates deviations from an ideal model with constant angular fre-

quency. The residual phase allows us to compare the total number of cycles and similarities

between different residual phases.

Comparing Figs 4 and 5, we note that the KHT is the most consistent method when the

number of data channels used in the analysis is modified. Recall that the results shown in the

top and bottom panels are computed for a different number of channels. Thus, the KHT is the

most consistent method since the slope of the extracted phase is the most similar between top
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left and bottom left panels for both experiments. Moreover, the residual phases are also the

most similar when comparing top right and bottom right panels for the KHT estimation.

These findings illustrate that this method is more robust when adding data channels with a

lower SNR.

In contrast, comparing PCA and Phaser does not seem so straightforward as in the case of

the KHT just by looking at Figs 4 and 5. We observe that the signal recovered from the phase

obtained using the Phaser algorithm does not provide good results compared to PCA and

KHT in most cases. The only case in which we obtain comparable signals from the three meth-

ods is for the phases shown in the top panel of Fig 5. This is because the main rhythm present

in these two channels have high enough SNR and the detected number of cycles is very similar

for each channel. Nevertheless, when data is not selected manually, it will be by chance that

these conditions hold.

Fig 4. Evaluation of the global phase for the eyes closed experiment. (Left) Instantaneous phases and linear fits. (Right) Residual phases as functions of the

corresponding cycles. (Top) Only 5 channels have been used in the analysis. (Bottom) All available channels have been used.

https://doi.org/10.1371/journal.pone.0197597.g004
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After careful evaluation, we have discarded the Phaser algorithm to analyze EEG time

series. Therefore, the results using this method are omitted in the next sections. We observed

that in general a simple PCA works better than the Phaser algorithm for our data. The latter

only works correctly when the number of cycles of the different channels is very similar, as in

Figs 4 and 5 top left panels, for which all manually selected data channels have almost the same

number of oscillation cycles.

Evaluation of the signal-to-noise ratio

Given a time series, the corresponding SNR is computed as the signal variance divided by the

noise variance (see Eq (5)). For the estimated (KHT and PCA) collective rhythms, one can also

compute the SNR enhancement ΔSNR = SNRglobal/∑j SNRj, where SNRglobal is the SNR of the

Fig 5. Evaluation of the global phase for the 15 Hz flickering experiment. (Left) Instantaneous phases and linear fits. (Right) Residual phases as functions of

the corresponding cycles. (Top) Only 2 channels have been used in the analysis. (Bottom) All available channels have been used.

https://doi.org/10.1371/journal.pone.0197597.g005
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estimated global signal and SNRj are the corresponding SNR of the individual channels Thus,

ΔSNR is a normalization of SNRglobal weighted by the contributions from all the channels.

As mentioned earlier, we expect a higher activity in the alpha band for the eyes closed

experiment. The alpha activity (8-12 Hz) is higher when the subject is awake and relaxed with

eyes closed, but such activity is attenuated when the subject is with eyes open, making mental

efforts or asleep [40]. For the flicker at 15 Hz, we expect an additional and localized activity at

15 Hz [41].

Here, we use the SNR as a metric to compare the phase estimations from the PCA and KHT

methods. Since the real phase is here unknown, we rely on the SNR to estimate the quality of

the different methods. Given that the bandwidth of the electrodes is 43 Hz and the sampling

rate of the Emotiv EPOC is 128 samples per second, we restrict ourselves to the computation

of the phase for frequencies below 20 Hz.

In Fig 6 we show the SNR and its enhancement for eyes closed and flickering experiments

for one of the subjects to illustrate the effect of PCA and KHT in the SNR spectrum. The SNR

enhancement (ΔSNR), which is bounded between 0 (SNR = 0) and 1 (theoretical limit), is

shown in the insets of Fig 6 for both eyes closed and flickering experiments. One can observe a

slightly larger overall SNR enhancement using KHT (red) in contrast to PCA (blue). The

ΔSNR reveals maximum enhancements at the peaks. In the case of the eyes closed, the peak

around 9 Hz is quite similar for both the KHT and the PCA. In the case of the flicker, the peak

at 15 Hz is enhanced by up to 16% using PCA and up to 33% using the KHT with respect to

the theoretical maximum limit at the peak. Other subjects show qualitatively similar shapes of

the SNR frequency curves. In general, the KHT gives a larger SNR enhancement at the fre-

quencies of interest for most subjects.

Interestingly, the projection to obtain the optimum collective rhythm in the case of the

PCA does not always correspond to the component with the largest variance. We find that the

highest variance projection does not necessarily correspond to the eigensignal with highest

Fig 6. Single subject mean SNR and SNR enhancement, and their standard deviations of the PCA (blue) and KHT (red) collective rhythms. The mean SNR over

channels and experiments and its standard deviation is also shown in black/grey. PCA results correspond to the highest SNR eigensignal, which in this case is the second

principal component. The results are an average over the six realizations for both experiments: eyes closed and flicker at 15 Hz, and we analyze 10 seconds for each

realization. The parameters are: 14 channels, 128 samples per second, 1 Hz bandwidth for each center frequency (KHT) and 20 oscillations per window.

https://doi.org/10.1371/journal.pone.0197597.g006
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SNR. This is a known issue of the PCA when it is applied to EEG signals [42]. Some studies in

EEG-based BCI suggest methods to choose the appropriate principal components, e.g. linear

discriminant analysis for a classification task [42] or higher-order statistics for the detection of

steady-state visual evoked potentials [43]. In these cases the principal component with the larg-

est variance is not the most relevant for the specific purpose. The reason is that for EEG signals

with a low SNR, the variance of the signal of interest can be lower than that of the noise due to

internal and external artifacts. Therefore, selecting the relevant PCA component is not

straightforward in the case of EEG, and specially in the case of consumer grade headsets. Here,

we use the second largest variance projection to plot the blue lines in Fig 6. This second com-

ponent of the PCA turns out to correspond to the eigensignal with a highest SNR. Actually,

using the highest variance projection in PCA we obtained a SNR curve similar to that of the

mean over channels.

In Fig 6, we note that the KHT also extracts better other less relevant frequency bands

which are not enhanced or are even lost using PCA. An example of such an enhancement is

the activity around 5 Hz for the eyes closed experiment. The SNR computed from the PCA

estimation drops below the mean SNR computed from the raw data (black), i.e. the activity is

under-represented in this frequency band. In contrast, the SNR of the KHT estimation is

enhanced.

Fig 6 shows the results for all available (14) channels. Since the precise results depend on

the number of data channels used in the analysis, we show in Fig 7 the SNR at the peaks of

interest for different number of channels, added in decreasing order of SNR. For this subject,

the peaks of interest are at 9 Hz in the case of eyes closed and 15 Hz for the flickering. As

shown in Fig 7, the KHT provides in general a better phase estimation than PCA, while the

order of magnitude of the obtained SNR is the same for both methods. Since the SNR is not

the same for all channels, adding very noisy channels may sometimes decrease the SNR of the

extracted collective rhythm. In this regard, it seems that the KHT is more robust to the

Fig 7. SNR for the eyes closed and flickering experiments. The parameters are the same as in Fig 6, changing the number of channels and evaluating the SNR of the

estimated collective rhythms only at the peaks of interest. These collective rhythms have been estimated using PCA (using first and second largest variance projections)

and KHT methods. For this subject, the peaks are located at 9 Hz in the case of eyes closed and 15 Hz for the flickering.

https://doi.org/10.1371/journal.pone.0197597.g007
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addition of channels with lower SNR. It can be seen in Fig 7 that the SNR of the phase

extracted using PCA indeed can present large variations when using a different number of

channels.

Finally, we illustrate in Fig 8 the different global rhythms extracted using the procedures

described above. In this example we use a 10 seconds eyes closed data set for the calculations

and only 7 seconds are shown. The top time series is the raw signal of the reference data chan-

nel (grey) chosen for the computation of the KHT method (channel with highest SNR). From

top to bottom, the second and third time series are the PCA estimations using the projection

onto the first principal component (green) and the second principal component computed

(blue). The fourth time series is the KHT computed from raw data (red) centered at 9 Hz with

1 Hz of bandwidth. In Fig 8, we note that for this example the best PCA estimation of the col-

lective rhythm already has a good SNR (SNR = 0.146) but the original KHT yields a slightly

better estimation (SNR = 0.191). The bottom time series in Fig 8 is the KHT computed from

time shifted raw data (dark red), following a procedure that will be described in the next

section.

Enhancing the signal-to-noise ratio

In the previous section, we have seen an improvement in the SNR of the estimated collective

rhythm using KHT compared to PCA. However, the ratios of improvement remain low. This

is probably due to the fact that the experimental data does not contain major phase lags

between the channels. Therefore, we explore here what happens when phase lags among time

Fig 8. Several examples of estimations of collective rhythms from a data set with the eyes closed, which are shifted from each other for clarity. For each signal, the

corresponding SNR for the frequency band 8.5–9.5 Hz is indicated in the legend. The PCA signals are computed by parts of 20 oscillations at 9 Hz and KHT signals are

also computed at this frequency band (8.5–9.5 Hz). (Grey) Reference channel for the KHT estimations, this channel is the one with highest SNR. (Dark green) PCA

estimation using the first principal component computed from the raw data. (Blue) PCA estimation using the second principal component computed from the raw data.

(Red) KHT estimation. (Dark red) Example of a KHT estimation computed from time shifted data. We used 14 channels for the computation of all the collective

rhythms, except for the top time series, which is the raw data of the reference channel.

https://doi.org/10.1371/journal.pone.0197597.g008
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series are artificially added, and are not only due to inherent mismatches. In advance, we can

already anticipate that the SNR of the collective signal extracted with PCA will typically

degrade in presence of significant phase lags. But, how does higher phase lags affect the perfor-

mance of KHT? To answer this question we shift in time all data channels using random uni-

form shifts and subsequently analyze the SNR. In this section, we show the results for the five

subjects of the current study.

Figs 9 and 10 show the SNR at the peaks of interest for both experiments, varying the num-

ber of channels, added in decreasing order of SNR, and for different number of shifted sam-

ples. In the case of the eyes closed experiment, the analyzed peak is located near 9 Hz, but

varies across different subjects, while in the case of the flickering we always analyze the 15 Hz

peak. In these figures, we change the maximum number of shifted samples for each realization

according to the number indicated in the horizontal axis. Each channel is shifted by a random

number of samples within the allowed range [−max(shiftj), max(shiftj)] for j = 1, 2, . . ., 14. The

horizontal axis in Figs 9 and 10 indicates the maximum shift allowed in each case.

One can observe in Figs 9 and 10 that for both experiments the results are very similar. In

the case of PCA, the best SNR is obtained for low to intermediate number of channels and

temporal shift. In contrast, when using the KHT, the best SNR is obtained for high number of

channels and temporal shift. We note that the KHT estimation typically saturates at a maxi-

mum SNR as we increase the maximum temporal shift. In Table 1, we show the optimum

number of channels and temporal shift associated to the best SNR for all the subjects in this

study. It is apparent that the absolute SNR values vary across subjects but there is a clear trend

towards the use of a high number of channels and a high temporal shift.

One could expect a priori that the SNR of the KHT remains approximately constant when

the time shift between the data channels is changed, however the SNR actually increases. Our

interpretation of these results rely on the fact that the KHT method aims at correcting phase

lags between a reference channel and the rest of the channels. In this manner, the rest of the

channels are phase-shifted in order to obtain in-phase oscillations. This shift is typically

restricted to be smaller than half a period of the main oscillating signal. The correcting shift

applied by the KHT aims at keeping the phases aligned. This procedure does not necessarily

align the amplitudes when going back to the original signal space. For increasing time shifts,

we have checked that the variance of the out-of-band signal decreases since the amplitudes

lose correlation. At the same time the variance of the in-band signal increases, leading to the

observed increase in the SNR.

In the bottom signal of Fig 8 a single realization for a single subject is shown, illustrating

that the KHT computed from time shifted data yields an even better estimation (SNR = 0.511)

of the global signal for this example. The SNR of the better estimation is 5.9 times higher than

the SNR of the raw signal of the reference channel and 3.5 times higher than the SNR of the

best PCA estimation.

Discussion and outlook

Here, we compare the standard PCA to more recent approaches to extract a collective rhythm

from phase-synchronized data. We observe that the KHT method improves the SNR of a col-

lective EEG signal over the standard PCA. More specifically, we find this clear improvement

when we add random phase lags (temporal shifts) among time series before using the KHT.

For the experimental data recorded with the eyes closed condition and using the KHT

method, the quality of the extracted collective rhythm keeps improving as more channels are

added to the analysis, even if the added channels have a lower SNR. In contrast, we find that
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Fig 9. Mean SNR for the eyes closed experiments at the corresponding peaks in the alpha band computed from

KHT (left) and PCA (right) collective rhythm estimations. The horizontal axis indicates the maximum time shift.

This time shift is random uniform among time series and we obtain the SNR averaged over 30 random realizations and

the corresponding experimental realizations. The vertical axis indicates the number of channels added in decreasing

order of SNR used for the computation of both quantities.

https://doi.org/10.1371/journal.pone.0197597.g009
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Fig 10. Mean SNR for the flickering experiments at the 15 Hz peak computed from KHT (left) and PCA (right)

collective rhythm estimations. The horizontal axis indicates the maximum time shift. This time shift is random

uniform among time series and we obtain the SNR averaged over 30 random realizations and the corresponding

experimental realizations. The vertical axis indicates the number of channels added in decreasing order of SNR used

for the computation of both quantities.

https://doi.org/10.1371/journal.pone.0197597.g010
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using the PCA the best result is typically obtained by selecting only a few channels with the

highest SNR.

For the experimental data recorded watching a flickering screen, the quality of the extracted

collective rhythm using the KHT improves when channels with a lower SNR are added to the

analysis. In contrast, we found that using only a few channels is the best choice when using the

PCA. In the latter case, adding more channels with lower SNR typically makes the quality of

the collective rhythm to start decreasing significantly.

Comparing all subjects and the two experimental conditions, we find a larger SNR for the

KHT than for the PCA. The overall SNR enhancement when using all channels is larger in the

case of the eyes closed experiment than in the flickering screen one. This is due to the fact that

the signal is more distributed along the channels in the former case.

Here, we recorded EEG data for two experimental conditions in order to characterize the

signal quality of a commercial “low-cost” headset (Emotiv EPOC). We show that the KHT

method provides an improvement in the quality of the extracted collective rhythm. We argue

that similar qualitative results are to be expected, in terms of the SNR improvement of a collec-

tive signal, using other EEG devices and in the presence of phase lags. This is a major advan-

tage of the KHT over the PCA by the very own definition of the methods, independent of the

EEG recording device. In this context, we also show that the introduction of an additional

time-shift (or phase lag) to the original time series can enhance the extracted signal quality

when using the KHT method. This finding applies to signals whose main frequency content is

sustained over time.

As future work, we intend to test the performance of the KHT outcome for BCI tasks (e.g.

visual stimuli or motor control) [44, 45]. The computational complexity of this method does

not pose a problem in terms of computing power or computing time since it relies on the sin-

gular value decomposition. In this case, however, spatial filtering techniques are already exten-

sively used [46, 47] and one would need to validate the KHT in front of such methods. Finally,

we note that knowing the coefficients of the optimum torsion, the phase lags between the dif-

ferent channels can be easily recovered. Thus, the KHT can be used to obtain reliable estima-

tions of the real phase lags between brain areas, also if a professional EEG device is used.

Author Contributions

Conceptualization: Miguel C. Soriano.

Data curation: Alejandro Morán.

Formal analysis: Alejandro Morán.

Funding acquisition: Miguel C. Soriano.

Table 1. KHT optimum cases extracted from the data represented in Figs 9 and 10 for the five subjects.

KHT optimum cases

id Eyes closed Flicker 15 Hz

channels shift (samples) SNR channels shift (samples) SNR

1 12 14 0.67 14 13 0.2

2 14 13 0.40 14 13 0.13

3 14 13 0.16 14 13 0.17

4 14 14 0.35 14 8 0.61

5 14 14 0.20 14 13 0.30

https://doi.org/10.1371/journal.pone.0197597.t001

Collective signal improvement in an EEG headset

PLOS ONE | https://doi.org/10.1371/journal.pone.0197597 May 24, 2018 18 / 21

https://doi.org/10.1371/journal.pone.0197597.t001
https://doi.org/10.1371/journal.pone.0197597


Investigation: Alejandro Morán, Miguel C. Soriano.

Methodology: Alejandro Morán.

Software: Alejandro Morán.

Supervision: Miguel C. Soriano.

Writing – original draft: Alejandro Morán, Miguel C. Soriano.

Writing – review & editing: Alejandro Morán, Miguel C. Soriano.

References
1. Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. IEEE Signal Processing Magazine.

2001; 18(6):14–30. https://doi.org/10.1109/79.962275

2. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008; 453(7197):869–878.

https://doi.org/10.1038/nature06976 PMID: 18548064

3. Baillet S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci. 2017; 20

(3):327–339. https://doi.org/10.1038/nn.4504 PMID: 28230841

4. Tatum WO. Handbook of EEG Interpretation. Springer Demos Medic Series. Springer Publishing Com-

pany; 2007.

5. Curran EA, Stokes MJ. Learning to control brain activity: A review of the production and control of EEG

components for driving brain—computer interface (BCI) systems. Brain and Cognition. 2003; 51

(3):326–336. https://doi.org/10.1016/S0278-2626(03)00036-8 PMID: 12727187

6. Murakami S, Okada Y. Contributions of principal neocortical neurons to magnetoencephalography and

electroencephalography signals. The Journal of Physiology. 2006; 575(3):925–936. https://doi.org/10.

1113/jphysiol.2006.105379 PMID: 16613883

7. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP

and spikes. Nature Reviews Neuroscience. 2012; 13(6):407–420. https://doi.org/10.1038/nrn3241

PMID: 22595786

8. Choi B, Jo S. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot naviga-

tion and recognition. PLoS ONE. 2013; 8(9):e74583. https://doi.org/10.1371/journal.pone.0074583

PMID: 24023953

9. Stopczynski A, Stahlhut C, Larsen JE, Petersen MK, Hansen LK. The smartphone brain scanner: a por-

table real-time neuroimaging system. PLoS ONE. 2014; 9(2):e86733. https://doi.org/10.1371/journal.

pone.0086733 PMID: 24505263

10. Martinez-Leon JA, Cano-Izquierdo JM, Ibarrola J. Are low cost Brain Computer Interface headsets

ready for motor imagery applications? Expert Systems with Applications. 2016; 49:136–144. https://doi.

org/10.1016/j.eswa.2015.11.015

11. Prause N, Siegle GJ, Deblieck C, Wu A, Iacoboni M. EEG to Primary Rewards: Predictive Utility and

Malleability by Brain Stimulation. PLOS ONE. 2016; 11(11). https://doi.org/10.1371/journal.pone.

0165646 PMID: 27902711

12. Duvinage M, Castermans T, Petieau M, Hoellinger T, Cheron G, Dutoit T. Performance of the Emotiv

Epoc headset for P300-based applications. Biomedical engineering online. 2013; 12(1):56. https://doi.

org/10.1186/1475-925X-12-56 PMID: 23800158

13. Buzsaki G. Rhythms of the Brain. Oxford University Press; 2006.

14. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends

Cogn Sci. 2012; 16(12):606–617. https://doi.org/10.1016/j.tics.2012.10.007 PMID: 23141428

15. de Tommaso M, Marinazzo D, Guido M, Libro G, Stramaglia S, Nitti L, et al. Visually evoked phase syn-

chronization changes of alpha rhythm in migraine: Correlations with clinical features. International Jour-

nal of Psychophysiology. 2005; 57(3):203–210. https://doi.org/10.1016/j.ijpsycho.2005.02.002 PMID:

16109290

16. Harmony T, Fernández T, Silva J, Bosch J, Valdés P, Fernández-Bouzas A, et al. Do specific EEG fre-

quencies indicate different processes during mental calculation? Neuroscience Letters. 1999; 266

(1):25–28. https://doi.org/10.1016/S0304-3940(99)00244-X PMID: 10336175

17. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale

integration. Nature reviews neuroscience. 2001; 2(4):229. https://doi.org/10.1038/35067550 PMID:

11283746

Collective signal improvement in an EEG headset

PLOS ONE | https://doi.org/10.1371/journal.pone.0197597 May 24, 2018 19 / 21

https://doi.org/10.1109/79.962275
https://doi.org/10.1038/nature06976
http://www.ncbi.nlm.nih.gov/pubmed/18548064
https://doi.org/10.1038/nn.4504
http://www.ncbi.nlm.nih.gov/pubmed/28230841
https://doi.org/10.1016/S0278-2626(03)00036-8
http://www.ncbi.nlm.nih.gov/pubmed/12727187
https://doi.org/10.1113/jphysiol.2006.105379
https://doi.org/10.1113/jphysiol.2006.105379
http://www.ncbi.nlm.nih.gov/pubmed/16613883
https://doi.org/10.1038/nrn3241
http://www.ncbi.nlm.nih.gov/pubmed/22595786
https://doi.org/10.1371/journal.pone.0074583
http://www.ncbi.nlm.nih.gov/pubmed/24023953
https://doi.org/10.1371/journal.pone.0086733
https://doi.org/10.1371/journal.pone.0086733
http://www.ncbi.nlm.nih.gov/pubmed/24505263
https://doi.org/10.1016/j.eswa.2015.11.015
https://doi.org/10.1016/j.eswa.2015.11.015
https://doi.org/10.1371/journal.pone.0165646
https://doi.org/10.1371/journal.pone.0165646
http://www.ncbi.nlm.nih.gov/pubmed/27902711
https://doi.org/10.1186/1475-925X-12-56
https://doi.org/10.1186/1475-925X-12-56
http://www.ncbi.nlm.nih.gov/pubmed/23800158
https://doi.org/10.1016/j.tics.2012.10.007
http://www.ncbi.nlm.nih.gov/pubmed/23141428
https://doi.org/10.1016/j.ijpsycho.2005.02.002
http://www.ncbi.nlm.nih.gov/pubmed/16109290
https://doi.org/10.1016/S0304-3940(99)00244-X
http://www.ncbi.nlm.nih.gov/pubmed/10336175
https://doi.org/10.1038/35067550
http://www.ncbi.nlm.nih.gov/pubmed/11283746
https://doi.org/10.1371/journal.pone.0197597


18. Uhlhaas PJ, Singer W. Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and

Pathophysiology. Neuron. 2006; 52(1):155–168. https://doi.org/10.1016/j.neuron.2006.09.020 PMID:

17015233

19. Sauseng P, Klimesch W, Gruber WR, Birbaumer N. Cross-frequency phase synchronization: a brain

mechanism of memory matching and attention. Neuroimage. 2008; 40(1):308–317. https://doi.org/10.

1016/j.neuroimage.2007.11.032 PMID: 18178105

20. Fell J, Axmacher N. The role of phase synchronization in memory processes. Nature reviews neurosci-

ence. 2011; 12(2):105–118. https://doi.org/10.1038/nrn2979 PMID: 21248789

21. Spencer KM, Nestor PG, Perlmutter R, Niznikiewicz MA, Klump MC, Frumin M, et al. Neural synchrony

indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA. 2004; 101

(49):17288–17293. https://doi.org/10.1073/pnas.0406074101 PMID: 15546988

22. Mormann F, Lehnertz K, David P, Elger CE. Mean phase coherence as a measure for phase synchroni-

zation and its application to the EEG of epilepsy patients. Physica D. 2000; 144(3-4):358–369. https://

doi.org/10.1016/S0167-2789(00)00087-7

23. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, et al. Detection of n:m phase lock-

ing from noisy data: application to magnetoencephalography. Physical Review Letters. 1998; 81

(15):3291. https://doi.org/10.1103/PhysRevLett.81.3291

24. Stam CJ, Breakspear M, van Cappellen van Walsum AM, van Dijk BW. Nonlinear synchronization in

EEG and whole-head MEG recordings of healthy subjects. Human brain mapping. 2003; 19(2):63–78.

https://doi.org/10.1002/hbm.10106 PMID: 12768531

25. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals.

Progress in Neurobiology. 2005; 77(1):1–37. https://doi.org/10.1016/j.pneurobio.2005.10.003 PMID:

16289760

26. Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R. Uncovering interaction of coupled

oscillators from data. Physical Review E. 2007; 76(5):055201. https://doi.org/10.1103/PhysRevE.76.

055201

27. Schwabedal JTC, Kantz H. Optimal extraction of collective oscillations from unreliable measurements.

Physical Review Letters. 2016; 116(10):104101. https://doi.org/10.1103/PhysRevLett.116.104101

PMID: 27015483

28. Shlens J. A tutorial on principal component analysis. arXiv preprint arXiv:14041100. 2014;.

29. Revzen S, Guckenheimer JM. Estimating the phase of synchronized oscillators. Physical Review E.

2008; 78(5):051907. https://doi.org/10.1103/PhysRevE.78.051907

30. Posner MI, Petersen SE. The Attention System of the Human Brain. Annual Review of Neuroscience.

1990; 13(1):25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325 PMID: 2183676

31. Hyvärinen A, Karhunen J, Oja E. Independent component analysis. vol. 46. John Wiley & Sons; 2004.

32. Kralemann B, Cimponeriu L, Rosenblum M, Pikovsky A, Mrowka R. Phase dynamics of coupled oscilla-

tors reconstructed from data. Physical Review E. 2008; 77(6):066205. https://doi.org/10.1103/

PhysRevE.77.066205

33. Phaser implementation; 2008. https://github.com/BIRDSLab/phaser

34. Crocker L, Algina J. Introduction to classical and modern test theory. ERIC; 1986.

35. De Maesschalck R, Jouan-Rimbaud D, Massart DL. The Mahalanobis distance. Chemometrics and

Intelligent Laboratory Systems. 2000; 50(1):1–18. https://doi.org/10.1016/S0169-7439(99)00047-7

36. Picinbono B. On instantaneous amplitude and phase of signals. IEEE Transactions on Signal Process-

ing. 1997; 45(3):552–560. https://doi.org/10.1109/78.558469

37. Ramaswamy R. D.D. Kosambi: Selected Works in Mathematics and Statistics. Springer India; 2017.

38. KHT implementation; 2016. https://github.com/jusjusjus/KHT_PRL2016

39. Klema V, Laub A. The singular value decomposition: Its computation and some applications. IEEE

Transactions on Automatic Control. 1980; 25(2):164–176. https://doi.org/10.1109/TAC.1980.1102314

40. Niedermeyer E, et al. The normal EEG of the waking adult. Electroencephalography: Basic principles,

clinical applications, and related fields. 2005; 167:155–164.

41. Herrmann CS. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and

their potential correlation to cognitive phenomena. Experimental Brain Research. 2001; 137(3-4):346–

353. https://doi.org/10.1007/s002210100682 PMID: 11355381
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