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Micro(mi)RNAs play an essential role in the epithelial-mesenchymal transition (EMT) process in human cancers. .is study aimed to
uncover the regulatory mechanism of miR-1301-3p on EMT in pancreatic cancer (PC). .e miRNA profilings from Gene Expression
Omnibus data sets (GSE31568, GSE41372, and GSE32688) demonstrated the downregulation of miR-1301-3p in PC tissues, which was
validated with 72 paired PC tissue samples through qRT-PCR detection. .e low level of miR-1301-3p was associated with a poor
prognosis for PC patients from the PC cohort of.eCancer GenomeAtlas and the validation cohort. GeneOntology analyses indicated
that the target genes ofmiR-1301-3pwere involved in cell cycle and adherent junction regulation. In vitro assays revealed thatmiR-1301-
3p suppressed the proliferation and migration abilities of PC cells. Western blotting and luciferase reporter assays suggested that miR-
1301-3p inhibited RhoA expression by targeting its 3′-untranslated region; RhoA upregulated N-cadherin and vimentin levels; however,
it downregulated the E-cadherin level. In conclusion, our study showed that miR-1301-3p could serve as a prognostic biomarker for PC
and suppress PC cell malignancy by targeting the RhoA-induced EMT process.

1. Introduction

Pancreatic cancer (PC) is the fourth leading cause of cancer-
related deaths worldwide with a 5-year overall survival (OS)
of 5% [1]. Due to the lack of specific symptoms and bio-
markers, 50% of patients were diagnosed with PC in the
advanced stage and lost the opportunity for radical surgery
[2]. .erefore, it is crucial to elucidate the signature driver
molecules in PC tumorigenesis and progression. Micro(mi)
RNA, a small noncoding RNA, can degrade the mRNA by
binding to the 3′-untranslated region (3′UTR) of the target
gene. Accumulating studies have revealed that miRNAs may
regulate cancer-associated biological processes such as cell
proliferation [3], differentiation [4], apoptosis [5], and ep-
ithelial-mesenchymal transition (EMT) [6].

We previously identified the clinically relevant miRNAs
through conjoint analyses with multiple miRNA expression
profiling data and found that miR-1301-3p was down-
regulated in PC tissues and the low level of miR-1301-3p was

associated with poor OS for PC patients [7, 8]. Recent studies
suggest that miR-1301-3p exhibits tumor-suppressive ac-
tivity in esophageal squamous cell carcinoma [9], papillary
thyroid carcinoma [10], and osteosarcoma [11] by inter-
acting with noncoding RNAs. On the contrary, miR-1301-3p
is upregulated in gastric cancer tissues and promotes cancer
cell proliferation via targeting SIRT1 [12]. .ese results
indicated possible dual regulatory roles of miR-1301-3p in
various cancers; however, the effect of miR-1301-3p on PC is
unclear and imperative to be discovered.

.e purpose of this study was to validate the clinical
significance of miR-1301-3p in PC and illustrate its function
and potential signal pathway in PC cells.

2. Materials and Methods

2.1. 'e Differential and Survival Analyses for miR-1301-3p.
Firstly, we extracted miR-1301-3p expression data from
three PC-miRNA expression profilings (GSE31568,
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GSE41372, and GSE32688) of the Gene Expression Omnibus
(GEO) database. Next, we compared the miR-1301-3p level
between PC tissues and normal tissues within the three data
sets. To verify the prognostic importance, the clinical data
and miR-1301-3p expression value were also obtained
through the PC cohort of.eCancer GenomeAtlas (TCGA)
database. According to the miR-1301-3p median value, we
divided PC patients into high- and low-level groups and
performed Kaplan–Meier survival analyses. .e P value was
calculated by the log-rank test.

2.2. Patients and Samples in the Validation Cohort.
Between February 2018 and August 2020, 72 PC patients
were enrolled in a validation cohort. .ese patients had not
accepted radiotherapy or chemotherapy preoperatively, and
the final diagnosis of PC was determined by pathological
results. Surgically resected PC tissues and adjacent normal
tissues were immediately stored in liquid nitrogen for two
hours and then transferred into a −80°C refrigerator for
storage. Postoperatively, these patients have followed an
average of 12 months, ranging from two to 29 months. .e
Ethics Committee of Beijing Chao-Yang Hospital approved
this study, and all patients signed the informed consent
form.

2.3. Functional Annotation and Signaling Pathway Enrich-
ment for miR-1301-3p. We first applied the miRWalk2.0
database to predict the binding genes of miR-1301-3p and
then performed correlation analyses between the mRNA
expression of these genes and miR-1301-3p values based on
the PC cohort of TCGA. Finally, the genes negatively cor-
related with miR-1301-3p were regarded as the target genes
of miR-1301-3p.

To understand the functions of these target genes, we
performed Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses
using the clusterProfiler R package [13]. A protein-protein
interaction (PPI) network was constructed using the Search
Tool for the Retrieval of Interacting Genes database and
visualized with Cytoscape software. .e correlation of each
PPI relationship pair was represented by a combined score
ranging from 0 (low) to 1 (high). In our study, an interaction
>0.4 (moderate) was applied as the cut-off value. .e Mo-
lecular Complex Detection plug-in in Cytoscape software
was used to identify the hub genes among the PPI network.
.e screening conditions were set as degree cut-off� 2,
K-Core� 2, and node score cut-off� 0.2. Besides, we verified
the hub gene expression using the PC-mRNA data of
GSE16515.

2.4.QuantitativeReal-TimePolymeraseChainReaction (qRT-
PCR). TRIzol (Invitrogen, USA) was used for total RNA
extraction and qualified using the NanoDrop ND-1000
(.ermo Fisher, USA). Total RNAwas converted to the first-
strand cDNA according to the manufacturer’s protocol
(rtStar™ First-Strand cDNA Synthesis Kit; Arraystar Inc.).
Specific primers for miR-1301-3p were designed by RiboBio

(Guangzhou, China). .e sequence of forward and reverse
primers for miR-1301-3p was 5′- ACACTCCAGCTGGG
TTGCAGCTGCCTGGGAGT-3′ and 5′-CTCAACTGG
TGTCGTGGAGTCGGCAATTCAGTTGAGGAAGTCAC-
3′. qRT-PCR was performed using Arraystar SYBR® Green
Real-time qPCR Master Mix (Arraystar Inc.) according to
the manufacturer’s instructions. .e relative expression of
miR-1301-3p was calculated using the 2−ΔΔCt method and
normalized to β-actin expression levels.

2.5. Cell Culture and Transfection. Five PC cell lines and one
pancreatic cell line were selected to test the expression of
miR-1301-3p, including SW1990, AsPC-1, CFPAC-1,
PANC-1, Patu-8988, and HPDE6-C7. .ese cells were
purchased from the American Type Culture Collection
(Manassas, VA, USA). We cultured these cells with DMEM
(Biological Industries) containing penicillin/streptomycin
and 10% fetal bovine serum (FBS) at 37°C with 5% CO2.
Since miR-1301-3p was relatively highly expressed in
SW1990 and PANC-1 cells (Figure 1(e)), we selected these
two cell lines to conduct further experiments.

MiR-1301-3p mimics, inhibitor, and negative control
(NC) were designed and synthesized by RiboBio
(Guangzhou, China). Small interference RNA against RhoA
(knockdown group, KD) was designed and synthesized by
GenePharma (Shanghai, China). .e lentiviral vectors
encoding RhoA (overexpression group, OE) were con-
structed by GeneChem (Shanghai, China). In brief, miR-
1301-3p mimics and inhibitor (100 nM) were transfected
into PANC-1 and SW1990 cells using the Lipofectamine
3000 reagent (Invitrogen, USA) following the manufac-
turer’s instruction.

2.6. Cell Counting Kit-8 (CCK-8) Assays. According to the
manufacturer’s instructions, we performed CCK-8 assays
(Sigma Aldrich) to examine the proliferation ability of PC
cells. Approximately 2×103 cells were added to each well of
the 96-well plate, and then the plate was cultured for 24 h at
37°C. Next, we added 50 µl of the miR-1301-3p mimics,
inhibitor, and NC to the wells of the 96-well plate. .en, the
plate was placed in a 37°C incubator again for 24 h. At 0, 24,
48, 72, and 96 h, 10 µl CCK-8 solution was added to each
well. After 2 h optical density (OD), 450 nm values were
measured using the enzyme-labeled instrument (Bio-Rad,
United States). Cells were tested three times for each group.

2.7. Transwell Migration Assays. We conducted transwell
migration assays with a chamber with 8 μm pores (Corning,
NY, USA). A suspension containing 1× 104 PANC-1 and
SW1990 cells was prepared and suspended separately in
serum-free DMEM with mitomycin-C (1 μg/mL) and added
into the upper chamber. After that, 500 μl of 10% serum-
containing DMEM was added into the lower chamber of the
well and incubated 24 h at 37°C. After 24 h, PC cells in the
upper chamber were removed. Four random fields were
selected at 4× magnification for counting cell numbers. Each
experiment was performed three times.
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2.8. Wound Healing Assay. SW1990 and PANC-1 cells
(1× 105) were incubated in six-well culture plates for 48 h
until the cells were 80–90% confluent. Cells were maintained
in 10% FBS containing DMEMmedia for 24 hours. PBS was
used to wash away the nonadherent cells. A sterile 200-µl
pipet was used to make a scratch in the center of the cell
monolayer. .e monolayer was washed three times with
PBS, and fresh media were added. After 0 h, 24 h, and 48 h,
the wound width was measured at 2.5× magnification. Each
assay was performed three times.

2.9. Protein Extraction and Western Blotting Assays. Total
protein was extracted from PC cells after 72h transfection, and
the BCA protein assay kit (Beyotime, China) was used to
measure protein concentration, followed by themanufacturer’s
instructions. Briefly, 12% SDS-PAGE was used for electro-
phoresis, and then the proteins were transferred to PVDF
membranes. GAPDH, RhoA, E-cadherin, N-cadherin, and
vimentin antibodies were used to analyze total protein. Specific
primary rabbit anti-human antibodies (CST, 1 :1000) were
used to incubate the membranes at 4°C overnight. On the
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Figure 1: MiR-1301-3p was downregulated in PC tissues, and the low level of miR-1301-3p was associated with a poor prognosis for PC
patients. (a–c).emiR-1301-3p expression level in PC tissues and the adjacent normal tissues in GSE31568, GSE41372, and GSE32688 data
sets. (d).e miR-1301-3p expression level of the validation data set determined by qRT-PCR. (e) .e relative miR-1301-3p expression level
of normal pancreatic cell and PC cell lines. (f and g) .e correlation between the miR-1301-3p level and the overall survival of PC patients
from the PC cohort of TCGA and the validation cohort. ∗P< 0.05 and ∗∗∗P< 0.001.
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second day, the membranes were incubated with HRP-con-
jugated anti-rabbit IgG antibodies (1 : 2000) at room temper-
ature for 1h. An enhanced chemiluminescence detection
systemwas used to visualize the bands. GAPDHwas used as an
internal control. Rabbit anti-GAPDH, RHOA, N-cadherin,
E-cadherin, and vimentin antibodies (Cell Signaling Tech-
nology, Danvers, MA, USA) were used to analyze cell lysates.

2.10. Luciferase Reporter Assays. According to the starBase
network tool, RhoA is a predicted target for miR-1301-3p.
.e binding site between miR-1301-3p and 3′UTR of RhoA
was evaluated by using the pmirGLO dual-luciferase miRNA
expression vector containing wild-type (WT) or mutant
(MUT) 3′UTR of RhoA. .e WT or MUT 3′UTR of RhoA
and miR-1301-3p mimics were cotransfected into PANC-
1 cells. After 48 h, the luciferase reporter assay system was
used to examine the luciferase activity. Each experiment was
performed in triplicate.

2.11. Immunohistochemistry Analyses. We applied immu-
nohistochemistry assays to validate RhoA expression levels in
PC tissues. In brief, we sectioned the paraffin-embedded
tissue specimens and incubated them with anti-RhoA pri-
mary antibody (1 : 200; ZSGB-BIO, Beijing, China) overnight
at 4°C. .e slides were incubated with HRP-conjugated
secondary antibody (goat anti-rabbit IgG; BOSTER, Hang-
zhou, China) for 1 h. To visualize the RhoA, 3,3′-dia-
minobenzidine substrate solution was used as the chromogen.

2.12. Statistical Analysis. R software, version 3.6.0, was used
to perform statistical analyses. Continuous variables between
the two groups were compared by a paired sample t-test. .e
data were presented as the mean± standard deviation.
Qualitative data were analyzed by the chi-square test. Fisher’s
exact test was employed to compare the categorical variables
among groups. GraphPad Prism 8.0 (GraphPad Software,
Inc., La Jolla, CA, USA) was applied to produce figures. P

value < 0.05 was considered statistically significant.

3. Results

3.1. MiR-1301-3p Is Downregulated in PC Tissues and Its Low
Level Is Correlated with a Poor Prognosis for PC Patients.
Based on miRNA microarray data (GSE31568, GSE 41372,
GSE32688), the miR-1301-3p was significantly down-
regulated in PC tissues, compared with normal tissues
(Figures 1(a)–1(c)). In the validation cohort, the miR-1301-
3p level was lower in PC tissues than in healthy tissues
through qRT-PCR detection (Figure 1(d)). As shown in
Figure 1(e), the miR-1301-3p level was relatively higher in
the pancreatic cell than in PC cells. Furthermore, the miR-
1301-3p low level was associated with poor OS in the PC
cohort of TCGA and the validation cohort (Figures 1(f ) and
1(g)). .e univariate analyses showed that the miR-1301-3p
low level was related to malignant pathological differenti-
ation, tumor residual, and lymphatic metastasis in PC pa-
tients (Table 1).

3.2. MiR-1301-3p Inhibits the Proliferation and Migration
Abilities of Pancreatic Cancer Cells. CCK-8 assays showed
that PC cell proliferation was suppressed after miR-1301-3p
mimics transfection (Figure 2(a)). Wound healing assays
demonstrated that the migration ability of PC cells was lower
in the miR-1301-3p mimics group than that in the NC group
(Figure 2(b)). Similarly, transwell assays supported that
miR-1301-3p mimics downregulated PC cell migration
ability (Figure 2(c)). In addition, rescue experiments
revealed that the inhibiting effect of miR-1301-3p on cell
migration was reserved by RhoA overexpression
(Figure 2(d)).

3.3. GO Annotation and KEGG Pathway Enrichment for
MiR-1301-3p. To uncover the potential functions of miR-
1301-3p, we screened out 35 target genes of miR-1301-3p
and performed bioinformatics analyses. .e GO analyses
showed that the target genes of miR-1301-3p were enriched
in the positive regulation of cell cycle, TGF-β receptor
signaling pathway, and cellular response to TGF-β stimulus
in the biological process (Figure 3(a)). In terms of cellular
components, the target genes were associated with adherens
junctions, focal adhesion, and cell-substrate junctions
(Figure 3(b)). In terms of molecular functions, the target

Table 1: Association between miR-1301-3p level and the clini-
copathological parameters of pancreatic cancer patients in the
study cohort.

Clinical parameters
miR-1301-3p

P valueLow
(n = 36)

High
(n = 36)

Age (years) 61 64 0.327
Gender

0.637Male 21 18
Female 15 18

Pathological differentiation
<0.001Moderate and high 18 33

Poor 18 3
Tumor size (cm) 4.0± 1.5 3.7± 2.1 0.608
Resection

0.018R0 24 33
R1 and R2 12 3

Numbers of positive lymph node 5.0± 4.5 1.5± 1.8 <0.001
Vascular invasion

0.634Negative 19 22
Positive 17 14

TNM stage
0.285I and IIA 7 12

IIB and IV 29 24
Primary tumor

0.443T1 and T2 23 27
T3 and T4 13 9

Regional lymph nodes
0.119N0 7 14

N1 and N2 29 22
Distant metastases

0.107Negative 30 35
Positive 6 1
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Figure 2: Continued.
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genes were mostly enriched in anion transmembrane
transporter activity and guanyl nucleotide binding
(Figure 3(c))..e KEGG pathway analyses displayed that the
target genes of miR-1301-3p were mainly enriched in the
phospholipase D signaling pathway and Ras signaling
pathway (Figure 3(d)). .ese results suggested that miR-
1301-3p was probably associated with the regulation of cell
migration and proliferation.

3.4. MiR-1301-3p Inhibits RhoA-Induced Epithelial-Mesen-
chymal Transition. We performed PPI analyses to screen out
the pivotal gene in the 35 target genes of miR-1301-3p. After
that, RhoA was identified as a hub gene in the PPI network
(Figure 4(a)). Specially, RhoA is involved in the cellular
junction and TGF-β receptor signaling pathway according to
the GO and KEGG analyses, which were driving factors in
tumor progression..erefore, we selected RhoA to conduct the
following validation experiments. As shown in Figure 4(b),
miR-1301-3p negatively correlated with RhoA expression in
the PC cohort of TCGA. .rough the starBase network tool,
the binding site was identified betweenmiR-1301-3p and RhoA
3′UTR (Figure 4(c)). Moreover, luciferase reporter assays
showed that miR-1301-3p mimics significantly downregulated
the relative luciferase activity of RhoA-WT in PANC-1 cells
(Figure 4(c)). Besides, WB assays showed that miR-1301-3p
mimics decreased RhoA protein expression, while the miR-
1301-3p inhibitor increased the RhoA level in PANC-1 and
SW1990 cells (Figure 4(d)). Immunohistochemical examina-
tion indicated that RhoA staining was heavier in miR-1301-3p
low-level PC tissue than in high-level PC tissue (Figure 4(e)).

Subsequently, we revealed that N-cadherin and
vimentin expression levels were downregulated in the
RhoA knockdown group than those in the NC group; in
contrast, the E-cadherin level was upregulated in the RhoA
knockdown group (Figure 5(a)). On the contrary, over-
expression of RhoA increased N-cadherin and vimentin

levels; however, it decreased the E-cadherin level in PANC-
1 and SW1990 cells (Figure 5(a)). Further rescue experi-
ments showed that RhoA overexpression could abolish the
suppression of EMT process due to miR-1301-3p mimics
(Figure 5(b)). Taken together, these results suggested that
miR-1301-3p could inhibit RhoA-induced EMT in PC cells.

4. Discussion

Accumulated evidence has pointed out that miRNAs can
contribute a crucial regulatory role in PC tumorigenesis and
progression. Here, we revealed that miR-1301-3p was
downregulated in PC tissues and its low level was related to
the poor overall survival of PC patients. We also found that
miR-1301-3p inhibited PC cell proliferation and migration
abilities; mechanically, miR-1301-3p could suppress the
RhoA-mediated EMT process in PC cells. .us, our study
provided a new molecular biomarker and a therapeutic
target for PC treatment.

We reveal that the high level of miR-1301-3p is asso-
ciated with good pathological differentiation, fewer infil-
trating lymph nodes, and R0 resection in the current study.
To our knowledge, we first discovered that miR-1301-3pmay
serve as a tumor suppressor in PC, combined with the results
of in vitro assays. Generally, the growth of solid tumor relays
on the tumor microenvironment that contains the com-
plicated interactions between multiple stromal cells and the
extracellular matrix. .us, we failed to reveal that the
overexpression of miR-1301-3p was related to smaller PC
tumor, although in vitro assays suggested that miR-1301-3p
suppressed PC cell proliferation.

GO analyses indicated that RhoA, a predicted target gene
of miR-1301-3p, was involved in the terms of “TGF-β re-
ceptor signaling pathway,” “positive regulation of cell cycle,”
“cellular response to TGF-β stimulus,” “focal adhesion,” and
“myosin binding.” .ese GO terms suggested that miR-
1301-3p possibly regulated cell proliferation and migration
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Figure 2: MiR-1301-3p inhibited the proliferation and migration ability of PC cells. (a) CCK-8 assays of PANC-1 and SW1990 cells
transfected with miR-1301-3p mimics and inhibitor. (b) Wound healing assays of PANC-1 and SW1990 cells transfected with miR-1301-3p
mimics and inhibitor. (c) Transwell migration assays of PANC-1 and SW1990 cells transfected with miR-1301-3p mimics and inhibitor.
(d) Transwell migration assays of PANC-1 and SW1990 cells. Data were presented as the mean± SD of three independent experiments.
∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ▽P< 0.05, and ▽▽P< 0.01.
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biological process, cellular component, and molecular function. (d) Kyoto Encyclopedia of Gene and Genomes pathway enrichment for the
miR-1301-3p target genes.
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Figure 4: Continued.
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processes via RhoA. Furthermore, RhoA was involved in the
“Ras signaling pathway” and “regulation of actin cytoskel-
eton” in KEGG enrichment analyses, which suggested that
RhoA was linked to cell invasion ability. .erefore, we se-
lected RhoA as a functional target gene of miR-1301-3p and
conducted subsequent assays.

RhoA is a member of the Rho GTPase family, containing
a GTP-bound active form and a GDP inactive part, which
can promote actin cytoskeleton reorganization and regulate
cell shape, attachment, and motility [14, 15]. .e RhoA
overexpression is associated with PC cell growth and me-
tastasis. For example, KRas activation upregulated the eIF5A
level, which promoted PC cells’ motility and metastasis via
Rho/ROCK [16]; cyclic AMP could decrease the RhoA level
and inhibited PC cell migration and invasion [17]; and
crizotinib, a MET antibody, could downregulate the RhoA
level and suppress PC cell invasiveness [18].

A critical step of tumor metastasis is known as the EMT
process, in which cancer cells lose their polarities and cel-
lular connections and acquire migration ability [19, 20]. .is
process is characterized by loss of the cell adhesion protein,
E-cadherin, and upregulation of N-cadherin and vimentin,
representing mesenchymal phenotypes. It has been proven
that EMT activators promote tumor development in mul-
tiple human cancers [21–24]. Activation of the RhoA/ROCK
signaling pathway may upregulate the EMT process. No-
tably, RhoA was reported to facilitate the EMT process in
gastric cancer and esophagus cancer [25, 26]; however, the
association between EMTand RhoA is unclear in PC. In this
study, we provided evidence that RhoA activation promoted
the EMT process in PC cells. Interestingly, several miRNAs
could also downregulate RhoA; for example, miR-154-3p
and miR-487-3p specifically repressed RhoA expression and
blocked thyroid cancer cell growth [27]; miR-101

High level of miR-1301-3p Low level of miR-1301-3p

(e)

Figure 4:MiR-1301-3p suppressed RhoA expression in PC cells. (a) A protein-protein interaction network showed that RhoA acted as a hub
gene among the miR-1301-3p target genes. (b) A negative correlation betweenmiR-1301-3p and RhoA expression levels according to the PC
cohort of TCGA. (c) Luciferase reporter assays demonstrated that miR-1301-3p was directly bound to the 3′UTR of RhoA in PANC-1 cells.
(d) Western blotting assays showed that miR-1301-3p downregulated RhoA expression in PANC-1 and SW1990 cells. (e) .e typical
immunohistochemical staining of RhoA in miR-1301-3p-upregulated and miR-1301-3p-downregulated PC tissues.
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Figure 5: miR-1301-3p inhibited the epithelial-mesenchymal transition process via RhoA in PC cells. (a) .e overexpression of RhoA
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downregulated the EMT process and breast cancer cell
migration by reducing the RhoA level [28].

In summary, we revealed that miR-1301-3p could serve
as a prognostic biomarker for PC. Overexpression of miR-
1301-3p inhibits PC cell proliferation and migration.
Mechanistically, miR-1301-3p suppresses the RhoA-induced
EMTprocess, and thus, miR-1301-3p/RhoA could be a novel
target for PC treatment.
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