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Abstract
Background: High-dimensional flow cytometry and mass cytometry allow
systemic-level characterization of more than 10 protein profiles at single-cell resolution
and provide a much broader landscape in many biological applications, such as disease
diagnosis and prediction of clinical outcome. When associating clinical information
with cytometry data, traditional approaches require two distinct steps for identification
of cell populations and statistical test to determine whether the difference between
two population proportions is significant. These two-step approaches can lead to
information loss and analysis bias.
Results: We propose a novel statistical framework, called LAMBDA (Latent Allocation
Model with Bayesian Data Analysis), for simultaneous identification of unknown cell
populations and discovery of associations between these populations and clinical
information. LAMBDA uses specified probabilistic models designed for modeling the
different distribution information for flow or mass cytometry data, respectively. We use
a zero-inflated distribution for the mass cytometry data based the characteristics of the
data. A simulation study confirms the usefulness of this model by evaluating the
accuracy of the estimated parameters. We also demonstrate that LAMBDA can identify
associations between cell populations and their clinical outcomes by analyzing real
data. LAMBDA is implemented in R and is available from GitHub (https://github.com/
abikoushi/lambda).

Keywords: Flow cytomety, Mass cytometory, Bayesian mixture model, Stochastic EM
algorithm

Background
The recent development of high-dimensional flow cytometry and mass cytometry
(CyTOF) allows for characterizing cell types and states by detecting the expression lev-
els of pre-defined sets of surface and intracellular proteins at single cell resolution [1].
For an individual subject, the modern flow cytometry data consist of 20 or more protein
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measurements from millions of cells from the subject. The recent mass cytometry sys-
tems use antibodies tagged with heavy metal isotopes which reduce signal interference
due to spectral overlap and autofluorescence and enable the detection of more than 40
proteins per cell [2]. This high-dimensional cytometry data contains useful information to
diagnose diseases such as leukemia [3] and HIV [4], as well as to predict clinical outcomes
such as the response to cancer immune-therapies [5].

A key challenge in the analysis of high-dimensional cytometry data is to identify
unknown cell populations that relate as prognostic factors to clinical outcomes of inter-
est. Traditional analysis is done by manual gating which suffers not only from the need
to detect unknown cell populations, but also from the need to ensure reproducibility [6].
This lack of reproducibility has two subjective causes. The first concerns the order in
which pairs of markers are explored. This order often allows some degree of freedom in
the gating process, so it might lead to the selection of different cells by alternative gating
strategies. The second concerns the boundaries of the gates being used. There is consid-
erable diversity between operators in terms of gating strategy, in which some experts gate
strictly and others gate generously. The subjective nature of manual gating allows for the
production of too wide a variety of results to be accurately reproducible.

As an alternative to manual gating, researchers have developed several computational
methods, including Citrus [7], cydar [8], and diffcyt [9], to infer cell populations or states
associated with an outcome variable in high-dimensional cytometry data. However, these
methods require two steps: a first step in which cell populations are identified using a clus-
tering algorithm, and a second step in which the summary statistics of the identified cell
populations are concatenated into a clinical outcome of interest which can lead to infor-
mation loss and analysis bias. Furthermore, these methods do not consider the distinctive
features of the expression values of mass cytometry data as opposed to flow cytometry
data. Mass cytometry data is marked by a zero-inflated distribution (Fig. 1). That is, pro-
teins can be either ‘on’ or ‘off,’ in which either a positive expression measure is recorded or
the recorded expression is zero or negligible, and where a very high proportion of the data
entries are zero. On the other hand, in flow cytometry, the boundary between ‘on’ and
‘off ’ is more ambiguous, which leads to a bimodal Gaussian distribution (Fig. 1). There-
fore, lack of consideration for this distribution difference in the existing methods masks
the underlying difference in cell populations and gives rise to a misleading conclusion in
both basic and clinical research.

To address the aforementioned problems, we propose a new probabilistic approach for
identifying unknown cell populations associated with clinical outcomes of interest which
we have named LAMBDA (Latent Allocation Model with Bayesian Data Analysis). The
contributions of our proposed method are summarized as follows:

• Our method is a one-step procedure that directly uses cytometry data at the single
cell level to simultaneously discover cell populations and to identify the associations
of these populations with clinical outcomes of interest. Our model can also be used
to find relationships between cell populations and a single clinical outcome as well as
relationships between cell populations and multiple clinical outcomes.

• Our method is based on correctly specified probabilistic models that are designed for
modeling the different distribution information of flow and mass cytometry data
respectively. In the case of flow cytometry, LAMBDA assumes that the data is
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Fig. 1 Conceptual diagram. LAMBDA estimates composition ratio of clusters depends on the clinical
information

generated from a mixture of multivariate normal distributions, each of which
represents an unknown cell population. On the other hand, in the case of mass
cytometry, LAMBDA assumes that the data is generated from a mixture of
zero-inflated distributions that represent censoring of expression below a substantial
limit of detection. In both models, the compositions of cell populations are assumed
to vary with clinical outcomes.

• We provide a simple and efficient learning procedure for the proposed model using a
stochastic EM algorithm that reduces computational cost. LAMBDA is implemented
in the R environment, which is available from https://github.com/abikoushi/
LAMBDA.

From here we will explain the method and its implications in detail. Figure 1 shows a
conceptual view of analysis by LAMBDA. The “Methods” section details the proposed
model and algorithm. The “Results” section includes an analysis of the efficiency of
LAMBDA using synthetic and real data. The “Conclusion” section summarizes the data
presented here and describes the possibility for future expansion of this model.

Methods
Model for flow cytometry data

Suppose that we observe the flow cytometry dataset yn ∈ R
K , (n = 1, . . . , N) and clinical

information xn ∈ R
D. The dataset includes N cells, K markers and D-dimensional clinical

information. Our goal is to identify cells populations from the data. Furthermore we seek
to understand how these cell populations change depending on the clinical information.
LAMBDA is a model based clustering method. Let L be the number of clusters. The data
generative process of LAMBDA for flow cytometry data is defined as follows:

yn|wn ∼
L∏

l=1
Gaussian (μl, �l)

wn,l

wn|xn ∼ Categorical(φn)

https://github.com/abikoushi/LAMBDA
https://github.com/abikoushi/LAMBDA
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φn = softmax(xnβ)

μl ∼ Gaussian
(

0,
1
τ

�l

)

�−1
l ∼ Wishart (ν, �) (1)

where wn,l is l-th element of wn and D × L matrix β is the effect of clinical information.
For identifiability, the first column of β is always set as zero. Here, the softmax function is
defined by softmax(x) = exp(x)∑K

k=1 exp(xk)
for vector x = (x1, . . . , xK )� using an element-wise

exponential function. Figure 2 shows a plate diagram of this data generating process. This
model is a kind of conditional Gaussian mixture model [10]. However, the details of the
estimation method are not described in detail in the publication, so we will describe them
here.

Parameter estimation for flow cytometry data

We find the maximum a posteriori probability (MAP) estimators, using an EM algorithm.
If the latent variable wn,l is given, the complete likelihood of this model is represented

by the following formula:

L(c) =
N∏

n=1

L∏

l=1
φ

wn,l
n,l N (yn|μl, �l)

wn,l. (2)

In the E-step, we calculate

w(i)
n,l =

φn,lN
(

yn|μ(i−1)

l , �(i−1)

l

)

∑L
l=1 φn,lN

(
yn|μ(i−1)

l , �(i−1)

l

) , (3)

where N (y|μ, �) is the density function of the multivariate Gaussian distribution with
mean μ and covariance �.

In the M-step, we update the parameters using:

μ
(i)
k,l =

∑N
n=1 w(i)

n,lyn,k
∑N

n=1 w(i)
n,l + τ

(4)

�l =
∑

n w(i)
n,l

(
yn − μ

(i)
l

) (
yn − μ

(i)
l

)� + τμ
(i)�
l μ

(i)
l + �

∑
n w(i)

n,l + ν − K
, (5)

Fig. 2 Plate diagram of the data generating process in LAMBDA for flow cytometry data. The white nodes
indicate latent variables and the gray nodes indicate observed variables
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Because closed form solutions for β are unavailable, we use Newton’s method to obtain
estimates. We obtain estimates of β by maximizing the following equation, with respect
to β :

Q(β) =
N∑

n=1

L∑

l=1

{
w(i)

nl

( D∑

d=1
xndβd,l

− log
L∑

l=1
exp

( D∑

d=1
xn,dβd,l

))}
(6)

First order derivative of the function Q(β) is represented by:

∇Q(β) =
N∑

n=1
(wn − softmax(Xnβ)) ⊗ xn. (7)

Second order derivative of the function Q(β) is represented by:

∇2Q(β) =
N∑

n=1
(Pn − softmax(Xnβ)softmax(Xnβ)�) ⊗ xnx�

n (8)

where ⊗ denotes the Kronecker product and Pn is defined as follows:

Pn =

⎛

⎜⎜⎜⎜⎝

φn,1 0 0 · · · 0
0 φn,2 0 · · · 0
...

...
0 0 0 · · · φn,L

⎞

⎟⎟⎟⎟⎠
. (9)

Thus, we update the estimate of β using:

vec(β(i+1)) = vec(β(i)) − vec(∇Q(β))
(∇2Q(β)

)−1 , (10)

where vec is the vec operator.

Model for mass cytometry data

In the same manner as the previous subsection, we observe a mass cytometry dataset, in
this case yn ∈ R

K , (n = 1, . . . , N) and clinical information xn ∈ R
D. An important feature

of mass cytometry data, is that a very high proportion of the data entries are zero. The
ordinary mixture of the Gaussian model can not explain these zeroes. Here, LAMBDA
steps in to properly assess the data. The data generative process of LAMBDA for mass
cytometry data is defined as follows:

yn =
{

zn,k zn,k > 0
0 zn,k ≤ 0

zn|wn ∼
L∏

l=1
Gaussian (μl, �l)

wn,l

wn|xn ∼ Categorical(φn)

φn = softmax(xnβ)

μl ∼ Gaussian
(

0,
1
τ

�l

)

�−1
l ∼ Wishart (ν, �) (11)

Figure 3 shows a plate diagram of this data generating process.



Abe et al. BMC Bioinformatics 2020, 21(Suppl 13):393 Page 6 of 15

Fig. 3 Plate diagram of the data generating process in LAMBDA for mass cytometry data

Parameter estimation for mass cytometry data

Looking again at Eq. (11), if the latent variables wn and zn are given, the complete
likelihood of this model is represented by the following formula:

L(c) =
N∏

n=1

L∏

l=1
φ

wn,l
n,l N (zn|μl, �l)

wn,l. (12)

For mass cytometry data, we use a stochastic EM algorithm. In the E step, Monte Carlo
samples w̃n and z̃n replace missing data wn and zn.

If an arbitrary value for zn is given, we can sample w̃n from following categorical
distribution:

w̃n ∼ Categorical(ηn) (13)

where the l-th element of ηn is represented by the following formula:

ηnl = φn,lN (z̃n|μl, �l)∑L
l=1 φn,lN (z̃n|μl, �l)

. (14)

In contrast, if an arbitrary value for wn is given, we can sample z̃n from truncated Normal
distribution. The steps of the Gibbs sampler for generating z̃n are:

• If yn,k > 0, z̃n,k = yn,k , othewise,
• let μ

(n)

k = ∏L
l=1 μ

w̃n,l
k,l and �

(n)
i,j = ∏L

l=1 �
wn,l
i,j,l , where �i,j,l is (i, j)-element of �l

• let μ
(n)

k,−k = μ
(n)

k − �
(n)

k,k (�(n))−1
k,−k(zn,−k − μ

(n)

−k)

• let b = �(0|μ(n)

k,−k , �(n)

k,k )

• let u ∼ Uniform(0, 1)

• z̃n,k = μ
(n)

k,−k +
√

�
(n)

k,k �−1(ub|0, 1)

where �(y|μ, �) denotes the distribution function of a univariate Gaussian distribution
with mean μ and variance � and x−i is the set of all variables in x except for the i-th
variable.

In the M-step, by replacing yn,k and w(i)
n,l with samples z̃n,k and w̃n,l, Eqs. (4), (5), and (10)

can be used.
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Fig. 4 Simulation result of μ. The comparison true μ and the mean of estimates μ̂. The error bars indicates
SE. Left panel show the result of GMM, right panel show the result of LAMBDA

Model selection

In fitting the model, it is important to choose an appropriate number for L. It is well
known that the number of cluster L with the lowest Bayesian information criterion (BIC)
is an appropriate number. The BIC is defined as follows:

BIC = −2 log(L) + f log(N), (15)

where L is the likelihood and f is the number of estimated parameters. However, for mass
cytometry data, it requires a high computational cost to calculate the exact likelihood in
the stochastic EM algorithm. Thus, in this article, we use BIC for flow cytometry data,
and elbow method for mass cytometry data to choose L. Elbow method chooses a number
of clusters that adding another cluster doesn’t give a better fit to the data. The goodness
of fit of the model to data is evaluated by the sum of squared error (SSE). SSE is defined
by following:

SSE =
N∑

n=1

K∑

k=1

(
yn,k − max

(
0, μ(n)

k

))2
. (16)

Fig. 5 Simulation result of �. The comparison true � and the mean of estimates �̂. The error bars indicates SE
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Table 1 Simulation result of mixture proportion

cluster 1 2 3 4

category 1

true value 0.1 0.2 0.3 0.4

mean (LAMBDA) 0.10 0.20 0.30 0.40

mean (GMM) 0.10 0.20 0.31 0.39

SE (LAMBDA) 0.01 0.02 0.00 0.01

SE (GMM) 0.01 0.04 0.03 0.03

category 2

true value 0.25 0.25 0.25 0.25

mean (LAMBDA) 0.24 0.26 0.25 0.25

mean (GMM) 0.25 0.26 0.24 0.24

SE (LAMBDA) 0.04 0.04 0.03 0.01

SE (GMM) 0.03 0.04 0.03 0.06

Results
Simulation study

To evaluate the standard error (SE) and the bias of the estimations, we conducted simula-
tion experiments. The bias of θ̂ is defined by the difference between the true value and the
estimated value (E[ θ̂ ] −θ). The synthetic data was naturally produced via the data gen-
erating process given by Eq 11. We set K = 10. The μ and � were randomly generated.

Fig. 6 BIC. x-axis corresponds to the number of clusters. y-axis corresponds to the BIC
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We used a multivariate normal distribution to generate the synthetic data, and values less
than 0 were replaced by 0.

We estimated the parameters from 100 replicates of the experiment. We set the sample
size N = 2000, the number of clusters L = 4, and the categories D = 2. One category has
the mixture proportion φ1 = (0.1, 0.2, 0.3, 0.4)�, the other has the mixture proportion
φ2 = (0.25, 0.25, 0.25, 0.25)�. To differentiate these two categories, we set X = (1, x),
where 1 is a vector of ones. The variable x is a dummy variable to indicate the category.
When estimating parameters, we set τ = 0.01, ν = K + 2, and 
 is an identity matrix,
which is equivalent to a weakly-informative prior distribution. To avoid the problem of
label switching [11], the estimated parameters are rearranged as φ1,1 ≤ φ1,2 ≤ φ1,3 ≤ φ1,4.

Synthetic data was analyzed by LAMBDA along with ordinaly Gaussian mixture model
(GMM) which cannot incorporate explanatory variables. using R package “mclust”. We
estimated the clusters by GMM and calculate the mixture proportion of the estimated
clusters by category and the median for each cluster was used as the estimates of μ.

The mean and SE for the estimated μ̂ and �̂ are shown in Figs. 4 and 5, respectively.
We observed that the points were arranged diagonally, indicating that the estimator of
LAMBDA is unbiased. In contrast, GMM estimates often have a large bias. The mean and
SE for the estimated φ̂ is shown in Table 1. In the case of synthetic data, the algorithm of

Fig. 7 Estimated μ̂ for Landrigan’s study. The x-axis corresponds to the markers, and the y-axis corresponds
to the clusters. Red, white, and blue indicates high, middle, and low marker intensity, respectively
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LAMBDA uses parameters estimated with small biases and is able to produce reasonable
estimates.

Results on real data

We applied LAMBDA to real world flow and mass cytometry data. When estimating
parameters, we set τ = 0.01, ν = K + 2, and 
 is an identity matrix.

For the case of flow cytometry we turn to Landrigan’s study (https://community.
cytobank.org/cytobank/experiments/35226), in which naive CD4+ T cells were purified
and stimulated by anti-CD3 and anti-CD28 antibodies.

Five cases were tested: unstimulated, stimulated by only the anti-CD3 antibody, stim-
ulated by both the anti-CD3 and anti-CD28 antibodies, and two cases with different
dosages for the anti-CD3 antibody (0.3 μg/mL and 0.8 μg/mL). The purpose of this study
is identifying the associations of cell populations with elapsed time from the stimulations
start point.

Thus, we use time, dosage, anti-CD3, and anti-CD28 as the covariate X. All variables
are treated as dummy variables.

It is known that stimulation of CD3 triggers activation of naive CD4+ T cells, which
accompany the phosphorylation of SLP76/S6 and CD247 (pSLP76/pS6, pCD246) [12].

Fig. 8 Estimated φ̂ for Landrigan’s study. The x-axis corresponds to the timepoints, and the y-axis
corresponds to the clusters

https://community.cytobank.org/cytobank/experiments/35226
https://community.cytobank.org/cytobank/experiments/35226
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CD28 is the co-stimulatory factor that enhances and prolongs T cell activation [13]. Soon
after activation, the levels of phosphorylated SLP/S6 and CD247 decrease by negative
feedback. Then the cells become CD45RO+ memory T cells. BIC (Fig. 6) determined the
setting of 13 clusters. Figure 7 shows the μ̂. Also as shown in Fig. 7, clusters 1, 3, 4, 11,
and 12 are the pSLP76/pS6+ pCD247+activated naive T cells, and clusters 2, 9, and 10
are pSLP76/pS6- pCD247- CD45RO+ memory T cells. The mixture proportion is shown
in Fig. 8. While the mixture proportion remains stable over time in unstimulated cases,
other cases show a high proportion of activated naive T cells at 3 min and their proportion
decreases at 6 and 10 min by deactivation through negative feedback. Figure 8 shows
that as activated T cells decrease, the memory T cell population increases, indicating
the transformation of naive T cells to memory T cells. This shows that in the case of
flow cytometry data the method is able to provide a reasonable interpretation of the cell
population clusters.

We also applied LAMBDA to mass cytometry data from Jin’s study [14]. This data
is available in FlowRepository (https://flowrepository.org/) under Repository ID: FR-
FCM-ZY6C. The purpose of this study is discovering cell population related to clinical
responses. In the case of mass cytometry data, for determination of the number of clus-
ters, we used the elbow method, which is performed by plotting the SSE within each
cluster against the number of clusters. In this case, the elbow method determined 14
clusters (Fig. 9).

Fig. 9 Elbow plot for Jin’s study. Decrease in SSE saturated at 8 clusters

https://flowrepository.org/
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Arranged by severity, clinical responses include healthy donors (ND), partial response
(PR), stable disease (SD), and progressive disease (PD). ND were used as the baseline for
ICB samples. Figure 10 shows the estimated mixture proportion φ̂. We observed that the
value of the mixture proportion for cluster 2 increases as cancer progresses from PR to
PD. Figure 11 shows the estimated μ̂. We denote hi and lo that the marker is high and
low level expressed respectively. Cluster 2 is characterized by CD8+, T-bet lo, EOMES hi,
PD1hi, and Ki67 lo. T-bet lo, EOMES hi, PD1hi, and Ki67 lo are exhaustion markers of the
T cell. “Exhaustion" refers to cases where a T cell becomes dysfunctional due to the long-
term induction of various co-repressive molecules such as PD-1, CTLA-4, and TIM-3.
Pauken & Wherry [15] reported that the CD8+ T cells of T-bet hi and EOMES lo become
T-bet lo, EOMES hi, and PD1 hi through exhaustion. The marker KI67 indicate cell mass
culturing. The exhausted T cells have a low expression level in KI67. Blackburn [16]
reported that the cell populations of T-bet lo, EOMES hi, and PD1 hi are not activated by
blocking the PD1 / PDL-1 pathway with immune checkpoint inhibitors. LAMBDA shows
that the cluster 2 cell population is high in patients who underwent a PDL1 inhibitor treat-
ment with a poor prognosis. This finding is consistent with Pauken and Blackburn’s study,
showing the effectiveness of LAMBDA in interpreting high dimensional mass cytometry
data in real situations.

Fig. 10 Estimated φ̂ for Jin’s study. In the left figure, x-axis corresponds to the mixture proportion φ̂, and the
y-axis corresponds to the clusters
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Fig. 11 Heatmap for Jin’s study. x-axis corresponds to the markers, and the y-axis corresponds to the clusters

Through this analysis we can see that LAMBDA is a method that can efficiently estimate
various clusters within cell populations and identify the associations between these cell
clusters and their clinical outcomes in cases of both flow and mass cytometry data.

Discussion
LAMBDA should prove useful as it is described in this paper, but there is room for future
study and improvement. Recently, with the development of next generation sequencing
technologies, single cell sequencing was introduced to the field of biomedical research.
Sequencing the DNA provides a higher resolution of cellular differences and a better
understanding of the function of an individual cell in the context of its microenvironment.
In this context, our future aim is the extension of LAMBDA for application to single cell
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DNA data. This will allow us to understand the condition of the cell on a fundamental
level, contributing to our overall understanding of biology and its processes.

Conclusion
With the development of high dimensional flow and mass cytometry data, researches
have been challenged with the need to properly identify and interpret data about cell
populations. To meet this challenge, we proposed a statistical framework that uses flow
and mass cytometry data to discover cell clusters and the associations between individual
clusters and clinical information.

As described in the “Methods” section, this model uses a stochastic EM to estimate
parameters. In terms of computation, this parameter-estimation procedure offers an
advantage over procedures that use an ordinary EM algorithm. This is because, in an
algorithm that uses ordinary EM, the computational cost is large due to calculating the
high-dimensional conditional expectation. By contrast, our procedure involves a Gibbs
sampling that substitutes for this requirement, significantly reducing the computational
cost.

In addition to being computationally efficient, our framework also has useful properties
from the perspective of data analysis. Usual methods of clustering are not able to support
the inclusion of explanatory variables. However, LAMBDA can include any explanatory
variables. This property allows LAMBDA to analyze experimental results with various
settings. Because of this novel feature, we expect that LAMBDA will be efficiently applied
to studies that seek an association between cell populations and clinical information,
advancing our ability to predict disease and predict outcomes of treatment.
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