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Abstract: A hierarchical porous carbon material (HPC) with an ultra-high specific surface area was
synthesized with sisal fiber (SF) as a precursor, and then H3PW12O40·24H2O (HPW) was immobilized
on the support of SF-HPC by a simple impregnation method. A series characterization technology
approved that the obtained SF-HPC had a high surface area of 3152.46 m2g−1 with micropores
and macropores. HPW was well-dispersed on the surface of the SF-HPC support, which reduced
the loading of HPW to as low as 5%. HPW/SF-HPW showed excellent catalytic performance for
oxidative desulfurization, and the desulfurization rate reached almost 100% under the optimal
reaction conditions. The desulfurization rate of HPW/SF-HPW could be maintained at above 94%
after four recycles.

Keywords: oxidative desulfurization; hierarchical porous carbon; HPW loading; dispersion

1. Introduction

Reduction in the sulfur content in oil products is the primary solution to decrease the
pollution caused by oil burning [1]. Among the developed desulfurization technologies,
oxidative desulfurization is widely studied as the most promising process because of its
mild reaction conditions and good desulfurization effect [2]. In this approach, heteropoly
acids such as phosphotungstate decompose in the presence of excessive hydrogen peroxide
into a peroxide metal complex W(O2)n, providing an active site for oxidative desulfuriza-
tion [3,4]. For catalyst separation and recycling, it is desirable to load the heteropoly acids
onto support materials [5].

In this context, Yang et al. [6] prepared a m/M-HPW/SiO2-20 catalyst by loading
12-tungstophosohoric acid (HPW) on multi-stage porous silica. Under optimal conditions,
the removal rate of dibenzothiophene (DBT) was found to reach 100%. However, the
specific surface area of the m/M-HPW/SiO2-20 catalyst was only 346 m2g−1, and the
aperture was less than 10 nm, making the HPW loading as high as 20%. Meanwhile,
Yue et al. [7] studied the loading of HPW on hierarchical ordered silica with the aim of
adjusting the pore structure of the catalyst, which not only maintained a high specific
surface area but also provided structures with different pore sizes and improved the
performance of the catalyst. Under optimum conditions, 95.1% sulfur was removed after
eight cycles. Huang et al. [8] used sodium-dodecyl-benzene-sulfonate-modified layered
double hydroxide as a support to load HPW for oxidative desulfurization. Under optimal
conditions, the sulfur removal rate was close to 100%, and after 15 cycles the removal
rate was reduced to 95.73%. Although the specific surface area was only 167 m2g−1, the
pore diameter of the catalyst was 12.99 nm, and this large pore size increased the reaction
mass transfer rate, thus allowing the HPW load to be reduced to 10%. Pham et al. [9]
prepared a PW-NH3+-SBA-15 catalyst. Under the optimal conditions, the conversion rates
of DBT and BT reached 100% and 99.9%, respectively. The catalyst can be reused four
times without a significant decrease in catalytic activity. The change in catalyst structure
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confirmed a strong interaction between the SBA-15 support and the HPW catalytically
active site. Gao et al. [10] incorporated HPW into TiO2 pellets to improve catalytic activity
and recyclability. After seven runs, it had good conversion and selectivity. However, these
excellent catalysts often required high loading [11–13]. The content of HPW will affect
the quality of the oil, and the phosphorus will cause environmental problems. Therefore,
it is very important to reduce the load of HPW. The large content of HPW required for
the reaction is mainly due to the fact that HPW is prone to agglomeration [14]. Therefore,
to reduce the loading of HPW, it is necessary to prevent agglomeration and increase its
dispersion on the surface of the support, thereby providing sufficient active sites. To ensure
a high dispersibility, the support must have a high specific surface area. Although the
presence of micropores can increase the specific surface area, it also weakens the mass
transfer effect, which is disadvantageous for the reaction of oxidative desulfurization.
Therefore, to reduce the HPW load on the support, a material with a large surface area and
pore structure is desirable.

Hierarchical porous carbons (HPCs) have not only high specific surface areas but
also large pore structures [15]. In many applications, specific surface area is the most
important structural parameter. Li et al. [16] adjusted the porosity of carbon materials
by controlling the template removal strategy. The method simplified the preparation
process and produced honeycomb carbon with a macroporous/mesoporous/microporous-
scaled pore structure with a specific surface area of up to 1011 m2g−1. Supercapacitors
assembled with porous carbon as electrodes exhibited large specific capacitances and
provided good cycle stability. Liu et al. [17] combined the electrospinning technology,
the in situ polymerization and carbonization processes, and the manufacturing process
to produce a nitrogen-doped graded porous carbon fiber material, which can remove
organic dyes efficiently. It also mentioned that in multi-stage pore materials, macropores
can provide efficient mass transfer [18,19], while micropores/mesopores provided a large
surface area for the dispersion of HPW [20–22].

In this study, we describe the use of a HPC as a support for a HPW catalyst. The
high specific surface area of HPC improved the dispersion of HPW and avoided its ag-
glomeration, while the macroporous structure increased the reaction rate and thus allowed
the HPW loading to be reduced. In addition, the catalytic performance of the catalyst
in the oxidative desulfurization reaction was investigated, the reaction conditions were
optimized, and the stability of the catalyst was explored.

2. Materials and Methods
2.1. Materials

Sisal fiber was procured from Yiwu Shepai Crafts Firm (Yiwu, Zhejiang, China). KOH
was purchased from Tianjin Shengao Chemical Reagent Co., Ltd. (Tianjin, China). Hy-
drochloric acid was was procured by Nanjing Chemical Reagent Co., Ltd. (Nanjing, Jiangsu,
China) HPW (AR) was produced by ChengDu KeLong Chemical Co., Ltd. (Chengdu,
Sichuan, China). N-Octane was supplied from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). DBT (99%) was procured from J&K Scientific Company (Beijing, China).
Benzothiophene (BT, 97%), thiophene(Th, 99%), and 4, 6-dimethyldibenzothiophene (4,
6-DMDBT, 99%) were procured from Aladdin Biochemical Technology Co., Ltd. (Shanghai,
China). Hydrogen peroxide was purchased from Tianjin Yongsheng Fine Chemical Co.,
Ltd. (Tianjin, China). Acetone and methanol were produced by Tianjin FuYu Chemical Co.,
Ltd. (Tianjin, China). All reagents were used without any purification.

2.2. Synthesis of HPW/SF-HPC

The hierarchical porous materials were prepared following procedures found in the
literature [19]. The sisal fiber was cut into small pieces before use and pre-carbonized
at 550 ◦C for 3 h in a N2 atmosphere. The obtained sample was labeled as SF. SF and
KOH were then mixed at a mass ratio of 1:5, adding deionized water to dissolve the KOH
pellets. After mixing evenly, the mixture was allowed to stand for 1 h to ensure complete
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immersion of SF in the KOH solution. Then, the mixture was dried for 6 h at 100 ◦C, and
carbonized at 900 ◦C for 3 h in a N2 atmosphere. The mixture sample was washed with
dilute hydrochloric acid and deionized water to remove unreacted KOH. The wet sample
was dried in an oven at 80 ◦C overnight, and the solid powder was collected and labeled
as SF-HPC.

The catalysts were prepared as follows: after dissolving 0.05 g of HPW in 10 mL of
deionized water, 0.95 g of SF-HPC was added and stirred at room temperature for 24 h.
A solid sample, which was marked as 5%HPW/SF-HPC, was obtained. The sample was
collected by filtration and dried at 80 ◦C. In a similar manner, the catalysts 1%, 10%, and
20%HPW/SF-HPC were prepared by varying the amount of HPW.

2.3. Characterization

Transmission electron microscopy (TEM) experiments were conducted on a Tecnai
G2 F20 S-TWIN (Hillsboro, OR, USA) (200 kV) instrument. The structural parameters
of the material were obtained from the Micromeritics Model ASAP 2460 (Atlanta, GA,
USA) instrument by nitrogen absorption and desorption experiment at 77 K. Powder X-ray
diffraction (XRD) data were collected on a Bruker (Karlsruhe, Baden-Württemberg, DEU)
advanced D8 X-ray diffractometer operating at 40 mA and 40 kV with Cu-Ka irradiation
(λ = 0.15406 nm). The surface morphology and structure of the materials were observed by
scanning electron microscopy on a Zeiss Sigma 300 (Jena, Freistaat Thüringen, Germany).
The Fourier-transform infrared (FTIR) spectroscopy was performed on a Thermo Fisher
Nicolet iS10 spectrometer (Waltham, MA, USA). Inductively coupled plasma (ICP) experi-
ments were performed on an Agilent ICP-OES 730 series ICP (Santa Clara, CA, USA). The
macroporous structure of the samples was obtained by using a Micromeritics AutoPore IV
9510 mercury porosimeter (Atlanta, GA, USA).

2.4. Catalytic Performance Testing

DBT as a sulfur source was dissolved in n-octane to prepare simulated oil with a
sulfur content of 100 ppmw, and the desulfurization performance of the catalyst was tested
using the resulting solution as follows: 10 mL of simulated oil was added to a 100 mL
three-necked flask, and a quantitative amount of catalyst was added and dispersed in
the simulated oil by ultrasonication. The three-necked flask was placed in a constant-
temperature water bath, and a certain amount of 30% hydrogen peroxide solution was
added according to the desired O/S; stirring was started and timing was started. When
the desired reaction time was reached, the three-necked flask was taken out of the bath,
and the catalyst was allowed to sink into the bottom of the flask. The reaction solution was
poured into a 25 mL beaker, and 10 mL of methanol was added for extraction. After the
extraction, a part of the supernatant was taken out to test sulfur content with a Coulomb
analyzer (WK-2D).

The catalytic performance was evaluated according to the following equation:

Sulfur removal (%) =
C0 − Ct

C0
× 100%

where C0 represents the sulfur concentration in the configured simulated oil and Ct refers
to the sulfur content in the oil after t, time, measured by the Coulomb analyzer.

3. Results and Discussion
3.1. Catalyst Characterization

The scanning electron microscopy images depict the morphology of the SF-HPC
sample in Figure 1. As can be seen, the SF-HPC materials had obvious macroporous
structures, which provided the basis for preparing the support with a high specific surface
area. The average thickness of the honeycomb carbon wall was about 3 µm, which enabled
the formation of small holes in the walls. During the KOH treatment, the carbon wall
portion was punctured, and the adjacent channel-like macropores communicated with each
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other. Nevertheless, the intermittent fracture of these carbon substrates did not disrupt the
continuity of the macroporous skeleton. In fact, the interconnectivity of the macroporous
skeleton was known to improve the mass transfer performance of the material [23,24].

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

The scanning electron microscopy images depict the morphology of the SF−HPC 

sample in Figure 1. As can be seen, the SF−HPC materials had obvious macroporous struc-

tures, which provided the basis for preparing the support with a high specific surface area. 

The average thickness of the honeycomb carbon wall was about 3 μm, which enabled the 

formation of small holes in the walls. During the KOH treatment, the carbon wall portion 

was punctured, and the adjacent channel-like macropores communicated with each other. 

Nevertheless, the intermittent fracture of these carbon substrates did not disrupt the con-

tinuity of the macroporous skeleton. In fact, the interconnectivity of the macroporous skel-

eton was known to improve the mass transfer performance of the material [23,24]. 

 

Figure 1. SEM images of SF−HPC. 

Figure 2 displays a TEM micrograph of SF−HPC. The magnified image clearly shows 

that the activated SF−HPC generated a large number of smaller pores on the walls of the 

macropores [15], which was the main reason for the increase in specific surface area. This 

was consistent with the results of the nitrogen adsorption and desorption test discussed 

below. 

 

Figure 2. TEM images of SF−HPC. 

Figure 1. SEM images of SF-HPC.

Figure 2 displays a TEM micrograph of SF-HPC. The magnified image clearly shows
that the activated SF-HPC generated a large number of smaller pores on the walls of the
macropores [15], which was the main reason for the increase in specific surface area. This
was consistent with the results of the nitrogen adsorption and desorption test discussed below.
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The XRD pattern of the support and the catalyst are shown in Figure 3A. It can be seen
that SF-HPC had a distinct diffraction peak at 20–30◦, corresponding to amorphous carbon.
The pattern of 1%HPW/SF-HPC was the same as that of the support SF-HPC, because the
low content of HPW was uniformly distributed on the SF-HPC surface, which could not
be detected by XRD. In contrast, the characteristic peaks of HPW appear in the pattern of
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5% and 10%HPW/SF-HPC, being more obvious in the latter catalyst due to the increased
HPW content.
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Figure 3. (A) XRD patterns of (a) SF-HPC, (b) 1%HPW/SF-HPC, (c) 5%HPW/SF-HPC, (d) 10%HPW/SF-HPC, and (e) HPW.
(B) FT-IR spectra of (a) SF-HPC, (b) 1%HPW/SF-HPC, (c) 5%HPW/SF-HPC, and (d) 10%HPW/SF-HPC.

Figure 3B shows the infrared spectra of SF-HPC and the HPW/SF-HPC catalysts.
SF-HPC gave rise to absorption peaks at 784.41, 808.87, 872.32, 1383.88, and 2347.29 cm−1.
Meanwhile, the absorption peak of HPW became more obvious with catalyst loading
increasing. In the spectrum of the 10%HPW/SF-HPC catalyst, the peaks that appeared at
795.43, 892.18, 989.50, and 1066.52 cm−1 could be attributed to the vibration of the W–Oc–W,
W–Ob–W, W–Od, and P–Oa bonds, respectively. Compared to the corresponding character-
istic absorption peaks in pure HPW (799.58, 892.26, 982.44, and 1080.24 cm−1) [25–27], the
tensile vibrations of W–Oc–W, W–Ob–W and P–Oa were blue-shifted and that of W–Od
was red-shifted, which confirmed the interaction between HPW and SF-HPC.

In order to further understand the structural properties of the catalyst and the support,
the support and the catalyst were analyzed by nitrogen adsorption and desorption analysis
to obtain physical properties, such as specific surface area, pore volume, and pore size,
as shown in Table 1. The specific surface area of SF-HPC in Table 1 was as high as
3152 m2g−1, which was larger than the specific surface area of HPC reported in the previous
literature [20,21]. As shown in Figure 4A, in the N2 adsorption isotherm, all isotherms were
close to type I, indicating the presence of micropores. In addition, there was a very small
hysteresis loop in the range of P/P0 in the range of 0.45–0.5, which indicated the presence
of a mesoporous structure in the pore structure. It could also be seen from the pore size
distribution in Figure 4B. The macroporous structure of the sample was characterized by a
mercury intrusion meter. The results showed that there were macroporous structures in
the SF-HPC sample. These were consistent with those observed by SEM, which further
confirmed that the samples were hierarchical porous materials. After loading HPW, the
specific surface area decreased and the pore diameter did not obviously change. It could
also be seen from the pore size distribution that the pore size distribution did not greatly
change after the loading of HPW.

Table 1. Structure parameters of the catalysts.

Sample SBET (m2g−1) VP (cm3g−1) d (nm)

SF-HPC 3152.46 1.86 2.35
1%HPW/SF-HPC 2805.95 1.77 2.52
5%HPW/SF-HPC 2625.28 1.57 2.40
10%HPW/SF-HPC 2436.84 1.51 2.49
20%HPW/SF-HPC 2080.98 1.27 2.44
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To clearly observe the distribution of the active component, HPW, on the surface of the
support SF-HPC, we performed an EDS mapping test with the 5%HPW/SF-HPC catalyst.
As shown in Figure 5, we could clearly observe phosphorus and tungsten, indicating
that HPW had good dispersibility on the surface of the support SF-HPC. This result
confirmed the uniform distribution of HPW on the support SF-HPC and the lack of HPW
agglomeration, which was consistent with the XRD results.
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3.2. Catalytic Performance

The desulfurization activity of the catalysts was evaluated following the procedure
described in the experimental section. Firstly, we investigated the desulfurization effect
before and after loading the active component. As shown in Figure 6, the desulfurization
effect increased significantly after loading HPW, demonstrating that the active components
promoted the desulfurization effect. Furthermore, the desulfurization activity increased
with the increase in the loading (Figure 6), reaching 100% with catalyst loading of 5%. The
other catalysts containing 10% and 20% loading could also achieve a desulfurization rate
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of 100%. Consistent with our assumptions, high dispersion of HPW allowed the HPW load
to be reduced. Therefore, 5% could be envisaged as the optimal loading, and subsequent
experiments were carried out with the 5%HPW/SF-HPC catalyst. Compared to previous
reports [11,28,29], a great reduction in the catalyst loading was achieved by using the
present HPC support. The HPW content was thereby reduced, which was beneficial for
decreasing the effect of phosphorus pollution on the environment.
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Other beneficial features of the present process were the reaction temperature, since
100% desulfurization could be achieved at room temperature, and the lack of heat consump-
tion, which would save production costs. Other parameters displayed the relationship
between the desulfurization rate and the reaction time as shown in Figure 7A. As can be
seen, the desulfurization rate increased with time, reaching 100% at 30 min of reaction time.
This constituted a considerable shortening of the previously reported desulfurization time,
which was beneficial for industrial applications. Figure 7B shows that the sulfur removal
rate improves with the increase in the O/S ratio, reaching 100% for O/S = 10. In contrast,
when the O/S ratio reached 14, the desulfurization rate decreased slightly, which may be
due to the excessive hydrogen peroxide adsorbing water molecules on some active sites on
the catalyst surface, thus reducing the adsorption of DBT [8,30]. A significant effect of the
amount of catalyst on the desulfurization effect can be seen in Figure 7C. As the amount of
catalyst increased, the sulfur removal rate increased considerably, reaching 100% when the
amount of catalyst was 0.1 g. In summary, the optimal parameters of the reaction, which
were significantly enhanced compared to previous reports [31–34], were room temperature,
30 min of reaction time, O/S = 10, and 0.1 g of catalyst per 10 mL of oil.
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Figure 7. (A) Effect of reaction time (T = 25 ◦C, O/S = 10, and catalyst dosage = 0.1 g/10 mL). (B) Effect of O/S molar ratio
(T = 25 ◦C, t = 30 min, and catalyst dosage = 0.1 g/10 mL). (C) Effect of catalyst dosage (t = 30 min, T = 25 ◦C, and O/S = 10).
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To further investigate the performance of the catalyst, we recovered the catalyst and
investigated its stability. After the catalytic oxidation reaction was completed, the catalyst
was filtered and dried. The dried solid product was collected for the next catalytic reaction.
According to the results shown in Figure 8, the desulfurization rate was still maintained at
above 94% after four recycles. The loss of HPW was detected by an ICP test. The result is
shown in Table 2. The actual load of fresh 5%HPW/SF-HPC catalyst was 4.252% lower
than the theoretical value of 5%. This was due to the fact that some HPW remained in the
solution during the loading process. As the number of cycles increased, the content of HPW
gradually decreased. After four cycles, the actual loading decreased from 4.252% to 2.87%.
HPW was adsorbed on the support surface in the form of [PW12O40]3− and interacted
with the positive charge on the support surface [9]. The surface potential of SF-HPC was
measured by a zeta potentiometer at 16.36 V/cm, indicating that the positive charge of the
SF-HPC was low and the interaction force with [PW12O40]3− was weak, leading to the easy
loss of anions, which were consistent with the ICP test and experimental results.
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Figure 8. Effect of recycling times on DBT conversion.

Table 2. HPW content in the 5%HPW/SF-HPC catalyst.

Run Number W (wt %) HPW (wt %)

Fresh 3.257 4.252
1 cycle 3.129 4.085
2 cycles 2.878 3.757
3 cycles 2.616 3.415
4 cycles 2.198 2.870

4. Conclusions

In summary, the use of the ultra-high specific surface area and macroporous structure
of the SF-HPC improved the dispersion of the HPW catalyst, avoiding the agglomeration
of HPW and thus reducing the required HPW loading. The optimal HPW/SF-HPC catalyst
was successfully prepared with a HPW loading of 5%. The catalytic performance was
investigated in the oxidative desulfurization reaction. The optimized reaction conditions
were room temperature, 30 min reaction time, O/S = 10, and 0.1 g catalyst per 10 mL of
oil. Under the optimal conditions, the sulfur removal rate could reach 100%. The use of
SF-HPC reduced the content of the HPW catalyst, which not only reduced the cost of the
catalyst but also reduced the pollution caused by phosphorus.
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