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Abstract

The rapid accumulation of new biomedical literature not only causes curated knowledge
graphs (KGs) to become outdated and incomplete, but also makes manual curation
an impractical and unsustainable solution. Automated or semi-automated workflows
are necessary to assist in prioritizing and curating the literature to update and enrich
KGs. We have developed two workflows: one for re-curating a given KG to assure
its syntactic and semantic quality and another for rationally enriching it by manually
revising automatically extracted relations for nodes with low information density. We
applied these workflows to the KGs encoded in Biological Expression Language from the
NeuroMMSig database using content that was pre-extracted from MEDLINE abstracts
and PubMed Central full-text articles using text mining output integrated by INDRA.
We have made this workflow freely available at https:/github.com/bel-enrichment/bel-
enrichment.

Database URL: https://github.com/bel-enrichment/results

Background reasoning and interpretation. Several standard formats have
The rapid accumulation of unstructured knowledge in been proposed for storing newly structured knowledge,
the biomedical literature has motivated its structuring including Systems Biology Markup Language [SBML; (1)],
and formalization so computers can assist in large-scale Biological Pathways Exchange Language [BioPAX; (2)],
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Biological Expression Language [BEL; (3)] and Gene
Ontology Causal Activity Models (4).
these standards are public repositories containing content

Accompanying

generated both in academic and industrial contexts such as
the BioModels Database (5), Pathway Commons (6), NDEx
(7), Bio2RDF (8), Open PHACTS (9) and BEL Commons
(10).

Even though each standard focuses on different aspects
of modeling knowledge in systems and networks biology,
they all give rise to knowledge graphs (KGs) consisting
of biological entities (nodes), their interrelations (edges)
and their associated metadata. While KGs have been
useful for qualitative modeling of biochemical networks
(11, 12), cellular signaling (13-15), gene regulatory
pathways and genetic interactions (16, 17), metabolic
pathways (18, 19) and other systems biology applications,
there are several challenges associated with their use.
First, they contain noise arising from curation, from
the loss of information due to representation and from
normalization of different knowledge representations
(20-22). Second, they are generally an incomplete repre-
sentation of the current state of scientific knowledge due to
the large amount of uncurated, unstructured knowledge
in the literature. Third, they progressively become out
of date as scientific experimentation and investigation
elucidate new knowledge (23). Finally, they often lack
biological contextual information such as organelle, cell,
cell line, tissue, organ, phenotype or disease specificity
(24,25).

KGs also suffer from issues in the normalization and
mapping of entities. Though interoperability standards and
resources like the Minimal Information Required in the
Annotation of Models [MIRIAM; (26)] and Identifiers.org
(27) have been developed and implemented to promote
the semantic interoperability of biological models (and
by extension, KGs), curators often encounter concepts
that are not present in high-quality, publicly available
terminologies and cannot capture the incident knowledge
in a semantically meaningful way. These situations require
enriching previously existing terminologies or, in some
cases, developing new ones. For situations when the
appropriate concept/term is unclear, several tools have been
developed and made freely available to the community
to help curators build semantically interoperable models
including the Ontology Lookup Service [OLS; (28)], the
Ontology Mapping Service (OxQOj; https://www.ebi.ac.
uk/spot/oxo), Zooma (https://www.ebi.ac.uk/spot/zooma)
and CEDAR Workbench (29). Further, recent work from
Domingo-Ferndndez et al. on mapping pathways between
major databases (30) and a critical assessment of their over-
laps and contradictions (31) has shown that the adoption
of standards like MIRIAM has been slow and that while

the syntax of the varying formats used by each database
may be correct, their semantic interoperability is still
lacking.

Motivation

Accurately structuring and formalizing the unstructured
knowledge in the biomedical literature requires careful
planning and manual effort from trained curators. The
scope of a given project must be defined based on its
scientific goals (e.g. to support the interpretation of data, to
generate a disease-specific knowledgebase etc.) and limited
in its literature content sources (e.g. abstracts, full text,
patents etc.) based on a project-specific metric for quality
and relevance—both of which are nebulous in description
and difficult to generate. The scope must also be limited to
certain classes of biological entities, their interrelations and
the standard formats that are capable of expressing them.
For instance, the entities, relations and formats used dur-
ing curation are different for protein complex assemblies
curated by the Complex Portal (32) and regulatory inter-
actions curated by the Signaling Network Open Resource
(33). Similarly, curation guidelines must be defined reflect-
ing these limits. For example, the guidelines of a project
designed to model Tau aggregation inhibitors from the
chemistry literature might encourage the curators to include
direct binding partners of those inhibitors (e.g. GSK-38,
CDKS etc.) but explicitly exclude the biological mecha-
nisms through which the inhibitors’ targets result in Tau
aggregation that would better be curated during a different
project focusing on capturing molecular biology from its
primary literature. While there is no alternative to proper
planning, several semi-automated curation workflows such
as BEL information extraction workflow (BELIEF) (34)
and the sbv IMPROVER (35) provide assistance by auto-
matically detecting entities and relations for curators to
accept or fix in order to increase productivity and enforce
correct syntax and semantics. However, these and similar
systems are limited in their ability to capture the relevant
chemistry and biology, and reversion to manual curation
is often necessary. Most issues arise from the complexity
of terminology used in domain-specific biology and the
heterogeneity of chemical nomenclature in general. Further,
compositions of entities and concepts (e.g. there is a flex-
ible and extensible terminology for complexes of proteins,
such as the variety of combinations of subunits that form
various nicotinic receptors) remain a challenge as natural
language used in scholarly articles is constantly evolving.
Finally, the issues of insufficient resources and fixed time-
lines apply to most curation projects, as aptly described by

(36).
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In the AETIONOMY project (https://www.aetionomy.
eu), we manually curated NeuroMMSig, an inventory of
multiscale and multimodal KGs that capture mechanis-
tic knowledge in the context of neurological disorders
(37). We encoded it in BEL because it is appropriate for
qualitative causal, correlative and associative relationships
between biological entities, processes and measurements
across modes and scales. However, it is currently suffering
from the issues we have previously described: it has not
been assessed for confidence, is becoming outdated and
needs to be enriched following a rational approach that best
prioritizes the flood of recent literature.

To address this, we have developed and applied two
workflows, described in this paper: the first is for re-
curating existing BEL documents to ensure their syntac-
tic and semantic correctness in a scenario where there
was neither prior syntax validation, curation guidelines for
entity nomenclature nor a second curator for achieving
inter-annotator agreement. The second is a semi-automated
algorithm and reproducible workflow for updating and
rationally enriching an existing KG that lessens the burden
of identifying relevant literature, reduces the overhead, as
defined by Rodriguez-Esteban (36), and generates more,
higher quality, relevant content.

We applied these workflows to a selection of KGs in
NeuroMMSig and evaluated the curation effort (time) and
quality in comparison to purely manual curation and other
previously reported semi-automated curation workflows.
We increased the number of nodes and edges in the selected
KGs respectively by approximately five and seven times
while maintaining the specificity of the KGs. With an
improvement to the content underlying NeuroMMSig,
the mechanism enrichment algorithm on its corresponding
web service can return more correct and robust results
to support the analysis of neuroimaging and genomics
data for clinical trials in Alzheimer’s disease, Parkinson’s
disease and epilepsy. Finally, we have made this workflow
freely available at https://github.com/bel-enrichment/bel-
enrichment so others can include it in their own curation
workflows.

Methods

We first present the re-curation workflow for syntactic and
semantic quality assurance before presenting our proposed
approach for updating and rational enrichment.

Syntactic quality assurance

We developed a workflow using git (https:/git-scm.com),
GitHub (https://github.com), PyBEL (44) and a novel
PyBEL extension PyBEL-Git (39) in order to identify and

address syntactical issues in the BEL documents generated
during the AETIONOMY project [https://www.aetionomy.
eu; (40-44) and exposed through the NeuroMMSig
mechanism enrichment server (37).

This workflow can be implemented in other web-based
version control systems such as GitLab (https:/gitlab.
com) and Atlassian BitBucket (https://bitbucket.org) as
well as directly integrated with continuous integration
systems such as GitLab CI/CD (https://docs.gitlab.com/ee/
ci), Travis-CI (https://travis-ci.com) and BitBucket Pipelines
(https://bitbucket.org/product/features/pipelines) using the
instructions provided at https://github.com/pybel/pybel-git
with minimal configuration.

Semantic quality assurance

We selected 10 signatures (and their corresponding BEL
documents) from NeuroMMSig based on their druggability
(number of proteins targeted by drugs that have been
assessed in clinical trials), their novelty (less preference
given to subgraphs corresponding to hypotheses that have
repeatedly failed in the clinic, namely amyloid-beta aggrega-
tion) and their amenability to assay development (based on
expert advice) as an example for the re-curation workflow
outlined below. An enumeration and statistics can be found
in Table 1, and the signatures can be explored through BEL
Commons. Because BEL was developed by the biomarker
discovery company Selventa before the wide adoption of
semantic resources like Identifiers.org, the Open Biomedical
Ontology Foundry and the OLS, the language used a
custom format for storing the names and identifiers of
entities in major biomedical databases and ontologies such
as the HUGO Genome Nomenclature Consortium [HGNC;
(45)], Chemical Entities of Biological Interest [ChEBI;
(46)], the Gene Ontology [GO; (4)], Medical Subject
Headings [MeSH; (47)], the Disease Ontology [DO; (48)],
the Human Phenotype Ontology [HPO; (49)], the Cell Line
Ontology (50), the Experimental Factor Ontology (51) and
others. Additionally, Selventa provided several entity type-
specific, manually curated terminologies for chemicals,
protein families, protein complexes and diseases for entities
that had not yet been included in any of the other existing
resources.

Because the Selventa terminologies are no longer
maintained and the publicly available terminologies have
far surpassed them in coverage, the first step in re-curation
was to normalize entities to high-quality, publicly available
terminologies. For example, chemicals were normalized to
identifiers from ChEBI, ChEMBL (52) and PubChem (53)
whenever possible; protein families and complexes were
normalized to FamPlex (54); and diseases were normalized
to DO and HPO. Further, because the BEL documents from
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Table 2. Confidence annotations using the Likert scale for re-curation

Confidence Rationale

None If the evidence string is nonsense or contains no reasonable
biological knowledge, delete it and the related statements entirely. It
is okay to remove BEL statements that are not supported.

Low If it’s not clear what BEL should represent the biology, add SET
Confidence = "Low" for later discussion.

Medium If the statement is wrong, fix it and add the annotation SET
Confidence = "Medium".

High If statement can be asserted from the given evidence, add the

annotation SET Confidence = "High".

AETIONOMY were all produced before 20135, the entities
that were curated using their labels (instead of stable iden-
tifiers) needed to be updated. A short investigation showed
that HGNC and GO were the least stable namespaces (e.g.
change of preferred label, splitting of entries, merging of
entries and deprecation of entries), but combined they
had less than 100 entities to be addressed. We therefore
concluded that manual intervention was more appropriate
than developing complicated systems for updating labels.
While it is not intended to be the focus of this article, we
have also begun to build a custom terminology (available
at https://github.com/pharmacome/terminology) to sup-
plement the publicly available ones for a small number
(less than 1000) of terms that had not been included in
other resources.

After ensuring both the correctness of BEL syntax and
namespace usage, a remaining major aspect of re-curation
is to address the issues arising from curation lacking inter-
annotator agreement. BEL statements and their correspond-
ing annotations (metadata) were generated by several inde-
pendent curators and had not undergone quality control
either by comparison with the results of independent cura-
tion of the same document by a second curator or even
minimally checked by a second curator. We applied the
following simple guidelines:

1. Second curator: check and label all relevant statements
with a SET Confidence annotation using the Likert
scale as described in Table 2.

2. Third curator (curation leader): after all relevant
statements had been checked for correctness, check

all statements with SET Confidence = "High"
or SET Confidence = "Medium". Change the
confidence to SET Confidence = "Very High"

on agreement. Otherwise, fix the statement.

The existence of the confidence guideline can be checked
with the PyBEL command line interface with the following

command: pybel compile --required-annotations

"Confidence".

Proposed approach for updating and rational
enrichment

Next, we developed and applied a procedure for enriching
a given BEL document in order to cope with the mounting
issues of out of dateness and incompleteness. Our approach
identifies nodes with low information density and uses a
large-scale corpus of biomedical literature that has been
pre-processed by automated relation extraction methods
to identify the most relevant literature, evidences and ulti-
mately relations. Notably, the previously described quality
assurance (i.e. re-curation) workflows for checking and
addressing the syntactic and semantic correctness of a given
BEL document were necessary to decrease the noise input
into the procedure. Following the re-curation of the 10 Neu-
roMMSig subgraphs, we applied the following procedure

for rational enrichment:

1. KG pre-processing: nodes corresponding to the same
gene (i.e. RNA, microRNA, protein and variants
thereof) are collapsed, non-causal relationships (e.g.
correlative, associative, ontological etc.) are removed
and several entity types (i.e. abundances, reactions,
pathologies and biological processes) are removed.
While non-causal relations may be useful for explo-
ration and in some analyses of a KG, their removal
results in a graph of genes and their causal interrelations
that allow the following enrichment steps to prioritize
genes based on the amount of causal information
available, which is required for several standard
algorithms for analyzing experimental data such as
Reverse Causal Reasoning (56). Further, the removal
of other entity types and the collapsing of genes and
their corresponding products were motivated by the
focus of such algorithms on interactions between genes
and their products. These pre-processing steps could
be modified to fit other downstream applications. For
example, the entity filter could be modified to include
reactions and metabolites if the downstream application
were to investigate metabolic flux.
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2. Application of information density metric: the remain-
ing nodes are ranked by an information density func-
tion. We used the sum of the node in-degree and out-
degree as this corresponds to the amount of causal
information for a given gene that is available in the
KG. In this scenario, isolated nodes correspond to genes
for which there is no causal information about its
interactions with other proteins, and leaves (i.e. entities
with only one edge) correspond to nodes that have very
limited information.

3. Automated relation extraction: the top-ranked genes are
used as a query to a KG generated by large-scale auto-
mated biological relation extraction. We used the Inte-
grated Network and Dynamical Reasoning and Assem-
bler [INDRA; (57)] and applied several filters to find
the most relevant and novel relations. First, the relations
that were already curated and in the KG were excluded.
Second, INDRA was used to calculate a confidence
score (between 0.0 and 1.0) for each relation based on
evidences from structured databases and the frequency
of occurrence of similar statements. Those statements
with a low confidence score (<0.80) were removed to
increase the precision and therefore reduce the curation
overhead. While INDRA integrates relations extracted
from multiple reading systems, a corpus of relations
from a single machine reading system, such as EVEX,
would serve the same purpose (58).

4. Conversion to BEL: different automated relation extrac-
tion systems present various information (e.g. entity off-
sets, events, triggers etc.) in ways that are not amenable
to curation. Because INDRA already normalizes this
information for several systems to several varieties of
the indra.Statement Python class, we developed a
converter to BEL using PyBEL that can be used directly
with the
Python class. Finally, this information is exported to an

indra.assemblers.PybelAssembler

Excel sheet with several additional columns for tracking
INDRA statement provenance, curator provenance, the
correctness of BEL statements, the type of errors found
and the changes made to incorrect BEL statements.
Examples and links to the full results can be found
in the supplementary information. This process often
results in the addition of entities that were excluded
during KG pre-processing, such as biological processes
and pathologies, as well as the inclusion of additional
namespaces based on their corresponding priorities
encoded in the converter.

For each round of rational enrichment, the procedure
was applied to generate several curation sheets correspond-
ing to the lowest information genes. Each row was checked
with the following procedure:

1. Place an X’ in the ‘Checked’ column.

2. If the BEL statement correctly corresponds to the ‘Evi-
dence’ column, place an ‘x’ in the ‘Correct’ column.

3. Else if the BEL statement can be improved (e.g.
assignment of entity types, relation etc.), correct it and
place an ‘x’ in the ‘Changed’ column and annotate the
error type in the ‘Error Type’ column using a controlled
vocabulary (see the supplementary data). Additional
guidelines for categorizing error types can be found at
https://github.com/pharmacome/curation/blob/master/
indra-errors.rst.

4. Else if the BEL statement does not correspond to
the ‘Evidence’ column and cannot be improved, then
‘x” should neither be placed in the ‘Correct’ nor the
‘Changed’ column.

5. If the ‘Evidence’ column contains other BEL statements
that were not extracted, duplicate the current row’s
provenance (reference, evidence etc.) and add the addi-
tional BEL statements. Place an ‘x’ in the ‘Changed’
column but not the ‘Correct’ column.

6. If there are other BEL statements that can be extracted,
make a new line with all of the same provenance infor-
mation (uuid, reference, evidence etc.) and just place an
<’ in the ‘Changed’ column.

This procedure was applied iteratively: as the low infor-
mation density nodes from the first round gained new rela-
tions, the KG was expanded and further low information
density nodes were added. There are several improvements
that could be made to the information density function
and prioritization of the resulting extracted statements. For
example, relations found by INDRA between low infor-
mation density nodes and high information density nodes
could be prioritized to maintain the scope and focus of a
KG.

Results and discussion

While applying the re-curation workflow outlined in
Figure 1, we identified large sections of poor-quality cura-
tion that had to be removed. Additionally, some evidences
in the BEL document that were previously incompletely
curated were completed. Re-curation also required the
updating of namespaces from the 2015 versions to the
most current and necessitated some additional revisions.
To evaluate the enrichment workflow outlined in
Figure 2, we defined weekly curation rounds in which each
of the 5 curators were tasked to curate the enrichment
template generated by INDRA for the first 30 prioritized
genes. Curators worked 10 hours per round for 1 month
(4 weeks; 1 round per week) to curate BEL statements
from a pool of 113 genes. A database of statements
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Syntactic
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Continuous Integration Server
Run PyBEL-Git and send
feedback to user

&
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Figure 1. A workflow for syntactic quality assessment. This figure can
be found on FigShare at https://doi.org/10.6084/m9.figshare.7643006.v1.

was generated by INDRA using the REACH (59, 60)
and Sparser (61) readers to extract a total of 17096
statements containing these genes from all MEDLINE
abstracts and PubMed Central full-text articles available
in August 2018. Of these, 2989 were manually evaluated.
A total of 917 statements (30.7%) were marked as
correct by the curators, 1454 statements (48.6%) required
manual corrections and the remainder (20.7%) could
not be corrected. The criteria for correctness was that
‘all’ aspects of the statement, including the subject and
object entities, relationship type, phosphorylation and
other post-translational modifications, were extracted
to the same extent as careful manual curation could.
Ultimately, excluding the statements that could not be
corrected, 79.3% of the automatically extracted, manually
revised BEL statements were recovered. After curation, the
recovered statements were converted into a BEL KG that
contained 4228 nodes and 17002 edges complementary to
the original 10 subgraphs selected from NeuroMMSig. The
discrepancies in the number of INDRA statements to BEL
statements are due to the ontological reasoning process
that occurs during conversion. For example, INDRA
statements about protein complex formation are converted
to bi-directional BEL statements, INDRA statements
about post-translationally modified proteins induce edges
to the reference protein and INDRA statements about
bound proteins create a variety of additional BEL nodes
representing their constituents and membership edges
connecting them.

There are two main aspects that are commonly used
to formally evaluate a biocuration workflow: the time
required to complete the task and quality of the curation
compared with a gold standard. To evaluate whether the
proposed approach for rational enrichment allows curat-
ing a larger amount of statements without compromising

the quality, we calculated the average number of min-

Assemble a
knowledge graph

Identify nodes with low
information density

”

Enrichment
Workflow

Acquire and curate
pre-extracted content
in spreadsheets

Serialize and integrate with
original knowledge graph

Figure 2. A workflow for the rational enrichment of knowledge graphs.
This figure can be found on FigShare at https://doi.org/10.6084/m9.
figshare.7642964.v1.

utes required to curate one statement using our proposed
workflow and compared it with previous estimates calcu-
lated conducting manual curation of BEL statements [(34);
(62)] (Figure 3a). While the average curation effort was
significantly lower than manual curation [2.19 minutes
per BEL statement in our workflow vs. 3.2 minutes per
BEL statement in manual curation reported by (62)], our
calculations included the time used by the curators to
annotate the various errors made by the reading system(s).
Therefore, if the curation exercise would have exclusively
focused on curating BEL statements, the average would
have been even lower. Moreover, it is important to note that
our proposed approach does not explicitly require the time
nor expertise required for corpora generation because the
reading systems (e.g. REACH and Sparser) and assembly
systems (i.e. INDRA and PyBEL) are applied to all available
literature. Unfortunately, it was not possible to make a
direct comparison to the reported 1.7 minutes per BEL
statement reported by Madan et al. (34) due to several
confounding variables and the unavailability of further
statistical information about the variability of curation time
when using BELIEE.

Although the amount of time required to curate a certain
amount of statements with the proposed approach is lower
compared to standard manual curation, the curation effort
is also highly variable depending on which gene was curated
(Figure 3a). To investigate how the curation effort depends
on the accuracy of the reader extracting BEL statements,
we compared the average curation effort between genes
whose statements were accurately and poorly extracted
(Figure 3b). We observed that the curation effort required


https://doi.org/10.6084/m9.figshare.7643006.v1
https://doi.org/10.6084/m9.figshare.7642964.v1
https://doi.org/10.6084/m9.figshare.7642964.v1
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Summary of Curation Effort

A) By Curator

B) By Statement Accuracy

Minutes per Statement

3

Curator

p < 0.004**

High

Gene Accuracy Category

Figure 3. a) Recovered BEL statements per minute. Note that the time reported here includes the time invested in annotate the statement as well
as INDRA errors. b) A comparison of the curation effort between genes for which INDRA had high accuracies (top 20) and genes presenting low

accuracies (bottom 20).

Distribution of Correct Statements
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30

25

20

15

10

Frequency (genes)

5 J
P T

I [ T TV

0 20 40 60 80

Correct Statements (%)

0 20 40 60 80 100

Recovered Statements (%)

Figure 4. a) The distribution of the accuracies in triple identification by INDRA for each gene. X-axis: Correct statements (%). Y-axis: Number of genes
(frequency). b) Distribution of recovered statements after curation (mean: 74.63%).

to extract statements in genes whose statements were highly
accurate (top 20) was significantly less (P < 0.004; Student’s
t-test) than the effort required to curate low accuracy
(bottom 20) genes, which effectively took as long as manual
curation. We conclude that the high variability associ-
ated with the average curation times per curator can be
explained by the extra invested time in the genes presenting
low recall.

The second aspect we evaluated was the performance
in terms of quality. To investigate the direct quality of
the BEL statements coming from INDRA, we analyzed the
distributions of correct statements before curation observed
in each gene (accuracy investigation) (Figure 4a). Most of
the genes presented accuracies close to the mean accuracy
(35.75%) with only a few outliers whose limited number
of extracted statements lead to their respective high or low
accuracies (see Supplementary Figure 1). Furthermore, in
accordance with previous research assessing the quality of
automatic and manual relation extraction (63), the accu-
racies we observed again indicated that BEL statements
must be manually curated in order to generate high-quality

networks. After curation, the distribution of statements that
were correct plus statements that were fixed during curation
(i.e. excluding statements that were incorrect and could
not be fixed) shifted completely to long-tailed distribution
with an average of 74.63% BEL statements successfully
extracted (Figure 4b). The remaining statements (~25%)
could either not be coded in BEL or contained any relevant
information about the particular gene.

While curating the BEL statements, we also annotated
the errors made throughout the process of reading, assem-
bly by INDRA and conversion to BEL by PyBEL in order to
identify common mistakes and to assist in the improvement
of these three systems. The results showed that the most
common error is caused by the name entity recognition sys-
tem that identifies the entities participating in the relation
(Figure 5). Other common errors arose from the improper
assignment of the subject and object entities, from evidences
that did not actually include relations between the subject
and object entities and statements that were semantically
incorrect due to a negation word (e.g. not, no, none, neither
etc.).


https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz068#supplementary-data
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Frequencies of Error Types
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Relationship

Negation
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Not codable
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Figure 5. The frequencies of common errors found while curating BEL statements generated from 113 genes. Further details about each error type
and the annotation process are available in the guidelines available at https:/github.com/pharmacome/curation/blob/master/indra-errors.rst.

The five curators were tasked with tagging interesting
examples of the common mistakes that could be used to
inform the development of the reading systems (REACH,
Sparser etc.) and the assembly systems (INDRA and
PyBEL). Because the authors of this manuscript maintain
the INDRA and PyBEL packages, identifying the causes
of errors in assembly was relatively straightforward. For
example, BEL statements containing biological processes
were consistently output using invalid BEL syntax, includ-
ing the activity() function, which is reserved for proteins
and other physical entities. We addressed this by updating
the previously mentioned indra.assemblers.PybelAssembler
class. Another error type that was not addressed until
after the evaluation was completed was the determination
of the role of direct physical interaction in causal
relations. INDRA makes use of linguistic cues from
the text mining systems along with information from
protein—protein interaction databases to determination
if a relation involves a physical interaction between
proteins, but this information was not incorporated into the
indra.assemblers.Pybel Assembler class. Instead, by default
all relations were output using BEL statements implying
physical contact: ‘directly increases’ (i.e. increases via
contact) and directly decreases (i.e. decreases via contact).
This issue has since been fixed. In general, the direct/indirect
distinction is difficult to detect automatically in natural
language, though it is very important in the generation
of mechanistic and mathematical models arising from
biological knowledge.

In Table 3, we present a small sampling of the errors and
corresponding suggestions for improvement in the reading
systems. We present a much more thorough enumeration

of the errors found in statements for the 113 curated genes
in the supplementary information. Besides generating new
content quickly, this curation procedure includes informa-
tion to allow for the evaluation of the automated relation
extraction systems and for the proposition of improve-
ments. For example, new groundings can be proposed for
entities that were often mismatched. A prominent example
was the misidentification of tau (a human protein) and
taurine (an amino acid).

Additionally, new rules could be suggested for rule-
based systems to avoid issues with the misidentification of
the order of the subject and object as in the example of
‘Bak expression was also induced in cells overexpressing
the stress-induced transcription factor GADD153, but Bak
expression was inhibited in cells expressing an antisense
GADD153 construct’ (64) whose use of the passive voice
may have caused REACH to interpret the statement as ‘Bak
increased GADD153’. Ultimately, we believe we can use
these examples to provide useful feedback to the developers
of the reading systems and improve future extraction.

After applying the re-curation workflow to our selec-
tion of KGs in the NeuroMMSig inventory, we increased
the number of nodes from 1188 to 1704 (~1.5x) and
edges from 3529 to 5391 (~1.5x). After applying the
enrichment workflow, the number of nodes increased to
5850 (~5x) and edges to 23811 (~7x). A more granular
summary can be found in Table 1. With a 5x increase in
nodes, we would expect to see a 10x increase in edges
if the new nodes were completely disconnected from the
pre-existing nodes in the KG, which shows that we have
been able to maintain the specificity of the KGs to a
reasonable degree. In total, our curators spent 80 hours
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Table 3. Examples of errors that resulted in suggestions for improvements for the underlying relation extraction systems

Gene Evidence Issue Suggestion

MRC1 In conclusion, these results suggest that MRC1, also known as MMR, was Machine learning methods generating
BCR and ABL kinase abrogates MMR confused with mismatch repair (MMR)  contextual word embeddings could be
activity to inhibit apoptosis and induce used to improve the named entity
mutator phenotype. (65) recognition component such as

NeuralCoref (https://github.com/
huggingface/neuralcoref).

TIMP1 In our work, the restoration of cholesterol TIMP1, also known as EPA, was Improve the named entity recognition
efflux capacities from EPA-enriched confused with eicosapentaenoic acid (disambiguation) process, for example,
human monocyte-derived macrophages (EPA) by updating synonym dictionaries in
(HMDM) treated with both the adenylate rule-based systems.
cyclase activator forskolin and the
phosphodiesterase inhibitor IBMX
strongly suggests that EPA decreased the
ABCA1 mediated cholesterol efflux from
HMDM through a PKA dependent
pathway. (66)

TRPV1  Moreover, recently TRPV1 has been Only the inhibition relationship was Rule-based relation extraction systems
demonstrated to be either inhibited or extracted could be appended with new rules to
activated by PIP 2. (67) handle sentences with multiple objects.

This and similar examples could be
included in the training data for machine
learning-based relation extraction.

NUMB  This interaction is mediated by the NPXY The complex sentence structure of Rule-based systems like REACH that
motif of LNX1 and leads to ubiquitination ‘ubiquitination’ and ‘targeting’ event explicitly handle ubiquitination events
of Numb by the RING domain of LNX1, were not resolved properly, and the could be appended with new rules.
thereby targeting Numb to proteasomal ubiquitination was omitted.
degradation. (68)

USF2 Taken together, the results shown in Relation should be treated as an indirect, Update the INDRA PybelAssembler to

Figure 5A—C suggest that USF2 stimulates

rather than direct, increase

make use of information about whether

the transcriptional activity of NF«B by
enhancing the degradation of IxBa. (69)

a relation is mediated through physical
contact.

on the enrichment step to generate 17 002 new BEL state-
ments with an average rate of 3.54 edges per minute. The
resulting enriched KG can be used in reproductions of
previous analyses leveraging the NeuroMMSig inventory to
assess their robustness, deliver new insights and improve
future analyses when the results are incorporated into a
future release of the NeuroMMSig mechanism enrichment
server. Additionally, the statements comprise a large train-
ing set for future machine learning approaches for text
mining.

Conclusions

We have proposed and applied a generalizable workflow
for enriching and updating existing biological KGs with
a focus on the reduction of curation time both in
literature triage and in extraction. While its realization
involved spreadsheets rather than a bona fide curation
interface, we believe that it could be adopted by both
BEL-specific curation interfaces [e.g. BELIEF and BioDati

Studio (https:/studio.demo.biodati.com)] and more general
biological relation curation interfaces [e.g. NOCTUA
(http://noctua.berkeleybop.org), Factoid (https:/github.
com/PathwayCommons/factoid) and WikiPathways (70)].
Furthermore, INDRA is flexible enough to generate
curation sheets for curators familiar with formats other
than BEL, such as BioPAX or SBML.

This workflow is by no means the ultimate solution for
finding relevant content. Using pre-extracted statements as
a stand-in for relevance allows a given KG to be expanded,
but it requires several rounds to find the limits of a given
pathway or graph, during which the scope of the curation
could be lost. We plan to investigate other methods for
identifying relevant content by combining topic modeling
with mind maps to not only identify content at the entity
level, but on a higher abstraction that allows for capturing
of entire areas of biology. These methods could compensate
for the simplications that we made to the curation task,
such as removing relations containing chemicals, biological
processes and phenotypes. Additionally, they could enable
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earlier-stage curation that is more focused on achieving
reasonable coverage of the available knowledge rather than
high granularity enrichment.

Ultimately, as automated relation extraction technolo-
gies improve, they will be used to more significantly sup-
plement manual curation efforts. We expect to see many
upcoming workflows leveraging these exciting prospects.
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