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Pseudomonas aeruginosa Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis

(CF) patients and causes a wide range of infections among other susceptible
populations. Its inherent resistance to many antimicrobials also makes it diffi-
cult to treat infections with this pathogen. Recent evidence has highlighted the
diversity of this species, yet despite this, the majority of studies on virulence
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and pathogenesis focus on a small number of strains. There is a pressing need
for a P. aeruginosa reference panel to harmonize and coordinate the collective
efforts of the P. aeruginosa research community. We have collated a panel of 43

Funding Information P. aeruginosa strains that reflects the organism’s diversity. In addition to the
The collation of this panel was initiated as
part of EU COST Action BM1003: Microbial

cell surface determinants of virulence as

commonly studied clones, this panel includes transmissible strains, sequential
CF isolates, strains with specific virulence characteristics, and strains that repre-

targets for new therapeutics in cystic fibrosis.
A. D.S. was supported by a Higher Education
Funding Council for England Senior
Lectureship, J. L. B. was supported by a grant
from the National Institutes of Health (NIDDK
P30 DK 89507).

Received: 14 May 2013; Revised: 27
September 2013; Accepted: 7 October 2013

MicrobiologyOpen 2013; 2(6): 1010-1023
doi: 10.1002/mbo3.141

1010

sent serotype, genotype or geographic diversity. This focussed panel of P. aeru-
ginosa isolates will help accelerate and consolidate the discovery of virulence
determinants, improve our understanding of the pathogenesis of infections
caused by this pathogen, and provide the community with a valuable resource
for the testing of novel therapeutic agents.

© 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd. This is an open access article under the terms of

the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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Background

Cystic fibrosis (CF) is a significant health care challenge
and an important cause of premature mortality. Chronic
lower respiratory tract infections are the major cause of
morbidity and mortality in CF. Impaired mucociliary
clearance from the lung makes CF patients vulnerable to
opportunistic infections. Novel data from nonculture-
based techniques suggests that the airway microbiome in
CF is polymicrobial with multiple organisms present
(Blainey et al. 2012; Fodor et al. 2012; Zhao et al.
2012). Despite these methodologic advances, conven-
tional culture techniques remain the main clinical tool
used in managing CF infections. Such conventional
culture methods reveal that a relatively limited number
of pathogens are isolated during pulmonary infections
seen in patients with CF. The pathogens isolated by cul-
ture are predominantly Staphylococcus aureus, Haemophi-
lus influenzae, and Pseudomonas aeruginosa. Rarer
organisms from the Burkholderia cepacia complex (Bcc)
and other pathogens are also encountered (de Soyza
et al. 2004; Davies and Rubin 2007). Although Bcc
causes less than 10% of CF infections (Lipuma 2010),
the established international Bcc reference panel has
helped harmonize Burkholderia research by standardizing
approaches (Mahenthiralingam et al. 2000; Coenye et al.
2003).

Pseudomonas aeruginosa is the major pathogen in CF,
infecting up to 80% of adult patients, and once estab-
lished, the pathogen is often difficult to treat clinically
(Cheng et al. 1996; Fothergill et al. 2012a; Parkins et al.
2012). Surprisingly there are no recognized international
reference panels for the more prevalent CF pathogens,
such as P. aeruginosa, S. aureus or H. influenzae.
Arguably the most pressing need is for an international
P. aeruginosa reference panel to reflect the relevance of
this pathogen to CF and a range of other infections.
Such a panel will encourage researchers to avoid use of
isolates with limited availability, and to potentially
prevent unnecessary repetition across laboratories. The
availability of a standardized reference panel would
improve efficiency and reduce experimental animal
sacrifice, while also facilitating the search for improved
therapeutic approaches. In order to assemble the most
appropriate reference panel of P. aeruginosa isolates, we
aimed to define consensus on the core characteristics of
an international reference panel through an iterative
and interactive process involving workshops and a
consensus finding exercise. Molecular genotyping was
then used to ensure that the panel was broadly
representative of the wider population structure of
P. aeruginosa.

© 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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Methods

Consensus choice of isolates for initial
inclusion

A broad range of expertise was assembled including clini-
cians, clinical microbiologists and basic science microbiol-
ogy researchers. Requirements for a reference panel were
discussed in open forum on two occasions under the aus-
pices of a European Union Co-ordinated Scientific and
Technology (COST) action (COST BM1003; http://www.
cost-bm1003.info/). Discussion with further researchers
active in the field with an international perspective
(including coauthors D. D. V,, J. P. P,, T. K,, J. B., and B.
T.; see also acknowledgments) was then conducted prior
to a final consensus process involving COST action mem-
bers using prior techniques (RAND consensus tool)
(Francis et al. 2007).

The consensus-seeking process used statements identi-
fied in the prior workshops, with the assembled experts
independently scoring each statement. Statements identi-
fied and scored in the RAND process are included in
Table 1. Consensus was then sought based on the indi-
vidual scores as compared to the group average. Indif-
ference was rated as scores 4-6, while 7-9 was rated as
a positive consensus and 1-3 as a negative consensus.
The group were also asked to rate the ideal number of
isolates to be included in the panel with a mean score
presented.

Genotyping of isolates using the ArrayTube
method

Strains of P. aeruginosa were genotyped using the Array-
Tube (AT) system (CLONDIAG, Alere Technologies,
Koln, Germany) as described previously (Wiehlmann
et al. 2007). The AT microarray chip enables strains to be
classified according to 13 core genome single-nucleotide
polymorphisms (SNPs), and also screens for 38 variable
genetic markers of the P. aeruginosa accessory genome.
These include several previously reported genomic islands
(Arora et al. 2001; Liang et al. 2001; Larbig et al. 2002; de
Chial et al. 2003; Spencer et al. 2003; He et al. 2004;
Klockgether et al. 2004; Lee et al. 2006). Data from the
13 SNPs are combined with flagellin type (a/b) and the
presence of the genes encoding mutually exclusive type III
secretion exotoxins (S or U), to generate a strain-specific
“hexadecimal code” represented by four digits (Wiehl-
mann et al. 2007). This code can be used to search a large
database of P. aeruginosa strains (Cramer et al. 2012).
Subsequently, eBURST (version 3.0) (Feil et al. 2004;
Spratt et al. 2004) analysis of data generated using the AT
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Table 1. Details of the criteria used in the consensus process and the
outcome. Please grade the following criteria as regards how necessary
they are to necessitate inclusion of a particular Pseudomonas aerugin-
osa strain into an international reference panel (increasing numbers
mean increasing necessity): Consensus grading — NR, consensus not
reached; 9, mandatory criteria; 7, 8, necessary criteria; 4, 5, 6, useful
but not mandatory; 2, 3, not a necessary criteria; 1, no relevance to
international reference panel.

Consensus
grade
The Pseudomonas strain has
Already been genome sequenced 5
Some prior virulence data in vitro 6
Extensive prior virulence data in vitro NR
Some prior virulence data in vivo NR
Extensive prior virulence data in vivo NR
A known biofilm formation phenotype NR
Can be easily phenotyped for biofilm phenotype NR
Comes from a clinical source other than CF 6
Comes only from CF sources NR
Is known to be from early or late stage CF NR
Is of mucoid nature NR
Is of non mucoid nature NR
Is susceptible to bacteriophages NR
The strain panel should include
Range of strains from different sources 8
(geographic)
Range of strains from different sources 8
(CF, non CF clinical and environmental)
ONLY genome sequenced strains 4
Strains with structural characterization 6
data available
ONLY strains where structure of virulence NR
determinants known
Strains where variation in resistance is 6
known or expected
ONLY strains where resistance patterns NR
already known
Strains where in vivo virulence patterns 6
where possible
ONLY strains where in vivo virulence NR
patterns already known
Strains to allow a variety of Mucoid\ 6
non Mucoid where possible
Strains ONLY where non Mucoid \non NR
Mucoid Status known
Strains of epidemic and sporadic clinical 8
infection status
The panel should be provided at no cost NR
The panel should be hosted by a recognized 8
collection (e.g., BCCM)
The ideal number of strains in the panel should 21-30

be 0-10,11-20, 21-30, 31-40, 41-50

from the 13 SNPs, flagellin type (a or b) and presence of
the mutually exclusive type III secretion exotoxins (S or
U), was used to visualize the position of panel strains
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within the wider P. aeruginosa population structure using
a database of 955 genotyped strains (Cramer et al. 2012).

Results

RAND process

A number of strain and reference panel characteristics
were identified at the scoping workshops (Table 1).
Through the iterative consensus-seeking process we
identified a variety of characteristics for individual isolates
and also for the overall panel, and then reduced these to
criteria that were deemed either mandatory or critical.
Consensus was reached where the majority of scores were
within the same ranking and was achieved in 12 of 28
statements. The preferred mean number of isolates to be
included in the reference panel was 26 + 4 (10 respond-
ers).

Panel strain selection

selected based on the characteristics
identified through the Delphi process and literature
searches via PubMed. Where possible, isolates were
chosen when extensive prior data were available, includ-
ing those with genome sequencing data (Stover et al.
2000; Mathee et al. 2008; Winstanley et al. 2009; Stewart
et al. 2011), in vitro and/or in vivo virulence data (Hajjar
et al. 2002; Al-Aloul et al. 2004; Cigana et al. 2009; Carter
et al. 2010). Isolates were also selected to include repre-
sentatives from diverse biologic and geographic origins,
including clinical isolates (CF and non-CF clinical infec-
tions) and environmental sources (Cigana et al. 2009; Pir-
nay et al. 2009). Because this is an International panel, a
global perspective is essential and isolates from geographi-
cally dispersed origins were also chosen (Pirnay et al.
2009). The final selection of 43 strains is listed in Table 2.
The strain panel is available from the BCCM/LMG Bacte-
ria  Collection  (http://bccm.belspo.be/about/lmg.php),
Gent, Belgium, and the LMG reference numbers are
shown in Table 2.

Isolates were

Genotyping to define the distribution of the
panel strains among the wider P.
aeruginosa population

Each of the panel strains was genotyped using the AT
method. Figure 1 shows an eBURST representation of the
distribution of the panel strains among the wider
population of P. aeruginosa. The panel strains are widely
distributed and include representatives of both abundant
and less abundant clones. The AT codes are indicated in
Table 2.

© 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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Table 2. (Continued).

1016

AT code
(Clone)

Genome
sequence

LMG

Source
D

Panel
no.

Reference

Details

Origin and source

number

Stewart et al. (2011);

Serotype 1; Detailed phenotypic

(Shankar et al. (2012)
Cramer et al. (2012)

characterization
Detailed phenotypic characterization

1BAE
F429

CF, Germany

27662
27663

KK1

41

Wiehlmann et al. (2007)

Detailed phenotypic characterization

Yes

Community-acquired

A5803

42

pneumonia
CF, Germany

Bezuidt et al. (2013);

Detailed phenotypic characterization

3C52

Yes

27664

TBCF10839

43

Klockgether

et al. (2013)

MIC, minimum inhibitory concentration; ICU, intensive care unit.

"This has alternate strain names of: 1C, ATCC 15692, ATCC 17503, ATCC 25247, ATCC 25375, BCRC 13078, CCRC 13078, CECT 4122, CIP 104116, HER 1146, Holloway 1C, Holloway1, JCM

14847, KCTC 1637, Kemira Oy, LMG 12228, NCCB 4163, NCIMB 10545, NCIMB 10548, PAO 1, PAO1, PAO 1, PC 4163, PRS 101, Stanier 131, VTT E-082794, VTT E-84219.
’De Soyza, A., A. Perry, A. J. Hall, S. Sunny, K. Walton, N. H. Mustafa, et al. Pseudomonas aeruginosa cross infection in bronchiectasis: a Molecular Epidemiology study. Manuscript under
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Brief description of the panel strains
CF transmissible strains

Although it is still widely assumed that most CF patients
acquire their infecting strains of P. aeruginosa from envi-
ronmental sources, there is increasing evidence for the
emergence of particularly successful transmissible strains
(Fothergill et al. 2012a), some of which have been associ-
ated with increased patient morbidity or mortality
(Al-Aloul et al. 2004; Aaron et al. 2010) or antimicrobial
resistance (Ashish et al. 2012). Hence, we have included
representatives of the most widely studied transmissible
strains. These include three isolates of the Liverpool
Epidemic Strain (LES), first reported in a U.K. children’s
CF Unit in the 1990s (Cheng et al. 1996), but known to be
widespread through the U.K. (Scott and Pitt 2004; Martin
et al. 2013), and reported recently in North America
(Aaron et al. 2010). This strain is associated with novel
transmission events (McCallum et al. 2002), increased
patient morbidity (Al-Aloul et al. 2004), and resistance to
antimicrobials (Ashish et al. 2012). There are many pheno-
typic variants of this strain (Mowat et al. 2011), but we
have selected three, namely (1) LESB58, the earliest known
isolate (from 1988) (Winstanley et al. 2009), (2) LES400, a
lasR mutant that is in defective quorum sensing and shows
reduced virulence in various infection models (Salunkhe
et al. 2005; Carter et al. 2010) and (3) LES431, an isolate
associated with the infection of the non-CF parent of a CF
patient, an upregulated quorum sensing system and
enhanced virulence in infection models (McCallum et al.
2002; Salunkhe et al. 2005; Carter et al. 2010). All three
LES isolates are methionine auxotrophs.

In addition, we include a genome-sequenced represen-
tative of the other most commonly studied U.K. epi-
demic strain, the Manchester strain, C3719 (Mathee
et al. 2008; Jones et al. 2010). A number of transmissible
strains have been reported in Australia, and we include
representatives of the three most widely studied, namely
AUST-01 (AES-1), AUST-02 (AES-2) and AUST-03
(AES-3). AUST-01, associated with increased patient
morbidity, was first reported in Melbourne but has also
been reported in Sydney and Brisbane (Armstrong et al.
2003; O’Carroll et al. 2004; Kidd et al. 2013). AUST-02
has been reported as more common in Brisbane (Syrmis
et al. 2004; Kidd et al. 2013), whereas AUST-03 is the
most common CF strain in Tasmania (Bradbury et al.
2008). Strain DK2, identified as infecting multiple CF
patients in Denmark, was the subject of a detailed analy-
sis of genome sequences from multiple isolates (Yang
et al. 2011a). Although we recognize that there are other
known CF transmissible strains (Fothergill et al. 2012a),
and new strains are emerging all the time, we have

© 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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Figure 1. Distribution of panel strains among
the wider Pseudomonas aeruginosa
population. The figure shows an eBURST
analysis based on AT genotyping using a
database of 955 P. aeruginosa isolates of
independent origin. The locations of the panel
isolates are circled. Red circles indicate
genotypes corresponding to the 10 most
abundant in the database. Blue circles indicate
the location of other panel strains. Each dot
represents a different genotype; the size of a
dot indicates the relative abundance of a
genotype. The genotype cluster locations for
four commonly studied strains from the panel
are indicated.

PA14

restricted our choices to those for which there are sub-
stantial additional phenotypic and genotypic data.

Other CF isolates

In choosing our CF isolates (epidemic and nonepidemic
strains) we sought to represent phenotypes typically asso-
ciated with such isolates, such as mucoidy, hyperviru-
lence, loss of virulence activities (such as quorum
sensing), antimicrobial resistance, and auxotrophy.
Adaptation is a hallmark of CF pathogens, enabling
them to chronically colonize the challenging host envi-
ronment and avoid immune detection during chronic
colonization (Callaghan and McClean 2012). There have
been a number of studies where single-strain sequential
isolates for CF patients have been analyzed in order to
understand the mechanisms of the adaptation that
P. aeruginosa populations undergo during chronic lung
infections (Smith et al. 2006; Bragonzi et al. 2009;
Cramer et al. 2011; Yang et al. 2011b). Classically, these
include examples of isolates from “early” and “late” in
an infection, and we have included example isolates
from both European and North American studies. We
have included isolates AA2 (early), AA43 (mucoid, late)
and AA44 (nonmucoid, late), which have been com-
pared using multiple phenotypic tests and in a murine
infection model (Bragonzi et al. 2009). We also include
five pediatric sequential isolates including the matched
“early” and “late” isolatess AMT 0023-30 and AMT

© 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

P. aeruginosa Reference Panel

ARt

0023-34, the latter of which is an example of a hyper-
mutator (mutS mutant) and shows a 100-fold increase
in persister levels (enhanced survival upon exposure to
antibiotics) (Mulcahy et al. 2010). We further include
AMTO0060-1, -2 and -3, “early” and “late” isolates from
a separate patient, representing sequential isolates
obtained when that patient was 15.4 (two distinct
phenotypes, AMT0060-1 and -2) and 7.7 (AMTO0060-3)
years-old.

Widely studied strains

We have included in the panel a number of strains that
are frequently studied by the P. aeruginosa research com-
munity. We note that there are variants (Klockgether
et al. 2010) of the most widely studied strain, PAOI,
which was the first to be genome sequenced (Stover et al.
2000). This can lead to difficulties when comparisons are
made between laboratories. The variant of PAO1 we have
deposited is derived from the culture grown for genome
sequence analysis (Stover et al. 2000). The Pseudomonas
Genome Database (http://v2.pseudomonas.com) (Winsor
et al. 2011) represents a very useful and comprehensive
online database for interrogation of the genome of strain
PAOL, as well as the genomes of other strains included in
this panel (2192, 39016, C3719, DK2, LES B58, and
UCBPP-PA14) (Table 2).

It has been shown that PAl4-like strains and Clone
C are the two most abundant P. aeruginosa clones
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among CF patients (Romling et al. 2005; Cramer et al.
2011, 2012). Indeed, Clone C is ubiquitous throughout
the inanimate environment also, whereas UCBPP-PA14
(PA14) is not so common outside of the CF population
(Pirnay et al. 2009). Hence, representatives of both of
these clones have been included. Strain PAK has also
been widely studied, for example in relation to biofilm
formation (Vasseur et al. 2005), flagellar glycosylation
(Miller et al. 2008), and gene regulation (Brencic and
Lory 2009).

We have also included the highly pathogenic strains
CHA (Toussaint et al. 1993) and TBCF10839 (Tummler
et al. 1991; Klockgether et al. 2013). Strain CHA is an
example of a strain producing the potent exotoxin U, and
its type III secretion system has been the subject of much
analysis (Dacheux et al. 2000; Ader et al. 2005). The viru-
lence of strain TBCF10839 has also been extensively stud-
ied (Bohn et al. 2009).

Strains with specific phenotypic characteristics

Mucoidy is a phenotype associated with chronic coloniza-
tion, which derives from the production of high concen-
trations of the exopolysaccharide, alginate. Mucoid strains
that chronically colonize the lungs of CF patients may
evolve from initial nonmucoid strains, but the mucoid
phenotype is unstable in vitro. Consequently, the pair of
strains IST27, a mucoid isolate from a CF patient, and its
nonmucoid variant IST27N, obtained spontaneously dur-
ing IST27 cultivation in the laboratory, have been
included to directly assess the role of mucoidy in patho-
genesis and the regulation of the mucoid phenotype
switch. IST27 and IST27N are clonal variants indistin-
guishable by genomic fingerprinting (Leitao et al. 1996).
In contrast to IST27, IST27N has undetectable levels of
GDP (guanosine diphosphate)-mannose dehydrogenase
(GMD) activity, consistent with the concept that the con-
trol of alginate biosynthesis occurs at the level of the
encoding gene algD (Tavares et al. 1999). In addition,
other mucoid strains such as NH57388A and 968333S
have been included (manuscript under review). The latter
is a mucoid strain and was selected due to its isolation
from a U.K. patient with advanced non-CF bronchiectasis
treated with long-term colistin. This will provide a useful
comparator to “late phase” CF strains.
Lipopolysaccharide (LPS) composition is
important phenotype that plays a key role in pathogene-
sis; therefore isolates with defined LPS structures have

another

been included (Cigana et al. 2009). Furthermore, strains
39,106 (Stewart et al. 2011) and 679 were chosen as
examples of severe keratitis and urinary tract infection
isolates, respectively.
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Strains representing genotypic, geographic and
source diversity

Although conscious of keeping the reference panel to a
reasonable number, we included a number of strains to
ensure that we captured the diversity of P. aeruginosa in
nature as much as possible. There have been a number of
key studies using genotypic and phenotypic approaches to
defining the population structure (Pirnay et al. 2002,
2009; Wiehlmann et al. 2007; Cramer et al. 2012; Kidd
et al. 2012; Shankar et al. 2012; Martin et al. 2013). We
selected seven isolates from a P. aeruginosa study (Pirnay
et al. 2009) representing diversity in serotype, drug resis-
tance, and geographic source, including three serotype 1
strains from very different geographic locations, and envi-
ronmental isolates. Cramer et al. (2012) recently defined
the population structure of P. aeruginosa in relation to
CF by AT genotyping a collection of 955 isolates from
multiple European CF centers. The collection also
included isolates from various non-CF clinical and envi-
ronmental sources for comparison. We have included in
our collection representatives of each of the 10 most com-
mon clones identified. We have also ensured that we have
representatives from diverse types of infection, including
various non-CF respiratory infections (pneumonia,
including ventilator-associated pneumonia (VAP), chronic
obstructive pulmonary disease (COPD)-associated, non-
CF bronchiectasis), burn wound infections, eye infections,
and urinary tract infections. Although we accept that
other genotyping approaches have been used to study
large collections of P. aeruginosa, including multilocus
sequence typing (MLST) and variable number of typing
repeats (VNTR), and that all such methods have limita-
tions, using the AT method we were able to easily place
the panel strains in the context of a much wider survey
and ensure that common clones are represented. It is
likely that all such genotyping methods will be superceded
by whole genome sequencing. Hence, we are committed
to ensuring that each panel strain is genome sequenced.
This is currently being undertaken in collaboration with
Roger Levesque (Université Laval) and the data will be
made available as soon as possible.

Discussion

There is a need to coordinate our collective efforts in
P. aeruginosa research to achieve both rapid and mean-
ingful progress. Arguably the most pressing need for
accelerating scientific progress relates to CF due to the
clinical burden and prognostic effects of P. aeruginosa
infections. Hence, our efforts were focussed on defining a
core reference panel of isolates relevant to CF research.

© 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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However, given the increasing importance of P. aerugin-
osa in a range of opportunistic infections, we have also
chosen a panel with broader relevance.

We realize that no panel will achieve absolute consen-
sus on all of the required parameters that various interna-
tional research teams may wish to study. However, the
consensus-seeking process did define core characteristics
necessary for the proposed reference panel of P. aerugin-
osa. These characteristics included ensuring diversity in
the biologic niche by choosing clinical, environmental,
and laboratory isolates. We have also ensured that geo-
graphic diversity is reflected, and that although the panel
includes representatives of the dominant circulating
P. aeruginosa clones, we also include more unusual out-
liers to reflect the diversity of the species. Hence, we
believe that within the limitations of keeping the number
manageable, we have assembled a representative panel for
use by the wider research community.

Infections of the CF lung by P. aeruginosa have been
associated with the development of a number of impor-
tant bacterial characteristics such as induction of mucoid
status (Govan and Deretic 1996), evidence of hypermut-
ability (Oliver et al. 2000), changes in cell surface viru-
lence determinants (Cigana et al. 2009), and loss of
virulence factors (D’Argenio et al. 2007). However, it is
important to note that during chronic infections of the
CF lung P. aeruginosa populations are diverse. Hence,
there is considerable variability in virulence factor expres-
sion or antibiotic resistance among CF isolates of P. aeru-
ginosa, even when they are obtained from the same
sputum sample and the patient is infected with a single
strain (Foweraker et al. 2005; Mowat et al. 2011). These
features of P. aeruginosa associated with CF may be due
to the (passive) accumulation or (active) development of
mutations that occurs during the chronic lung infections
that characterize CF. Furthermore, there are data demon-
strating “CF specific” differences in the expression of vir-
ulence determinants such as LPS as compared to isolates
from other clinical diseases states and environmental iso-
lates (Ernst et al. 2007; Moskowitz and Ernst 2010). We
have sought to represent in the panel some of the key
phenotypic variations evident in the wider P. aeruginosa
community, especially in relation to CF infections.

We achieved consensus on the requirement that the
panel must include CF epidemic strains (Fothergill et al.
2012a) and sporadic isolates responsible for clinical infec-
tions. We also achieved consensus on the need for multi-
ple isolates of certain important strains (e.g., LES),
including subtypes with different virulence characteristics.

Antimicrobial resistance and biofilm information are
both characteristics central to the clinical challenges in
managing CF and other infections. The panel therefore
includes multidrug-resistant strains and an isogenic par-

© 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
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ent and mutant strain which are, respectively, biofilm-
forming and biofilm-deficient. It is the intention that
such a panel should be used for further in-depth analysis
and comparisons of phenotypes such as biofilm formation
and antimicrobial resistance, and there was agreement
that this requires further study. It is also envisaged that
the panel will represent an excellent strain reference set
for the testing of novel therapeutic approaches to the
treatment of P. aeruginosa infections, which are desper-
ately needed (Fothergill et al. 2012b).

Making use of prior data is scientifically and economi-
cally mandatory and improves the effective use of
research funding. The proposed panel has aimed to
include isolates that had already been well-characterized,
such as the commonly used strains PAO1, PA14, PAK,
and LESB58, and isolates where there has been compre-
hensive pathogenicity work undertaken.

Importantly, there was consensus that all of the identi-
fied factors did not need to be defined for each strain in
the panel at inclusion. Full genome sequencing was not
felt mandatory for inclusion in the panel. However, the
majority of strains included have been sequenced and the
remainder will be sequenced in the near future for com-
pletion. Furthermore, the number of strains included is
beyond the consensus achieved for an “ideal” number. It
proved difficult to reduce the number of strains included
without losing the richness of the existing data already
available on many of these strains.

Significant challenges lie ahead in understanding the
biology of P. aeruginosa. The coordination of scientific
efforts across research groups and avoiding the use of
widely differing random isolates which result in unhelp-
ful repetition is imperative. Better coordination and
definitive replicate data fulfil an unwritten demand of
the scientific community, the patient population and life
science research funders. The aim of this proposed panel
is to harmonize and coordinate the ongoing efforts of
the research community to fulfil these goals. The inter-
national reference panel of B. cepacia complex isolates
undoubtedly led to more streamlined approaches with
this less prevalent group of pathogens. The Bcc reference
panel grew with time to reflect the needs of the biosci-
ence community, as well as to mediate the discovery of
newer species within the complex being defined. This
proposed panel of P. aeruginosa isolates has a particular
focus on CF and human disease. As occurred with the
original Bcc reference panel, which comprised 30 strains
originally (Mahenthiralingam et al. 2000), but was
updated with time and new discoveries (Coenye et al.
2003), this panel may similarly need to be extended
in time. However, it is clear that a focussed panel of
P. aeruginosa isolates as assembled is needed to help
accelerate discovery and assessment of virulence determi-
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nants, and to develop better strategies to counter this
successful pathogen.
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