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Abstract

Background and objectives: Excessive smartphone use, also referred to as “smart-

phone addiction” (SPA), has increasingly attracted neuroscientific interest due to

its similarities with other behavioral addictions, particularly internet gaming disor-

der. Little is known about the neural mechanisms underlying smartphone addiction.

We explored interrelationships between brain structure and function to specify

neurobiological correlates of SPA on a neural system level.

Methods: Gray matter volume (GMV) and intrinsic neural activity (INA) were inves-

tigated in individuals with SPA (n = 20) and controls (n = 24), using multimodal

magnetic resonance imaging and multivariate data fusion techniques, that is, parallel

independent component analysis.

Results: The joint analysis of both data modalities explored shared information

between GMV and INA. In particular, two amplitudes of low frequency fluctuations-

based independent neural systems significantly differed between individuals with SPA

and controls. A medial/dorsolateral prefrontal system exhibited lower functional net-

work strength in individuals with SPA versus controls, whereas the opposite pattern

was detected in a parietal cortical/cerebellar system. Neural network strength was

significantly related to duration of smartphone use and sleep difficulties.

Discussion and conclusions: We show modality-specific associations of the brain’s

resting-state activity with distinct and shared SPA symptom dimensions. In particu-

lar, the data suggest contributions of aberrant prefrontal and parietal neural network

strength as a possible signature of deficient executive control in SPA.

Scientific significance: This study suggests distinct neural mechanisms underlying

specific biological and behavioral dimensions of excessive smartphone use.
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1 INTRODUCTION

In the past years, negative physical and psychosocial effects associated

with excessive smartphone use have been emphasized by a grow-

ing number of studies (Demirci et al., 2015; Duke & Montag, 2017;

Grant et al., 2019). Recent research highlighted behavioral similari-

ties between excessive smartphone use and other addictive disorders,

such as failure to resist use, withdrawal, continuation of use despite

being aware of negative consequences, or deception of others regard-

ing the amount of time spent on use (Lin et al., 2016). Moreover,

excessive smartphone use has been repeatedly linked to impulsive-

ness and depression (Demirci et al., 2015; Grant et al., 2019). These

behaviors also show close similarity to the criteria for internet gam-

ing disorder (IGD) in the DSM-5 (Petry et al., 2015). Consequently,

criteria for “smartphone addiction” (SPA) were introduced (Lin et al.,

2014) to define a condition characterized by excessive smartphone use

and its problematic consequences for work-related achievements and

interpersonal relationships, as well as for physical and mental health

(Demirci et al., 2015; Duke &Montag, 2017; Grant et al., 2019).

Although the term “smartphone addiction” has been anchored in

several validated psychometric instruments, for example, the Smart-

phone Addiction Scale (SAS) (Kwon, Lee, et al., 2013) or the Smart-

phoneAddiction Inventory (SPAI) (Lin et al., 2014), it hasbeen criticized

for conceptual and taxonomic reasons. In this regard, and because of

possibly being a mobile branch of gaming disorder, alternative terms

(e.g., “smartphone use disorder” or “excessive smartphone use”) were

suggested (Montag et al., 2019), and it was argued that research

should focus more on negative consequences of SPA instead of pur-

suing the question, if it should be considered as a behavioral addiction

(Wacks &Weinstein, 2021). We acknowledge that the proposed alter-

native terms would be more appropriate, but we use the term SPA

in accordance with the terminology of the psychometric instruments

used in this study. Addictive use of specific internet applications has

been recently addressed in the context of the Interaction of Person-

Affect-Cognition-Execution (I-PACE) model (Brand et al., 2016), which

combines psychological and neuroscientific theories of addictions.

According to thismodel, addictive behavior emerges from the interplay

of personal characteristics and moderating and mediating variables,

suchasbrain volumeorneural activity (Brandet al., 2016). For instance,

in IGD, distinct brain areas have been shown to be involved, partic-

ularly anterior cingulate cortex (ACC), dorsolateral prefrontal cortex

(DLPFC), and precuneus (Yao et al., 2017). Similarly, individuals with

SPA may exhibit structural and functional changes at the neural struc-

tural and functional level (Horvath et al., 2020), such as reduced gray

matter volume (GMV) or intrinsic neural activity (INA) inACC (Horvath

et al., 2020), altered functional connectivity at rest (Kim et al., 2016),

and changes inneural activity inACCand frontoparietal corticesduring

affective processing (Chun et al., 2017).

Of note, most research in technology-associated behavioral addic-

tions focused on either brain structure or function. To our knowledge,

no study so far has provided combined information on both modali-

ties in the same sample of affected individuals.While modality-specific

descriptive approaches are clearly useful, such attempts may disre-

gard important sources of joint information between modalities. Such

information is essential for directly detecting similarities among pat-

terns of brain structure and function within and between specific

populations. Data fusion approaches based on multivariate statistical

techniques take advantage of a joint examination of various informa-

tion sources of the same sample at the same time and are able to

detect cross-information of data, that is, co-altered patterns of brain

changes that may be partially missed in conventional separate analy-

ses (Sui et al., 2012). Here, we used parallel independent component

analysis (p-ICA), a multivariate method to capture joint information

from two data sources (Pearlson et al., 2015), to multimodally expand

our previous descriptive findings of regionally abnormal GMV and INA

in SPA (Horvath et al., 2020) by exploring joint information between

thesemodalities, which cannot be fully detected by conventionalmass-

univariate statistical approaches (Sui et al., 2012). To this end, p-ICA

was used to explore interrelationships between structural and func-

tional networks, aswell as relationships betweennetwork strength and

psychometric scores indicating distinct behavioral dimensions of SPA.

GMV and INA, in terms of the amplitude of low frequency fluctuations

(ALFF), were entered the p-ICA analysis. ALFF captures the relative

magnitude of blood oxygen level dependent signal changes of intrinsic

neural activity in distinct brain regions. This approach has been shown

to be suitable to identify brain regions/networks with aberrant local

functioning in patientswith substance-use disorders and IGD (Liu et al.,

2018; Yuan et al., 2013).

We expected to find independent components showing differences

between individuals with SPA and controls, that is individuals showing

nonaddictive smartphone use,which depict hidden factors, whichwere

not revealed by the former approach of separately analyzing GMV and

ALFF data (Horvath et al., 2020). Furthermore, we explored associ-

ations between such hidden factors and distinct SPAI-I dimensions,

as suggested by a recent confirmatory factor analysis, that is, “time

spent,” “compulsivity,” “daily life interference,” “craving,” and “sleep

interference” (Pavia et al., 2016).

2 MATERIALS AND METHODS

2.1 Participants

In this secondary analysis, we used a subsample of participants

referred to by Horvath et al. (2020) to take advantage of multivari-

ate fusion techniques for multimodal data that allow the investigation

of functional network strength. Individuals were recruited using fly-

ers and posters distributed at Heidelberg University campus and city

center and via ads on social media platforms undinger. A total of 132

persons expressed their interest in the study. After applying inclu-

sion criteria (i.e., sufficient German language skills, right-handedness,

age 18–30 years, no general contraindications for magnetic resonance

imaging [MRI] or self-reported neurological or mental illness, no IGD,

score on the short-form Internet Gaming Disorder Scale [IGDS-sf]<6),

data from 44 participants (matched for age and gender) were used for

final analyses. We defined two user groups based on the short version
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of the SAS (SAS-SV), where cut-off values of >31 for males and >33

for females were used to define a group of excessive smartphone users

(SPA; n = 20, 14 females) (Kwon, Kim, et al., 2013). Participants below

the cut-off score were assigned to a group of controls (n-SPA; n = 24,

17 females).

SAS-SV and IGDS-sf were used during a prescreening process to

assign interested persons to one of the two defined groups (either SPA

or n-SPA; SAS-SV) and to exclude persons showing IGD (IGDS-sf) to

prevent potentially biasing effects of IGD on the collected data. Before

MRI, participants completed the SPAI, the Beck Depression Inventory

(BDI)-II (Beck et al., 1961), and the Barratt Impulsiveness Scale (BIS)

version 11 (Patton et al., 1995). The SPAI is a comprehensive scale that

measures a wide range of addictive behaviors related to smartphone

use (Lin et al., 2014). Recently, a confirmatory factor analysis of the

SPAI, SPAI-I, suggested a five-factor model of the SPAI, which showed

better fit in a European population than the original SPAI (Pavia et al.,

2016). For the purpose of this study, SPAI scores were recalculated

according to the SPAI-I. The following factorswere considered: (1) time

spent, consisting of four items capturing the difficulty of stopping and

devoting more time and resources to use the smartphone. (2) Com-

pulsivity, consisting of four items involving the degree of discomfort

and emotional distress when being deprived of using the smartphone

and not stopping use in spite of negative consequences. (3) Daily life

interference, consisting of eight items describing the interference of

smartphone use with other daily activities and interpersonal problems

due to smartphone use. (4) Craving, consisting of five items capturing

the degree of being unable to resist the urge to continue the behav-

ior, and (5) sleep interference, including three items focusing on the

relationship between smartphone use and sleep duration/disturbance

(Pavia et al., 2016). For completeness, SPAI scores were also calculated

following the four-factor solution offered by Lin et al. (2014), that is, (1)

compulsive behavior, (2) functional impairment, (3) withdrawal, and (4)

tolerance (Lin et al., 2014). The BDI and BIS questionnaires were used

to assess for depressive symptoms and impulsive personality traits,

respectively, as depression and impulsiveness have been previously

linked to excessive smartphone use and behavioral addictions (Demirci

et al., 2015; Grant et al., 2019, 2010).

The study was approved by the Ethics Committee of the Medical

Faculty at Heidelberg University and carried out in compliance with

theDeclaration ofHelsinki. All participants gavewritten informed con-

sent prior to inclusion in the study. All participants received monetary

compensation (30€) for their participation.

2.2 MRI data acquisition

A 3-T Magnetom TIM Trio MR Scanner (Siemens, Erlangen) equipped

with a 32-channel head coil was used to collect whole-brain structural

and functional scans in a darkened room. To minimize head motion,

the head of the participants was fixated in the head coil using foam

cushions. The scanner protocol included four functionalmeasurements

including (in this particular order) a resting-state scan, three experi-

mental paradigms, and a structural scan. Modality-specific (structural

MRI and resting-state fMRI [rs-fMRI]) findings resulting from univari-

ate statistics are reported in Horvath et al. (2020). Results of the

CR-task employed in this study are reported in Schmitgen et al. (2020).

During acquisition of structural data, 192 T1-weighted images

were recorded, which were acquired with an MP-RAGE pulse

sequence in a transverse (axial) orientation with the following param-

eters: repetition time = 1900 ms, echo time = 2.52 ms, field of

view=350×263×350mm, flip angle=9◦, voxel size=1×1×1mm3,

192 slices, and slice thickness= 1mm.

For rs-fMRI, participants were instructed to keep their eyes closed,

not to fall asleep, and to not think about anything in particular. During

rs-fMRI, 200 whole brain echo planar imaging volumes were recorded

in an axial orientation with the following imaging parameters: repeti-

tion time = 2000 ms, echo time = 30 ms, field of view = 192 mm, flip

angle = 90◦, voxel size = 3 × 3 × 3 mm3, 33 slices, and distance factor

between slices= 1mm.

2.3 Data preprocessing

Individual data were preprocessed as described in Horvath et al.

(2020). In particular, GMV of T1-weighted sMRI images was calcu-

lated using the Computational Anatomy Toolbox, CAT12 (http://dbm.

neuro.uni-jena.de/cat/) together with SPM12 (http://www.fil.ion.ucl.

ac.uk/spm). Preprocessing included segmentation of images into gray

matter, white matter, and cerebrospinal fluid, normalization using

DARTEL, and smoothing of GMV segments using an 8-mm full-width

half-maximum (FWHM) isotropic Gaussian kernel.

Rs-fMRI images were processed using the Data Processing Assis-

tant for rs-fMRI (DPABI/DPARSF) (Chao-Gan & Yu-Feng, 2010). Pre-

processing included slice timing, head motion correction, spatial nor-

malization (Montreal Neurological Institute (MNI) space; voxel size 3×

3 × 3 mm), smoothing with a 4-mm FWHM isotropic Gaussian kernel,

regressing out nuisance covariates including mean signals from white

matter and cerebrospinal fluid as well as the Friston 24-parameter

model (Friston et al., 1996). Afterward, ALFF-maps were calculated

based on the preprocessed data.

2.4 Parallel ICA

P-ICA (J. Liu et al., 2009) on GMV and ALFF data was applied using

the Fusion ICA Toolbox (FIT; version 2.0d; https://trendscenter.org/

software/fit/) implemented in MATLAB 9.4.0(R2018a). The number

of components for each modality was estimated using the minimum

description length (MDL) and the Akaike information criterion, as

described inCalhounet al. (2001). Four componentswere identified for

GMV and five components were identified for ALFF. ICASSO (Himberg

et al., 2004) was used to assess results after running the approach 20

times to ensure consistency of the components.

For component visualization, the source matrix was reshaped back

to a 3D-image, scaled to unit standard deviations (z), and a threshold of

z> 3was applied.Maps from the two components described in Section

http://dbm.neuro.uni-jena.de/cat/
http://dbm.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://trendscenter.org/software/fit/
https://trendscenter.org/software/fit/
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3wereoverlaidontoanMNInormalizedanatomical template.Anatom-

ical denominations and stereotaxic coordinates were derived from

clusters above a threshold of z > 3 by linking the ICA output images

(i.e., the chosen components of interest) to the Talairach Daemon data

base (http://www.talairach.org/daemon.html).

2.5 Statistical analysis

A first component preselection was performed by two sample t-tests

on network strength indices, that is, loading coefficients of each com-

ponent, as implemented in FIT at p < .1. Three components fulfilled

this criterion (one GMV and two ALFF) and loading coefficients of

these components were extracted to be included in three analysis of

covariance (ANCOVA) models to test for group differences (adjusted

for age and gender). The false discovery rate (FDR) was applied to

adjust p-values formultiple comparisons of the threeANCOVAmodels,

and components of interest were defined as models showing an FDR-

corrected p-value of < .05. Hereby, two components of interest (both

ALFF-based) were identified.

The component loadings of the two identified components of inter-

est were used to test for associations with SPAI-I factors and SPAI-I

total score by partial correlations (adjusted for age and gender). FDR-

correction was applied, and results were defined significant, if the

FDR-corrected p-values were < .05. ANCOVA models and partial cor-

relations were computed in R (version 3.6.1; https://cran.r-project.

org/).

3 RESULTS

3.1 Demographic and psychometric data

Demographic and psychometric details of the two groups are given in

Table 1. The groups differed significantly in BDI, BIS-attentional score,

BIS-motor score, SAS, SPAI scores, and SPAI-I scores (see Table 1).

3.2 Parallel ICA

Components preselected subsequently were entered in ANCOVA

models to test for group differences. The first ALFF-based component

(ALFF 1) predominantly comprised medial and dorsolateral prefrontal

regions and also included temporal and parietal regions. The second

ALFF-based component (ALFF 2) predominantly comprised parietal

and cerebellar regions and also included frontal, temporal, and occipi-

tal regions (see Table 2, Figure 1). ANCOVAmodels revealed significant

differences of component loadings between groups for ALFF 1 and

ALFF 2, but not for GMV (ALFF 1: F = 12.85, df = 1, pFDR = .003,

medianSPA = 0.83, mediann-SPA = −0.06; ALFF 2: F = 5.41, df = 1,

pFDR = .038, medianSPA = −0.07, mediann-SPA = 0.04; GMV: F = 3.21,

df = 1, pFDR = .081, medianSPA = 0.03, mediann-SPA = −0.04). ALFF 1

and ALFF 2 were therefore identified as components of interest to be

used for subsequent correlation analyses with distinct SPAI-I dimen-

sions. For completeness, regions comprised by the GMV component

are depicted in Table S1.

3.3 Associations between functional networks
and SPAI-I

Loading parameters of both components correlated with SPAI-I total

score (ALFF 1: pFDR = 0.04, correlation coefficient = 0.38; ALFF 2:

pFDR = .03, correlation coefficient = −0.38; see Table 3). Particu-

larly, loading parameters of ALFF 1 correlated with SPAI-I time spent

(pFDR = .03, correlation coefficient = 0.45) and SPAI-I sleep interfer-

ence (pFDR = .04, correlation coefficient = 0.38), and loading parame-

ters of ALFF 2 correlated with SPAI-I sleep interference (pFDR = .02,

correlation coefficient = −0.46; see Table 3). For completeness, corre-

lations between component loadings of the GMV component and SPAI

factors are depicted in Table S2.

Complementary analyses additionally adjusted for BDI total score

showed no significant associations between loading parameters (ALFF

1, ALFF 2, and GMV) with SPAI-I or SPAI factors or respective total

score.

SPAI-I time spent and SPAI-I sleep interference were correlated

(p < .001, correlation coefficient = 0.60), also with an additional

adjustment forBDI total score (p< .001, correlation coefficient=0.51).

4 DISCUSSION

We used a multivariate data-driven approach to study associations

of two modalities, that is, functional and structural imaging find-

ings in the context of addictive smartphone use. Two key findings

emerged: First, a predominantly medial/dorsolateral prefrontal and

a mainly parietal/cerebellar functional network differed significantly

between SPA and n-SPA. Second, there were specific and shared cor-

relations between these functional systems and dimensional measures

of addictive smartphone use.

Our analyses identified two rs-fMRI components, which differed

between SPA and n-SPA. The first component showed increased acti-

vation in predominantly medial and dorsolateral prefrontal regions in

those with SPA versus n-SPA. In IGD, a diagnosis showing substantial

conceptual overlap to SPA (Paik et al., 2017), common neurobiologi-

cal mechanisms, particularly with respect to prefrontal cortex among

other regions, are suggested (Kuss et al., 2018). The second com-

ponent showed decreased activation in predominantly parietal and

cerebellar regions in those with SPA versus n-SPA. Cerebellar func-

tion has been associated with habit-formation in addictive disorders

(Noori et al., 2016). Therefore, it is conceivable that the found group-

difference of cross-information in this component may reflect a link to

habit formation in excessive smartphoneuse.Nevertheless, specifically

tailored studies are needed to test this hypothesis, preferably study

designs that complement resting-state data acquistion with specific

experimental tasks.

http://www.talairach.org/daemon.html
https://cran.r-project.org/
https://cran.r-project.org/
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TABLE 2 Spatial characteristics of identified components of interest

Component Brodmann area L R Volume (cc) L/R

region z-Score/MNI (x, y, z) z-Score/MNI (x, y, z)

ALFF 1

Superior frontal

gyrus

6, 8, 9, 10, 11 12.0 (−24, 60, 21) 6.6 (30, 27, 57) 4.7/2.6

Medial frontal

gyrus

9, 10 7.9 (−9, 63, 3) 6.4 (6, 66, 9) 1.7/1.2

Middle frontal

gyrus

6, 8, 9, 10, 46 7.2 (−21, 60, 24) 4.5 (33, 60,−9) 2.0/0.7

Superior temporal

gyrus

22, 38 7.1 (−54, 15,−9) 5.5 (57, 15,−3) 0.6/0.8

Inferior frontal

gyrus

10, 47 6.5 (−54, 18,−6) 5.8 (54, 18,−3) 0.4/0.8

Precuneus 7 5.5 (−6,−81, 45) 5.4 (18,−75, 51) 0.4/1.2

Middle temporal

gyrus

37 – 4.0 (66,−33,−12) -/0.3

Precentral gyrus 6 5.1 (−36,−18, 66) – 0.6/-

Postcentral gyrus 1, 2, 5, 7 – 5.1 (51,−27, 60) -/0.8

Superior parietal

lobule

7 4.9 (−12,−63, 63) 4.3 (36,−69, 51) 0.6/0.3

Inferior parietal

lobule

7, 40 4.0 (−60,−27, 30) – 0.4/-

ALFF 2

Superior frontal

gyrus

6, 8, 9, 10 7.4 (−15, 42, 51) 9.2 (33, 54, 21) 2.9/4.2

Declive – – 9.0 (42,−75,−27) -/1.3

Tuber – – 8.5 (57,−51,−30) -/0.4

Superior temporal

gyrus

38 – 8.2 (42, 6,−24) -/0.5

Uncus 28 – 7.7 (30, 9,−24) -/0.3

Lingual gyrus 17, 18 5.5 (−3,−93,−6) 7.6 (12,−87,−21) 0.4/0.7

Middle frontal

gyrus

6, 8, 9, 10, 46 7.1 (−30, 54, 24) 7.5 (36, 51, 24) 2.8/3.5

Cuneus 17, 18, 19 – 7.0 (6,−99, 3) -/1.3

Fusiform gyrus 18, 19, 37 – 6.3 (21,−87,−21) -/0.4

Inferior frontal

gyrus

9, 45, 46, 47 5.1 (−48, 36, 15) 4.4 (27, 9,−21) 0.4/0.3

Medial frontal

gyrus

6, 9, 10 4.8 (−6, 54, 42) 5.1 (3, 60, 12) 0.5/1.3

Superior parietal

lobule

7 4.8 (−36,−69, 51) – 0.6/-

Inferior parietal

lobule

7, 40 4.6 (−48,−54, 54) – 0.3/-

Voxels with z > 3 were coupled with the Talairach Daemon database to provide anatomical labels and were translated into MNI space. For each hemisphere

(L= left; R= right), the maximum z-value andMNI coordinate are provided. The volume of voxels in each area is provided in cubic centimeters (cc); the table

displays clusters> 0.2 cc.
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F IGURE 1 Visualization of amplitude of low frequency fluctuations (ALFF) components’ localizations, component loadings, and correlations.
(a) Left, middle: overlay of ALFF 1 component pattern onto a brain template, X and Y show coordinate of the respective slice, color bar depicts
z-values. Right: boxplot of ALFF 1 component loadings by group (pFDR = .003; analysis of covariance (ANCOVA), adjusted for age and gender). (b)
Scatter plots of ALFF 1 component loadings versus SPAI-I factor scores. (c) Left, middle: overlay of ALFF 2 component pattern onto a brain
template, Y and Z show coordinate of the respective slice, color bar depicts z-values. Right: boxplot of ALFF 2 component loadings by group
(pFDR = 0.025; ANCOVA, adjusted for age and gender). (d) Scatter plot of ALFF 2 component loadings versus SPAI-I factor score. Shaded area
around blue regression line depicts 95% confidence interval. Abbreviations: SPA: addictive smartphone use group, n-SPA: non-SPA
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TABLE 3 Partial correlations between amplitude of low frequency fluctuations (ALFF) component loadings and Smartphone Addiction
Inventory (SPAI-I) measures

Component SPAI-I measure pFDR Correlation coefficient

ALFF 1 SPAI-I total score 0.04 0.38

ALFF 1 SPAI-I time spent 0.03 0.45

ALFF 1 SPAI-I compulsivity 0.18 0.21

ALFF 1 SPAI-I daily life

interference

0.09 0.27

ALFF 1 SPAI-I craving 0.07 0.29

ALFF 1 SPAI-I sleep interference 0.04 0.38

ALFF 2 SPAI-I total score 0.03 −0.38

ALFF 2 SPAI-I time spent 0.09 −0.29

ALFF 2 SPAI-I compulsivity 0.06 −0.32

ALFF 2 SPAI-I daily life

interference

0.06 −0.32

ALFF 2 SPAI-I craving 0.15 −0.23

ALFF 2 SPAI-I sleep interference 0.02 −0.46

Note: Partial correlations for all subjects (n = 44). Adjusted for age and gender. pFDR provides FDR-corrected p-values. Significant results (pFDR < .05) are

highlighted in bold font.

On a neural systems level, regions depicted by the two functional

networks are part of the so-called “default mode network” (DMN),

which has been associated to self-awareness in addictive disorders and

the salience network, which critically mediates the interplay between

executive systems and the DMN (Volkow et al., 2012). Moreover,

the detected patterns share, if at all, only little spatial similarities

reported by Horvath et al. (2020). This indicates that the multivariate

fusion approach used here indeed revealed information, whichwas not

detected via separate analyses of GMV and INA.

Remarkably, the functional networks also showed significant cor-

relations with distinct SPAI-I dimensions, that is, “time spent” (par-

ticularly the medial/dorsolateral prefrontal system) and “sleep inter-

ference” (both networks). Noteworthy, these SPAI-I dimensions were

associated with each other in our sample. The two identified compo-

nents share the same imagingmodality, that is, rs-fMRI, yet they reflect

different physiological properties and cognitive representations on a

subnetwork-level. Moreover, nonfusion ICA-based methods on ALFF

alone very likely would have not been able to identify the found com-

ponents without the additional information from GMV. In this line of

thought, the found correlations depict component specific and shared

associations between temporal features of intrinsic neural activity and

measures of addictive smartphone use. Most of the regions found in

the prefrontal networks are part of the inhibitory networks depicted

by Stevens et al. (2007); therefore, the found associationsmight repre-

sent a lack of inhibitory control in SPA. This notion is also supported

by the significant differences between SPA and n-SPA with respect

to BIS attention and motor scores. The SPAI-I factor sleep interfer-

ence includes items of the SPAI that capture the relationship between

smartphoneuse and shorter sleepduration aswell as sleepdisturbance

(Pavia et al., 2016). Regions found in both networks are part of the

DMN, which represents brain activation during a relaxed, resting con-

dition without external stimuli (Raichle et al., 2001). Altered functional

activation in these regions might represent, among others, rumination

processes and self-awareness, as reported for resting-state functional

connectivity in substance-based addictions using group-ICA-based

methods (Zhang & Volkow, 2019)—or even excessive preoccupation

with the smartphone, which in turn disrupts healthy sleeping behav-

ior leading to depressed mood (Wacks & Weinstein, 2021; Slavish

& Graham-Engeland, 2015). Further, DMN involvement (van der Lin-

den et al., 2021) may point to a biological basis of “flow” theories in

internet addiction (Thatcher et al., 2008; Stavropoulos et al., 2018).

Online flow may be implicated in the experience of those with SPA,

alongside other psychological mechanisms (i.e., fear of missing out),

supporting the maintenance of the behavior, as previously discussed

(Fauzi et al., 2021). Taken together, these findings point toward amulti-

faceted, brain-activation linked interplay of noncapability of not using

the smartphone and sleep interfering processes in SPA.

We acknowledge potential limitations of this study, such as the

relatively small sample size and missing formal clinical evaluation of

potentially confounding comorbid mental disorders. Mental disorders

were not reported by the participants, but it is impossible to fully

rule out the presence of other mental health conditions that may

have an impact on GMV or ALFF. Moreover, the identified associa-

tions between loading parameters andmeasures of SPA did not remain

significant, if additionally controlled for depressiveness. The detected

relationships between SPAI-I time spent and SPAI-I sleep interference

remained significant after BDI adjustment, indicating that depressive

symptoms may not fully account for such associations. Therefore, our

interpretations of these findings should be handled with appropri-

ate scientific caution, and future studies with a tailored design are

needed to clarify the role of depressiveness in SPA and its dimen-

sions. Our hypothesis about a possible impairment of cognitive control
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mechanisms is only based on structural and functional resting-state

MRI. Future studies should complement these modalities by a broad

array of specific cognitive tasks in order to establish convincing brain-

behavior relationships. Additionally, the cross-sectional design does

not allow inference on temporal development and stability of these

findings, as much as the correlations do not imply causality. Carefully

designed longitudinal studieswith sample sizesbeingmore representa-

tiveof thepopulation showingproblematic smartphoneuseareneeded

to robustly answer such important questions.

In conclusion, the present study provides further evidence for

common neural mechanisms underlying technology-related behav-

ioral addictions, including SPA. The findings of this study depict a

fronto-parietal network, which has been previously related to dis-

rupted cognitive control in internet addiction (Wang et al., 2017).

Furthermore, the data support the notion of a disbalance between

systems subserving prefrontal control, as suggested by the I-PACE

model (Brand et al., 2016). This study needs replication and extensions

using larger andmore representative sample sizes, including longitudi-

nal assessments supplemented by ecological momentary assessment.

Additionally, this study provides important new findings, suggesting

deviant recruitment of resting-state networks and modality-specific

associations of resting activation with distinct and shared symptom

dimensions of SPA.
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