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Early diagnosis and treatment are critical for young children with infantile

spasms (IS), as this maximizes the possibility of the best possible child-specific

outcome. However, there are major barriers to achieving this, including high

rates of misdiagnosis or failure to recognize the seizures, medication failure,

and relapse. There are currently no validated tools to aid clinicians in assessing

objective diagnostic criteria, predicting or measuring medication response, or

predicting the likelihood of relapse. However, the pivotal role of EEG in the

clinical management of IS has prompted many recent studies of potential

EEG biomarkers of the disease. These include both visual EEG biomarkers

based on human visual interpretation of the EEG and computational EEG

biomarkers in which computers calculate quantitative features of the EEG.

Here, we review the literature on both types of biomarkers, organized

based on the application (diagnosis, treatment response, prediction, etc.).

Visual biomarkers include the assessment of hypsarrhythmia, epileptiform

discharges, fast oscillations, and the Burden of AmplitudeS and Epileptiform

Discharges (BASED) score. Computational markers include EEG amplitude and

power spectrum, entropy, functional connectivity, high frequency oscillations

(HFOs), long-range temporal correlations, and phase-amplitude coupling. We

also introduce each of the computational measures and provide representative

examples. Finally, we highlight remaining gaps in the literature, describe

practical guidelines for future biomarker discovery and validation studies, and

discuss remaining roadblocks to clinical implementation, with the goal of

facilitating future work in this critical area.
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TABLE 1 Compared to all pediatric epilepsies, infantile epileptic

spasms syndrome is rare, but it has high rates of refractory seizures,

developmental delay, mortality, and treatment costs.

Infantile spasms All pediatric epilepsy

Incidence 2–5/10,000 (1) 50–100/10,000 (3)

Refractory seizures 64% (4) 33% (5)

Development. delay 88% (6), (7) 51% (8)

Mortality 13% before age 2, (7)

10% before age 3 (4)

9% before age 9 (9)

2–12 per 1,000

person-years (10), (11)

Cost >$200 k, first 12 months

(12)

$2–5 k/year (13)

Introduction

Infantile spasms (IS) is a seizure type typified by brief

muscle contractions, often occurring in clusters, with the peak

incidence at 4–7 months of age (1). Recently, the syndrome

associated with IS has been re-named “infantile epileptic

spasms syndrome” (IESS) by the International League Against

Epilepsy (2). While IESS represents only a fraction of all

pediatric epilepsies, the consequences of the disease are among

the most severe (Table 1). IESS is associated with high rates

of mortality and morbidity, lifelong refractory seizures, and

extraordinary health care costs. In children with IESS, the

ongoing epileptic activity contributes to severe cognitive and

behavioral disabilities associated with a progressive cognitive

decline (14, 15). IS was strongly associated with a developmental

and epileptic encephalopathy calledWest syndrome – classically

defined as the combination of IS, developmental slowing

or regression, and an electroencephalography (EEG) pattern

known as hypsarrhythmia (16). 50–70% of children with IS will

exhibit other seizure types and 18–50%will later develop Lennox

Gastaut Syndrome (17).

One major challenge in achieving good outcomes for

children with IS is the need for early diagnosis and treatment.

A short lag time between IS onset and treatment is a favorable

prognostic factor, with delays as short as a few weeks being

detrimental (18). Moreover, the risk of developmental delay

increases when the characteristic EEG findings associated with

IS are present for longer than 3 weeks (19). Unfortunately,

effective treatment can be delayed by failed recognition and

misdiagnosis (20). In 38% of IS cases, proper diagnosis is not

given at the first physician visit (21); most commonly, no

specific diagnosis is given, or the child is misdiagnosed with

gastroesophageal reflux (20, 21). Approximately 30% of children

are diagnosed more than 1 week after IS onset, partially due to

poor awareness of IS among healthcare providers (22).

Outcomes in IESS are also negatively affected by medication

failure and IS relapse. A positive, short-term treatment

response is defined by the cessation of IS and resolution of

hypsarrhythmia when present (23). Roughly 40–45% of children

will not respond to an initial standard therapy (6, 24), defined

as ACTH, prednisolone, or vigabatrin (24). Of those that do

initially respond, 20–33% will have a relapse of IS (24, 25). In the

case of ACTH therapy, the time to relapse can be anywhere from

5 days to 25 months after the completion of treatment (26, 27).

To date, there are no methods for robustly predicting long-term,

sustained response or relapse.

Given these major challenges, tools to assess objective

diagnostic criteria, predict initial medication response, and

measure the likelihood of relapse would help clinicians make

critical management decisions. Given the importance of the

EEG evaluation in the diagnosis and treatment of IS, such as

the identification of hypsarrhythmia, the development of EEG

biomarkers has been a promising avenue of research to address

this need. Here, we review the current state-of-the-art in EEG

biomarkers for IS, which generally fall into two categories: (1)

Visual EEG biomarkers, which are based on human identification

and characterization of EEG signal patterns and features, and

(2) Computational EEG biomarkers, in which computers are

used to calculate quantitative features of the EEG, such as

power, symmetry, and functional connectivity networks. Both

categories are discussed, with each section organized based

on the biomarker application (diagnosis, treatment response,

prediction, etc.). This highlights the potential value of such

biomarkers and the current state of the field, as well as

identifying key areas where additional research is needed.

Visual inspection

Diagnosis

Clinically, the diagnosis of IS relies on the clinical history,

with the use of home-video of typical events being particularly

helpful, and EEG inspection to look for evidence to support the

diagnosis of epileptic encephalopathy (22, 28). Hypsarrhythmia

is defined as high-voltage, asynchronous slow waves associated

with focal or multifocal spikes that can vary in duration

and location (15, 27). This section aims to highlight visual

inspection-based studies that present alternatives to traditional

diagnosis methods.

Hypsarrhythmia

While the presence of hypsarrhythmia on the EEG was

historically perceived to be important for the diagnosis of West

syndrome, many children with new onset IS will not have this

classic pattern. Indeed, not long after the term “hypsarythmia”

was coined by Gibbs and Gibbs (16), several authors noted the

absence of this pattern in many children with IS (29). Multiple

contemporary single center cohorts have confirmed that only

about 60% of children presenting with IS have hypsarrhythmia
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FIGURE 1

Clinical application of the 2021 Burden of AmplitudeS and Epileptiform Discharges (BASED) score. A 4-month-old infant born at 39 weeks

gestational age, with known developmental delay due to hypoxic ischemic encephalopathy, presented with new onset infantile spasms (IS).

Onset of IS to treatment initiation was 1 day. (A) Day 0 (diagnosis and treatment), just <50% of 1 s (s) bins within a 5-min (m) epoch of sleep

included at least one spike and there were grouped multifocal spikes (GMFS, arrows) as well as paroxysmal voltage attenuations (PVA,

arrowheads). The presence of either GMFS or PVA indicated a BASED score of 4 (EEG findings to suggest a probable epileptic encephalopathy

[EE]). (B) Day 14, IS and PVA resolved with high-dose prednisolone, with a subjective reduction in the burden of spikes. However, because of

persistent GMFS (now less well-formed), the BASED score remained 4. At this point, there was no electrographic remission (pretreatment scores

of 4 or 5 must improve to a 3 or less for remission). With the resolution of IS and subjective improvement on the EEG, the treating clinician did

not pursue additional treatment at that time (despite the lack of electrographic remission by BASED score criteria). (C) Day 36, still no IS but the

EEG showed a higher burden of spikes, now with >50% of 1-s bins having at least one spike in a 5-m epoch of sleep, indicating a BASED score

of 5 (EEG findings to suggest a definite EE). Better formed GMFS (arrows) were present. Notice that the background wave amplitude assessment

is not reliable when the burden of spikes is ≥50%. High-dose adrenocorticotropic hormone (ACTH) was started at that time. (D) Day 51, all

spikes resolved with ACTH. The background was slow and disorganized indicating a BASED score of 1 (Any definite non-epileptiform

abnormality). This score, with the persistent remission of IS, indicated electro clinical remission. Longitudinal bipolar montage, Sensitivity 10

mv/mm, LFF 1Hz, HFF 70Hz, 15 s per page. D, days; NA, not applicable; Pred, high-dose prednisolone.

(30, 31). In addition, despite readers’ high confidence in

their assessment, the determination of hypsarrhythmia has

poor inter-rater reliability (IRR) (32). These shortcomings of

hypsarrhythmia highlight the need for a quantifiable, reliable,

and unbiased method of interictal EEG analysis for children

with IS.

BASED score

The Burden of AmplitudeS and Epileptiform Discharges

(BASED) score, initially reported in 2015 (33) and revised

in 2021 (34), is an interictal EEG grading scale for children

with IS. This scoring method is centered on the assessment

of background wave amplitude and the overall burden of

epileptiform discharges (spikes). Important features of the

score include grouped multifocal spikes, paroxysmal voltage

attenuations, and percentage of 1-s bins that include at least

one spike in 5min of sleep (Figure 1). The scale ranges from

0 (normal) to 5 (most epileptic) (Table 2). All elements of the

BASED score have moderate to high levels of IRR and have high

correlation with the presence or absence of IS (34). The latter

finding suggests that the assessment of BASED score elements

are useful for the identification and diagnosis of children with

IS. Seeing these interictal features in an infant should prompt

the EEG reader to carefully review the EEG for IS, extending

the study if needed. In addition, when there is interictal EEG

evidence to suggest an epileptic encephalopathy by BASED

score criteria, the diagnosis of IS can be made if there are

typical clustering events by either caregiver’s report or home-

video (34). This approach allows for a diagnosis without the

need to capture the ictal manifestation of IS using an extended

video-EEG.
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TABLE 2 Description of BASED scores using the 2021 criteria.

2021 BASED Score Description

0 Normal

1 Any definite non-epileptiform abnormality

2 <3 spike foci AND no channel with abnormal

high amplitude

3 >3 spike foci <50% of one second bins AND no

channel with abnormal high amplitude, OR <3

spike foci but >1 channel with

abnormal high-amplitude

4 (Probable EE) >3 spike foci <50% of one second bins AND >1

channel with abnormal high amplitude, OR Not

meeting criteria for 5 but includes GMFS or

paroxysmal voltage attenuations

5 (Definite EE) >3 spike foci that are >50% of one second bins

BASED: Burden of AmplitudeS and Epileptiform Discharges, GMFS: grouped multifocal

spikes, EE: epileptic encephalopathy. Apply score 3–5 to the most epileptic 5-minute

epoch of sleep; if no score reached, apply score 0–2 to the remainder of the study.

Adapted from Mytinger et al. (34). See this reference for complete BASED score rules

and definitions.

Fast oscillations

One study visually analyzed paroxysmal fast activity (PFA)

as a candidate EEG biomarker of epilepsy (35). PFA consisted of

transient EEG events in the beta or gamma frequency bands with

a duration ranging from 200ms to 8 s, typically occurring from

1 to >100 times in a 20-min interictal non-REM sleep epoch.

This marker had low sensitivity, as PFA was found in only 28%

of children with seizures; however, when present, it identified

children with epilepsy with a 97% accuracy. In that study, 11 out

of 13 children with IS exhibited PFA.

Treatment response

Treatment response is classified as a binary all-or-

none outcome, with the goal of treatment being electro

clinical remission, i.e., the complete resolution of clinical

IS and lack of any EEG findings to suggest an ongoing

epileptic encephalopathy (23). The historical standard for

the determination of electrographic remission has been the

resolution of hypsarrhythmia. However, for the significant

number of children without hypsarrhythmia on presentation,

this methodology is inadequate (28). The 2021 BASED score

provides an alternative method for the assessment of remission

in children with IS.

BASED score

In a retrospective consecutive sample EEG study, the post-

treatment BASED score (measured at a median of about 1

month following treatment) correlated well-with the presence

or absence of IS. In that study, electrographic remission was

defined as pretreatment scores of 4 (EEG findings to suggest

a probable EE) or 5 (EEG findings to suggest a definite EE)

improving to ≤3, and pretreatment scores of 3 improving to

≤2 (34).

Outcome prediction

Currently, there are no clinically validated tools to

predict the long-term response to treatment or the

relapse of IS. However, the following studies evaluated

candidate predictive biomarkers based on visual

EEG analysis.

EEG patterns

As noted, hypsarrhythmia is the classic EEG pattern

associated with IS. It was hypothesized that hypsarrhythmia may

disturb physiological EEG patterns such as sleep spindles, which

are thought to positively impact childhood development (36).

Despite this, no correlation was found between the cessation

of hypsarrhythmia or recurrence of sleep spindles with long-

term outcomes in children with an unknown etiology and

normal development prior to IS onset (34, 36). Furthermore,

symmetric sleep spindles did not distinguish pretreatment

and post-treatment studies in children with IS (34). In

fact, a majority (about 55%) of children with new onset IS

had symmetric sleep spindles at diagnosis, suggesting that

this sleep finding is a robust thalamocortical projection that

may not be useful in the EEG evaluation of children with

IS (34).

In a prospective observational study, the presence of

hypsarrhythmia on the diagnostic EEG did not predict the

response to treatment. In this study, treatment with standard

therapy had the greatest impact on the likelihood of treatment

response (24, 37–39). Children with IS who did not have

hypsarrhythmia on the diagnostic EEG were less likely to receive

standard therapy and thus were less likely to achieve remission

(39). Other studies showed that children with epileptiform

discharges on EEG after successful ACTH therapy had a higher

probability of relapse than those with normalized EEGs, with

a relapse occurring an average of 6.6 months after completing

therapy (25, 27). However, even with optimal treatment, it

may not be possible to normalize the EEG for many children

with IS.

BASED score

One study suggested that the BASED score can predict

relapse after an initial response with ACTH therapy. Children

with positive treatment outcomes and a BASED score>3 (which

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.960454
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Romero Milà et al. 10.3389/fneur.2022.960454

may indicate that the epileptiform activity was not sufficiently

and effectively controlled) had a higher risk of relapse within 1

year (26).

Computational analysis

Diagnosis

Many computational analysis techniques have been applied

to EEG data with the goal of objectively identifying children

with IS. Here we discuss each study in detail; they are also

summarized in Table 3, along with studies of computational EEG

biomarkers for assessment of treatment response and prediction

of response and relapse.

Amplitude and spectral power

Amplitude is the voltage range of an EEG signal, most

commonly measured from broadband data that has been filtered

in a similar manner as clinical EEG studies (e.g., 1–70Hz).

Spectral power is related to the magnitude of the EEG in distinct

frequencies or frequency bands, which can be obtained by

decomposing the signal using a technique such as the Fourier

transform. During interictal periods, children with IS had

significantly higher EEG amplitude and higher spectral power

in all standard frequency bands compared to healthy controls

(40–42). Two studies suggested that this may have been specific

to EEG with hypsarrhythmia (40, 42). However, one study of 40

children with IS, of whom about two-thirds had refractory IS and

only eight had hypsarrhythmia, found significantly higher EEG

amplitude and power compared to approximately age-matched

healthy controls (41). This feature of the EEGwas present during

both wakefulness and sleep (41).

Entropy

Entropy is a measure of the predictability of EEG data,

with higher levels of uncertainty being associated with higher

entropy. Shannon entropy is calculated using a histogram of

EEG voltages during a specified window of time, and therefore

all information about the temporal ordering of the data points is

removed (Figure 2). In contrast, permutation entropy measures

the relative occurrence of short patterns of data points, e.g.,

a set of three EEG data points can be categorized into one

of six different sequences, depending on their relative values.

If all sequences are equally likely to occur, indicating high

uncertainty, the permutation entropy is high. In one study of

children with IS, the EEG had lower Shannon entropy in the

theta, alpha, and beta bands during sleep compared to healthy

controls; compared to sleep, the results during wakefulness

were more varied, with children with IS demonstrating higher

entropy in the delta band, but lower entropy in the alpha

band (41). The permutation entropy was also generally lower in

infants with IS, particularly in the delta and theta bands during

wakefulness and the delta and beta bands during sleep (41).

Another entropy measure, called multiscale entropy, suggested

that the total EEG complexity in IS patients was significantly

lower than in healthy children (44).

Functional connectivity networks

Measurements of functional connectivity assess statistical

relationships between EEG signals recorded from two or more

spatial locations, with the goal of estimating an underlying

functional connectivity network (FCN) (61). In the case of

bivariate functional connectivity, these relationships are assessed

independently between pairs of EEG electrodes. There are many

techniques for measuring functional connectivity, and they can

be broadly categorized based on whether they are sensitive to

linear and/or non-linear interactions in the data (Figure 3).

Cross-correlation and coherence are linear, bivariate

functional connectivity measurements that have been applied

to IS. Cross-correlation measures the correlation between two

signals as they are shifted in time relative to one another;

when used to measure connectivity, the correlation with no

time shift (also called zero time lag) can be excluded, as such

synchronous signals with high correlation may be the result

of volume conduction, rather than true connectivity (62).

Significant correlations at non-zero lags, typically measured up

to a maximum lag of 200ms, are thought to indicate related

signals shifted in time due to trans-synaptic connectivity.

This technique is typically applied to a broadband EEG

signal. In multiple studies, children with IS exhibited stronger

cross-correlation FCNs compared with healthy controls

(41, 45, 46). This held true when the FCNs were measured in

both wakefulness and sleep; however, FCNs measured during

sleep had stronger connections than those measured during

wakefulness, for both children with IS and healthy controls

(41, 63). These cross-correlation networks were found to

be individualized, rather than stereotyped within a subject

group, (64), and they had high test-retest reliability, with

stable networks produced from as little as 150 s of EEG data

(45, 46, 63).

In contrast to cross-correlation, coherence (which is closely

related to magnitude-squared coherence) is typically applied to

EEG data that have been filtered within a narrow frequency

band, and it is therefore a frequency-specific measurement

of functional connectivity. Coherence is sensitive to both the

EEG power and the phase difference between the two signals,

with high coherence occurring when the two signals exhibit

a consistent phase difference during periods of high power.

During sleep, children with IS and hypsarrhythmia exhibited

higher coherence than controls in the delta, theta, alpha, and

beta frequency bands, particularly for long-distance connections

(42). Short-range connections in the frontal lobe were weaker

than controls in the theta and beta frequency bands (42).
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TABLE 3 Summary of all studies of computational EEG biomarkers related to IESS.

Biomarker type Aim Comparison population Accuracy measure Refs.

Amplitude Diagnosis Healthy children Statistical test (40, 41)

Spectral power Diagnosis Healthy children Statistical test, except in

(42)

(40–42)

Assess treatment response Responders vs. non-responders Statistical test (43)

Entropy Diagnosis Healthy children Statistical test (41, 44)

Assess treatment response Responders vs. non-responders; healthy

children

Statistical test (44)

Predict response Responders vs. non-responders Statistical test (44)

Functional connectivity Diagnosis Healthy children Statistical test (41, 42, 45, 46)

Drug-resistant focal epilepsies Statistical test (47, 48)

Children with TSC who did not

progress to IESS

Statistical test (49)

Assess treatment response Responders vs. non-responders; healthy

children in ref (46)

Statistical test (43, 46)

Predict response and relapse Responders vs. non-responders; healthy

children

Statistical test; AUC (46)

Sustained response vs. relapse Statistical test (43)

Fast oscillations and high Diagnosis Healthy children Statistical test (50–53)

frequency oscillations Compared fast oscillations associated vs.

unassociated with epileptiform

discharges

Statistical test (54)

Ohtahara syndrome None (55)

Assess treatment response Pre-treatment vs. post-treatment;

seizure free vs. not seizure free

Statistical test (56)

Pre-treatment vs post-treatment; most

include comparison to healthy children

Statistical test (50–54)

Predict response and relapse Sustained response vs. relapse Statistical test (56)

Responders vs. non-responders Statistical test (51, 57)

Long-range temporal Diagnosis Healthy children Statistical test (41, 58)

correlations Assess treatment response Responders vs. non-responders; healthy

children

Statistical test (58, 59)

Phase-amplitude

coupling

Diagnosis Healthy children Statistical test; AUC in

(60)

(53, 60)

Focal epilepsy; also affected vs.

unaffected hemispheres in both groups

Statistical test (48)

Assess treatment response Responders vs. non-responders Statistical test (57)

Combination of multiple

metrics

Diagnosis Healthy children Cross-validation,

sensitivity, specificity,

AUC

(41, 53)

Predict response and relapse Sustained responders, non-responders,

response with relapse

Statistical test (43)

In another study, source localization was applied to the EEG

of children with IS and hypsarrhythmia, and coherence was

calculated between a reference source and the rest of the brain

(47). In all children, the reference region, defined as the source

with the highest delta power, was located in the occipital cortex,

and significant coherence was found with both cortical and

subcortical regions. Then results from a linear, directed measure

of connectivity called renormalized partial directed coherence

(65) suggested that the brainstem was driving the activity in the

putamen and cerebral cortex (47).

Non-linear connectivity metrics can uncover more complex

relationships between pairs of EEG signals, and somemetrics are

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2022.960454
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Romero Milà et al. 10.3389/fneur.2022.960454

FIGURE 2

Examples of Shannon entropy (SE). (A) The SE of white noise is high, as all values occur with equal probability. (B) The SE of a sine wave is almost

as high as white noise, despite the drastically di�erent visual appearance. The SE is calculated based only on the signal’s histogram, and both a

sine wave and white noise have fairly flat histograms, with almost equal probability for all values. (C) Normally-distributed noise has lower SE, as

it is more likely to have values near zero. (D) Normally-distributed noise with outliers has even lower SE, as the probability of having values near

zero is increased, relative to the range of possible values. (E) Noise with a 1/f power spectrum, similar to EEG, generally has relatively high values

of SE.

sensitive to both linear and non-linear interactions (Figure 3).

Mutual information measures the shared information between

two signals and is equal to the entropy of signal one, plus

the entropy of signal two, minus the joint entropy. Linear

and/or non-linear relationships between signals can result

in a high value of mutual information. Mutual information

values were found to be higher in infants with tuberous

sclerosis complex (TSC) that would later go on to develop

IS, in comparison to those with TSC that did not develop

IS (49). This appeared to be a relatively global change,

occurring between most EEG channel pairs and in all

frequency bands.

While the mutual information is a function only of the

distribution of EEG values, which ignores the temporal ordering

of the data points, many non-linear functional connectivity

measures rely on measurements of relative phase as a function

of time. Mean phase coherence measures the variance of the

phase difference between two signals during a window of time;

a tightly clustered distribution of phase differences, indicating a

consistent phase difference over time, will result in a high value.

This metric is not a function of the EEG amplitude or power.

A study of three infants exhibiting IS and hypsarrhythmia

found that hypsarrhythmia was associated with higher mean

phase coherence than ictal electrodecremental events, contrary
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FIGURE 3

Linear vs. non-linear connectivity measures. (A) EEG signals recorded concurrently from two electrodes, F3 and Fz, are shown on the left. In the

panel on the right, each data point represents one time point from the EEG signals, with the value of F3 on the horizontal axis, and the value of

Fz on the vertical axis. In this case, the signals exhibit a linear relationship and thus have high values of both correlation and mutual information

(MI). Recall that correlation is sensitive only to linear relationships, while MI is sensitive to both linear and non-linear interactions. (B) When the

two EEG signals are unrelated, no trend can be seen in the right panel, and the values of correlation and MI are low. (C) When the relationship

between the signals is non-linear, the MI is high, while the correlation is low. (D) A second example of a non-linear relationship, with medium

correlation and MI.

to the notion of hypsarrhythmia as a “chaotic” pattern (66).

The phase lag index is also calculated using the phase difference

between two signals, with the highest values occurring when the

phase differences are either consistently positive or consistently

negative. Signals with a distribution of phase differences

centered around zero have a low phase lag index; this reduces

the impact of volume conduction and common sources on the

connectivity measurement. The phase lag index also revealed

significantly stronger connectivity in children with IS, compared

to healthy controls, in the delta band in both wakefulness

and sleep (41). Lastly, the synchronization likelihood is a non-

linear measure of functional connectivity that can be calculated

at each point in time to quantify the dynamics of coupling

between two channels. It is sensitive to both linear and non-

linear interdependencies. This method relies on “embedding”

each EEG time series in a higher dimensional state prior to

comparing the activity in two independent channels, which

means that high synchronization likelihood can occur even if the

two EEG time series do not have a similar visual appearance (67).

In children with IS and hypsarrhythmia secondary to perinatal

arterial ischemic stroke, synchronization likelihood suggested

stronger interhemispheric connectivity, as well as stronger intra-

hemispheric connectivity in the affected hemisphere (48). This

high connectivity was found in almost all frequency bands

(ranging from 0.5Hz to 70Hz), and the authors speculated

that this was related to the generation and modulation of

hypsarrhythmia (48).

Fast oscillations and high frequency oscillations

Many studies over the past two decades have demonstrated

a link between epilepsy and the occurrence of HFOs in EEG

(68). These transient, electrographic events are typically defined

as four or more oscillations at a high frequency (>80Hz) that

are distinct from the background (Figure 4). While the precise

frequency ranges vary from study to study, HFOs are often

categorized as ripples (80–250Hz) and fast ripples (250–500Hz).

The term fast oscillation (FO) can refer to ripples or oscillations

in the gamma (40–80Hz) frequency band (50, 55). Both HFOs

and FOs, measured with scalp EEG, have shown promise as

biomarkers for the diagnosis of IS. While fully automated

detection of HFOs and FOs is becoming more prevalent (69),

most studies that rely on visual detection of high frequency

events also incorporate computational techniques such as time-

frequency analysis or quantitative analysis of event features.

Therefore, we discuss all such studies here, regardless of their

specific method for event detection.

During ictal periods, scalp EEG measurements have been

used to demonstrate the occurrence of high frequency events in

the beta (70), gamma (70–74), and ripple frequency bands (74).

At the onset of spasms, focal beta and gamma activity were found

to occur prior to motor symptoms; the majority of cases showed

this increase in EEG power beginning in a single hemisphere,

despite the fact that the EEG was often visually symmetric

(70). In a separate study of four children, ictal ripple locations

were concordant with lesions identified via neuroimaging (72).
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FIGURE 4

Scalp HFO and artifact examples. (A) Scalp HFO in bipolar channel T6–O2 in a child with IS. (B) Sharp artifact in channel T3–T5. (C) Muscle

artifact in Channel Fp1–F7. (D) DC shift artifact in Channel Fp1–F7. Sharp artifacts, muscle activity, and DC shifts can all cause false positive HFO

detections. In each subfigure, 5 s of broadband EEG is shown (left), with the red portion of the signal indicating the detected event (also marked

by a red asterisk). On the right is the broadband EEG, with the detected event in red (top), the bandpass filtered EEG in the ripple frequency band

(middle), and the time-frequency decomposition for the same segment of EEG (bottom).

Temporally, gamma and ripple events were found to occur most

frequently near the trough point of the ictal slow wave (74).

Many studies have documented the occurrence of scalp

HFOs and FOs during interictal periods, as well. These were

most frequently studied using slow-wave sleep EEG, with

detection of events in the gamma and ripple frequency bands

(50, 51, 54, 55), the ripple band (52), or the ripple and fast ripple

bands (53). Scalp HFOs and FOs occurred more frequently

in children with IS than in healthy controls (50, 52, 53) and

more frequently during sleep than wakefulness in IS (52). The

energy of gamma band events during sleep was also found to be

higher in children with IS than healthy controls (51). Spatially,

one study of IS reported that ripple rates were significantly

higher than controls in the posterior parasagittal region and

significantly lower in the frontal region (52), but a second study

found the highest rates of gamma, ripple, and fast ripple events

in the temporal and frontal lobes of children with IS (51).

Long-range temporal correlations

Healthy human EEG, with its 1/f power spectrum, has

a scale-free structure. This is conceptually similar to a

fractal; no single time scale can be used to accurately

characterize the dynamics present in EEG (75). Such systems

also characteristically exhibit long-range temporal correlations,

referring to the idea that the EEG amplitude fluctuations

happening now are correlated to those happening in the

future, at longer timescales than would be expected. Detrended

Fluctuation Analysis (DFA) is one method for quantifying long-

range temporal correlations, and thus the scaling behavior

of a system (76) (Figure 5). This analysis results in two

metrics that can be used for analysis: the DFA exponent (the

slope of the line), and the DFA intercept (the intercept of

the line with the vertical axis) (Figure 5C). In all frequency

bands, children with IS and hypsarrhythmia exhibited lower

DFA exponent values than healthy controls, indicating weaker

long-range temporal correlations (58). In that study, children

with IS but not hypsarrhythmia had DFA exponents that

were not statistically different from controls. A separate

study of 40 infants with IS (only eight of whom had

hypsarrhythmia) also reported no difference in DFA exponent

between cases and control subjects in most frequency bands

during wakefulness and sleep (41). However, IESS was

associated with higher DFA intercept values, compared to
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FIGURE 5

Detrended fluctuation analysis. (A) To start, the broadband EEG signal (top panel) is bandpass filtered (black line, middle panel), and the

amplitude envelope is determined (red line). Then the cumulative sum of the amplitude envelope is calculated (bottom panel). The remaining

calculations use this cumulative sum. (B) The cumulative sum is divided into windows of a fixed length; typically, these windows overlap by 50%,

but no overlap is shown in this figure for clarity. Within each window, a linear trend is fit to the data (red line). Then, for each window, the linear

trend is subtracted, and the standard deviation of the residual is calculated (gray dashed line). This process is repeated for windows of varying

lengths. Here, we show examples of 5-s and 1-s windows. (C) For each window length, the mean standard deviation across all windows is

calculated. This is plotted on a logarithmic scale vs. the window length. For EEG data, this will typically result in data points with a linear

relationship. A linear trend line is fit to the data points on this graph; the slope of the line is the DFA exponent, and its intersection with the

vertical axis is the DFA intercept.

controls, in almost all frequency bands during wakefulness

and sleep.

Phase-amplitude coupling

Phase-amplitude coupling refers to a consistent relationship

between the phase in one frequency band and the amplitude

of a second (usually higher) frequency band, often within

the same EEG channel (Figure 6). In IS, phase-amplitude

coupling was assessed between the phase of the delta

frequency band and the amplitude of the gamma frequency

band using a metric called the modulation index. Children

with active spasms had higher modulation index values

based on the phase in 3–4 and 0.5–1Hz bands and the

amplitude in the HFO frequency band (80–500Hz), compared

to normal children who underwent overnight evaluation

for suspected spasms (53). Then an automated process for

EEG cleaning, preprocessing, and calculation of delta-gamma

phase-amplitude coupling was developed and applied to 40

children with IS and 20 healthy controls (60). In that study,

classification of cases and controls based on modulation

index had an area under the curve (AUC) of 0.98 when

using sleep EEG and an AUC of 0.85 during wakefulness. A

separate study found that delta-gamma modulation index was

significantly higher in the affected hemisphere for children

with West Syndrome secondary to perinatal arterial ischemic

stroke (48).

Classification using combined metrics

A logistic regression model was developed to classify

children with and without active spasms using features based

on HFO rate, the modulation index, and the presence of

hypsarrhythmia. HFO rate and modulation index performed

better than the metric based on hypsarrhythmia, and the

overall accuracy on an independent dataset using cross-

validation was 87.5% (53). A separate study used a multivariable

logistic regression model to classify children with IS from

approximately age-matched, healthy controls (41). The

metric, obtained using a forward stepwise approach, was a

linear combination of phase-lag index connectivity (delta

frequency band), Shannon entropy (beta band), and DFA

intercept (beta band), with all components measured during

sleep. The classifier achieved an AUC of 0.96 on the age-

matched cohort; including older subjects, particularly those

older than 4 years, caused the performance of the model

to suffer.

Assessment of treatment response

The ideal outcome after successful treatment of

IS is complete resolution of the clinical spasms and

normalization of the EEG; however, this is not always

obtainable. As noted, successful treatment response

is currently considered to include both resolution of
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FIGURE 6

Examples of phase-amplitude coupling. (A) A signal with high phase-amplitude coupling. (B) A signal with low phase-amplitude coupling. Each

subfigure shows the original signal (top), the bandpass filtered signal in a low frequency band (2nd from top), the phase of the low frequency

bandpass filtered signal (3rd from top), and the bandpass filtered signal in a high frequency band (bottom). The amplitude envelope of the high

frequency signal is also shown (bottom, red). In subfigure (A) the bursts of high amplitude, high frequency activity always occur at the peak of

the low frequency signal, represented by a phase of zero. This consistent relationship will lead to a high value of phase-amplitude coupling. In

contrast, in subfigure (B), the bursts of high frequency activity occur randomly with respect to the low-frequency phase, which will result in a

low value of phase-amplitude coupling.

clinical spasms and no evidence of hypsarrhythmia

on the EEG, without specification regarding whether

the EEG normalizes or not. Recently, computational

analysis has been used to create tools capable of

achieving quantifiable and more reliable measurements of

treatment success.

Functional connectivity

Cross-correlation, as a measurement of functional

connectivity, has demonstrated utility as a quantitative marker

of treatment response in children with IS who were treated

with ACTH and/or vigabatrin as first-line therapy. In a study

of 21 children with IS, decreased functional connectivity
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strength following first-line treatment occurred in 100%

(eleven out of eleven) of IS subjects with successful treatment

response (46). However, a decrease in functional connectivity

strength following treatment was not found to be specific to

successful treatment, as seven of ten non-responders in the

same study also exhibited decreased functional connectivity

strength following first-line treatment. Increased functional

connectivity strength following first-line treatment was

only seen in three of the ten non-responders and none of

the responders.

Power and coherence

Delta band power and delta band coherence have both been

shown to decrease to a greater degree following treatment in

responders than in non-responders (43).

Long-range temporal correlations

A significant increase in LRTCs was noted in children with

pretreatment hypsarrhythmia that resolved following therapy,

whereas no significant changes were seen in children whose

hypsarrhythmia persisted. These results were independent of

whether or not spasms resolved. When assessing all criteria

for response, rather than just hypsarrhythmia, responders

showed a greater increase in strength of LRTCs following

treatment than non-responders. After treatment, responders

were not significantly different from controls, while non-

responders had weaker LRTCs. Together, these findings suggest

that LRTCs, represented by the DFA exponent, can be impacted

by the presence or absence of hypsarrhythmia, but it is also

affected by whether the clinical spasms resolve or not (58,

59).

High-frequency oscillations and fast
oscillations

Rates of high frequency events decreased in the majority

of children with IS after ACTH treatment, suggesting that

HFOs may be a marker of disease burden in IS (50, 52). A

study of children with TSC and West Syndrome found that

FOs associated with spikes significantly increased with the

onset of West Syndrome and decreased after ACTH treatment,

while no such significant results were found for FOs occurring

independently of spikes (54). Further, children with favorable

treatment response exhibited consistent reductions in HFO

rate during sleep when measured several days or more after

treatment initiation, whereas non-responders demonstrated

inconsistent changes (increases, decreases, and no changes)

in HFO rate following treatment (53). McCrimmon et al.

demonstrated that these post-treatment changes inHFO rate can

be detected during sleep as early as 1–2 days following initiation

of ACTH treatment, however, no significant changes in HFO

rate were seen during wakefulness at this interval (52). Among

IS treatment responders, no significant changes in average

HFO energy were seen after treatment (51). Following ACTH

treatment, the number of ripples and number of ripple channels

were significantly lower in responders than non-responders;

however, no difference in spectral power of ripples was noted

between the two groups. Additionally, following ACTH therapy,

the decrease in ripple number, ripple spectral power, and ripple

channels for each patient was significantly greater for responders

than non-responders (56).

Entropy

Total EEG complexity was used to evaluate EEG signals of

children with IS who did not respond to non-ACTH anti-seizure

medications and were subsequently treated with ACTH. Total

EEG complexity was measured before and after subsequent

ACTH treatment, as well as after 6 months of follow-up. The

total EEG complexity following 14-days of ACTH therapy

was not significantly different between ACTH responders and

non-responders; however, at 6 months of follow-up, ACTH

responders exhibited higher total EEG complexity than ACTH

non-responders (44).

Prediction of treatment response and
relapse

In clinical practice, no EEG-based tools are currently used

to predict treatment response or spasms relapse. Therefore, this

section summarizes studies that evaluated EEG characteristics as

potential predictive biomarkers of sustained treatment response

or relapse.

Functional connectivity

In a study with children treated with ACTH and/or

vigabatrin, strong pretreatment functional connectivity was

associated with favorable short-term treatment response (46).

Power and coherence

Delta power and delta coherence measured in children with

IS before and after ACTH treatment showed that decreases

in these measurements following treatment were greater in

responders who did not subsequently relapse compared to non-

responders and responders who relapsed (43).

High frequency oscillations

In a study utilizing ACTH for treatment of IS, no differences

were seen in the pretreatment EEGs of 17 responders and 22

non-responders across multiple HFO measurements, including
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(1) number of ripples, (2) spectral power of ripples, and (3)

number of ripple channels. However, among the 17 responders,

when measured post-treatment, all three of these measurements

were significantly lower for those that did not relapse within 6

months of treatment (n = 12), compared those who relapsed

(n = 5). The decrease in ripple number, ripple spectral power,

and ripple channels for each patient following treatment was

also significantly greater in the non-relapse group than in the

relapse group (56). A separate study showed no differences

between responders (n = 6) and non-responders (n = 7) in

pretreatment HFO modulation index at different slow-wave

activity (SWA) passbands; however, group wise differences in

the phase coupling angle distributions were reported (57). Lastly,

the pretreatment average HFO energy during sleep has shown to

be lower for responders than non-responders (51).

Entropy

Pretreatment total EEG complexity was higher among

children with IS who responded to non-ACTH anti-seizure

medications, compared to children with IS who did not respond

to non-ACTH anti-seizure medications. However, total EEG

complexity, measured after failure of non-ACTH anti-seizure

medications, but before initiation of ACTH treatment, was not

significantly different between 13 ACTH responders and nine

ACTH non-responders (44).

Discussion

We reviewed the visual and computational EEG-based

biomarkers that have been studied in association with the

diagnosis, treatment response, and outcome prediction of

children with infantile spasms (IS). The motivation behind

most of these studies has stemmed from the major challenges

associated with enacting effective treatment for IS, including

the risk of delayed or erroneous diagnosis and the high rates

of initial treatment failure and relapse. Many of the previously

referenced works also highlight other barriers associated with

the management and study of IS.

The first of these barriers is that IS is a relatively uncommon

disease, affecting 2–5 out of every 10,000 live births (77).

This results in limited sample sizes for single-center and small

multi-center studies and makes biomarker validation studies on

large, blinded datasets logistically challenging. The challenges of

biomarker research in this rare disease are further compounded

by the second such barrier – the etiological heterogeneity of

the disease, with hundreds of etiologies leading to the final

common pathway of IS (78, 79). This heterogeneity undoubtedly

contributes to the clinical inconsistencies previously described.

Thus, discovering, validating, and clinically implementing

objective biomarkers that reliably improve the outcomes of

children with IS is paramount.

Diagnosis

A correct and early diagnosis of IS enables timely

prescription of standard therapy, which is associated with

greater likelihood of successful treatment and the best possible

child-specific outcome (39). Therefore, it is essential to rely on

EEG analysis techniques that ensure a reliable diagnosis of IS.

To date, clinicians have universally relied on visual EEG

analysis for the diagnosis of IS. The presence of hypsarrhythmia

interictally is highly suggestive of an IS diagnosis, however, the

absence of hypsarrhythmia does not rule out IS, as EEGs of

up to 40% of children with IS will not exhibit hypsarrhythmia

at the time of diagnosis (30, 31). Further, visual evaluation

and analysis of the components of hypsarrhythmia exhibit poor

IRR (32). Since 2015, the visually determined interictal EEG

grading scale known as the BASED score has gained favorability

as an adjunctive metric. When compared to the low IRR of

hypsarrhythmia, the BASED score has high levels of IRR. The

diagnosis of IS may be aided by the recognition of BASED

score elements on the interictal EEG. For example, the presence

of grouped multifocal spikes in sleep should prompt the EEG

reader to carefully review the study for IS. In addition to the

BASED score, PFA has been suggested as a visual EEG biomarker

of IS, as PFA has been shown to indicate a high risk for epilepsy

when detected in EEG signals of children. However, PFA is not

consistently present in children with IS and is also not specific to

IS (35).

Several quantitative EEG biomarkers, such as amplitude,

spectral power, entropy, functional connectivity, HFOs, and

long-range temporal correlations, have been studied in children

with IS. Significantly higher amplitude and spectral power across

all standard frequency bands was seen in the EEGs of children

with IS, and was shown to consistently correlate with the

presence of hypsarrhythmia across multiple studies (40–42).

Some studies also found that elevated amplitude and spectral

power was also seen in children with IS whose EEGs did not

meet criteria for hypsarrhythmia, suggesting that amplitude and

spectral power are not merely a surrogate for the presence or

absence of hypsarrhythmia, but may provide more gradation to

the pretreatment EEG evaluation of children with IS (41).

EEG-based entropy was also shown to be significantly lower

in children with IS compared to healthy controls (41). This

is consistent with what has been reported among other types

of epilepsy (80–83). This finding, at first glance, appears in

contradiction to the historical description of hypsarrhythmia as

a visually “chaotic” pattern, as a high degree of chaos would

suggest similarly high levels of entropy, or unpredictability of

the EEG signal over time. However, recall that measures such

as Shannon entropy do not incorporate the temporal ordering

of data points into their calculation, so it is difficult to estimate

entropy based on the visual appearance of the signals (Figure 2).

Multiple studies have shown that FCNs are consistently

stronger in children with IS than in healthy controls during
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wakefulness and sleep and across multiple frequency bands,

with higher levels of connectivity seen during sleep than

wakefulness. This has been validated using linear and non-

linear metrics (41, 45, 46). These network structures are

highly child-specific. Studies have also shown that the presence

or absence of hypsarrhythmia does not independently drive

connectivity strength, as EEG recordings with high BASED

scores are associated with a wide range of FCN strengths

(46). This is in contrast with long-range temporal correlations,

which have been shown to be consistently weaker than healthy

controls in children with IS who have hypsarrhythmia, but

were not significantly different than controls who had IS

without hypsarrhythmia (58). Further, the presence of interictal

epileptiform discharges in the EEGs of children with IS has

been shown to be associated with increased FCN strength,

however, models simulating epileptiform activity within normal

infant EEG recordings suggest that this is most likely due to

the underlying pathological network as opposed to spurious

connectivity caused by the presence of a spiky waveform in the

EEG (84).

Several studies have shown a strong association between

scalp HFOs and IS during both ictal and interictal periods,

suggesting high potential for use in a diagnostic biomarker.

HFOs may also have value for localizing epileptogenic activity

associated with IS (55, 70, 72). Most of these studies analyzed

events in the gamma and ripple frequency bands, although

one showed an association with fast ripples, as well (52, 53).

While these events have a low amplitude when measured non-

invasively with scalp EEG, and EEG artifacts such as muscle

activity are a significant confounding factor, the repeated reports

of significant differences between children with IS and controls

suggests that they can be reliably measured. However, most

studies have relied on visual marking or visual validation of

automatically detected events; this provides maximal ability to

reject false positive events based on the myriad of factors that

must be considered, but it is subject to reviewer bias and is very

time consuming. One study reported fully automated detection

of ripples and found significant differences in HFO rate between

children with IS and a control group of infants under evaluation

for suspected IS who were later found to be neurologically

normal (52). More work is needed on the development of

robust methods for automated detection of scalp HFOs, with

special consideration for unique EEG features associated with IS,

such as hypsarrhythmia. In addition, while one study analyzed

HFOs in all children suspected of IS (comparing those that

were ultimately diagnosed to those that did not have active

IS) (53), more systematic studies are needed to compare IS

directly to other similar seizure types and syndromes, rather

than healthy controls.

Phase-amplitude coupling has also shown promise as a

classifier for children with IS when compared with healthy

infants. Children with active IS have higher modulation index

values based on the phase of the 3–4 and 0.5–1Hz bands

coupled with the amplitude of the HFO band (80–500Hz)

than healthy infants. Following an automated pre-processing

algorithm, delta-gamma modulation index was able to classify

children with IS from healthy controls with an AUC of 0.98

during sleep and 0.85 during wakefulness, demonstrating a very

high level of accuracy. The ability to perform this classification

based on awake EEG makes modulation index feasible for

diagnostic use based routine EEGs which nearly invariably

capture wakefulness during the 30–60min of standard recording

(53, 60).

Many of the computational metrics have shown to

correlate well-with clinicians’ diagnostic assessments or provide

ancillary data to inform the diagnostic process. Given the

complementary nature of many of these EEG characteristics, a

multivariate approach to IS classification is logical. Multivariate

models for IESS have recently emerged, including clinical and

computational EEG metrics. These innovative techniques have

demonstrated favorable IS classification with AUCs ranging

from 0.80 to 0.98 (41, 53). As further complementary biomarkers

for IS emerge, accuracy will likely improve.

Ideally, a standardized, multivariate tool that can be broadly

implemented to aid in IS diagnosis would hasten the time from

spasm onset to diagnosis and therefore improve the likelihood of

successful treatment and optimize long-term outcome. Further,

this tool may also yield utility in predicting the onset of IS

in high-risk individuals, such as children with perinatal brain

injury or tuberous sclerosis complex, if utilized with surveillance

EEG recordings prior to IS onset.

Treatment response

Treatment response describes the changes in a patient’s

condition after treatment. Determining the effects of a therapy

on IS is essential to guide future management of the disease.

Further, it is essential to consider that IS treatment response

is likely not binary (responder vs. non-responder), in contrast

to how IS treatment response has been historically and is

currently categorized. In all likelihood, this binary classification

of treatment response is due, at least in part, to the historical

lack of objective, reliable, graded metrics of disease burden for

IS. Standardizing quantifiable metrics of treatment response

for IS and universally applying them would create significant

benefits for IS management and research. For instance, if a

clinical treatment resulted in a measurable partial treatment

response but not complete response, this would suggest that

continuing the treatment while adding a second agent would be

the ideal course of action. Additionally, reliable graded metrics

of treatment response would allow clinical trials to assess the

efficacy of novel treatments with smaller sample sizes, which

is paramount in a rare disease like IS. Several clinical and

computational EEG-based biomarkers have shown promise for

assessing treatment response in children with IS.
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The BASED score has been presented as an alternative to

hypsarrhythmia for evaluating treatment response in children

with IS. As previously mentioned, the BASED score has

demonstrated superior IRR when compared with clinician

evaluation of hypsarrhythmia (34). Further, the BASED score

allows for individualized quantification of EEG abnormalities

in children with IS. This is integral for assessing treatment

response, as quantifying improvement in the EEG following

treatment initiation is essential, especially in children with

IS who do not exhibit hypsarrhythmia on their pretreatment

EEGs. This concept of individualized treatment response

quantification using the BASED score was shown to be feasible,

and treatment response was defined differently based on the

pretreatment BASED score. For pretreatment BASED scores of

4 or 5, electrographic remission was defined as improvement to

BASED score ≤3, whereas in children with pretreatment scores

of 3, electrographic remission required post-treatment scores of

≤2 (34).

Computational techniques like functional connectivity,

power, coherence, and HFOs have been tested as potential

markers of treatment outcome, showing differentiative traits

between responders and non-responders. In one study,

FCN strength, measured with cross-correlation, decreased

consistently following standard IS treatment in all responders,

however, 70% of non-responders also demonstrated decreased

FCN strength following treatment. In the same study, 30% of

non-responders exhibited increased FCN strength following

treatment – a finding that was not observed in responders (46).

This suggests that a post-treatment decrease in FCN strength

is a sensitive but not specific biomarker of favorable treatment

response, while an increase in FCN strength is a specific but not

sensitive biomarker of treatment non-response. Delta power

and coherence showed similar trends, however, the degree

of decrease following treatment in both metrics was found

to be greater in responders as opposed to non-responders,

group wise (43). Changes in DFA following first-line treatment

closely mirrors whether the patient’s post-treatment EEG

met criteria for hypsarrhythmia or not (58). This suggests

that DFA may function as an objective surrogate measure

for hypsarrhythmia, though the sample size of this study was

small. Further, the magnitude of DFA change was related to

whether the clinical spasms resolved or not, suggesting that

other factors beyond hypsarrhythmia may also affect long-range

temporal correlations.

Changes in HFOs following treatment of IS are similar to

those seen with FCNs. HFO rates during sleep consistently

decrease following successful treatment of IS, however, ratesmay

increase, decrease, or remain unchanged following unsuccessful

treatment (53). Other studies reported similar decreases in HFO

rate following successful IS treatment (54, 56), with evidence

that these decreases may begin to manifest within 24–48 h of

treatment initiation (52). Average HFO energy seems unaffected

by treatment response (51). Overall, an increase in HFO rate

following treatment is highly suggestive of treatment non-

response, whereas virtually all responders will exhibit a decrease

in HFO rate to some degree. This mirrors FCN changes with

treatment, as previously described.

Multiscale entropy has not been broadly studied in IS,

however, one study found no significant differences between

responders and non-responders following treatment initiation.

Nevertheless, 6 months later, ACTH responders exhibited higher

total EEG complexity than non-responders (44).

Many of the above EEG metrics show promise for

achieving quantifiable and reliable measurements of treatment

success, however, large-scale work remains necessary to

validate these potentially reliable and objective measures of

treatment response.

Outcome prediction

Treatment response prediction can objectively guide

clinicians when making medical decisions about therapy.

Stratification of children with IS by likelihood of treatment

response would allow for more aggressive measures to be

taken in those with higher risk of non-response or relapse, and

conversely also allow less aggressive, less invasive treatments

to be used in lower risk cohorts. Predicting the likelihood

of relapse may also guide monitoring following successful

treatment (e.g., a child with a high likelihood for relapse would

likely require more frequent clinic visits and EEGs than one at

low risk for relapse).

Prediction of initial treatment response using
pretreatment EEG

Clinically, the presence of hypsarrhythmia prior to

treatment initiation was not a predictor of treatment response.

However, children without pretreatment hypsarrhythmia

were less likely to receive standard therapy – an unsupported

approach that decreased likelihood of treatment response (39).

Using cross-correlation, very strong pretreatment FCNs were

found to be associated with favorable treatment response in

a small subset of children with IS treated with ACTH and/or

vigabatrin (46). HFOs have shown mixed results as predictive

biomarkers. HFO rates, spectral power, and channels, as well

as HFO modulation index in slow-wave passbands, measured

in pretreatment EEGs, have not demonstrated a robust ability

to predict responders and non-responders (57). However, the

average HFO energy during sleep was shown to be lower for

responders than non-responders (51).

Prediction of subsequent relapse in treatment
responders

The BASED score has shown promise for predicting relapse.

Among treatment responders, those with post-treatment

Frontiers inNeurology 15 frontiersin.org

https://doi.org/10.3389/fneur.2022.960454
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Romero Milà et al. 10.3389/fneur.2022.960454

BASED scores of 3 or higher showed a high rate (89%)

of subsequent relapse (26). Similarly, smaller decreases in

delta power and delta coherence following treatment among

responders have been shown to indicate higher risk of relapse.

HFO rates, spectral power, and number of HFO channels

were significantly lower among responders who did not relapse

compared to those who subsequently relapsed (56).

Gaps in knowledge and future directions

Much of the work to date studying EEG-based biomarkers of

IS has utilized relatively small sample sizes and has been carried

out at single centers or small groups of centers. Small studies

typically are limited in the generalizability of their results and

the likelihood of finding statistically significant conclusions, as

well as the ability to study subsets of the population, i.e., focus on

a specific IESS etiology. More recently, large multicenter efforts

studying IS have proved fruitful, and further efforts to collect

data from a large, diverse population of children with IS that can

be shared and analyzed should be pursued. These types of studies

present their own logistical barriers to implementation, such as

adequate funding, data collection/storage, navigating the myriad

of research regulations across different geographic regions, and

standardizing data collection and treatment protocols.

Computational EEG biomarkers are becoming more

commonplace in IS research, and their utility is often

complementary to visual EEG analysis. Significant strides have

been made to include more quantitative analysis within clinical

EEG recording and interpretation. For example, software

packages like Persyst R© are designed to integrate into existing

clinical EEG software, such as NeuroWorkbench R© by Nihon

Kohden. These software tools remain costly to implement and

require expertise in computational EEG analysis to properly

configure, and as of yet they are not universally adopted.

Additionally, as most commercially available software uses

proprietary algorithms, integrating customized analyses into

the software is not easily done or, in many cases, is impossible.

Therefore, universal integration of computational biomarkers

into the standard clinical workflow for epilepsy practices

remains a significant barrier to their widespread usage. This

process can be facilitated by considering ease of implementation

when choosing biomarker methodologies. Once computational

analysis is fully integrated into EEG data collection and clinical

review, a paradigm shift in clinical training would still be

required for clinical epileptologists to be more broadly exposed

to these techniques and their uses during their residencies

and fellowships.

Finally, the discovery of biomarkers is only the first step

on the road to their clinical acceptance and broad usage, as

they must be rigorously validated. Biomarker discovery studies

should be thoughtfully designed in ways that minimize bias and

produce robust, reproducible results. Patient selection and EEG

data segment selection should be randomized, multiple distinct

EEG samples should be analyzed for each patient (to prove

reliability of the measure), and states of consciousness should

be considered. Further, the clinicians who clinically interpret the

EEG studies and the researchers who perform the computational

analysis of the EEG data should be blinded to treatment status

and outcome (41). The tools to perform these analyses should

be made freely and broadly available so research groups can

validate each other’s findings on independent datasets. Lastly,

validation of biomarkers should be undertaken on large datasets,

and validated biomarkers should then be tested in a clinical

trial environment to ascertain their likelihood of impacting

clinical practice.

It is not yet clear what final form the implementation

of such a biomarker would take in clinical practice, as a

fully validated biomarker does not yet exist. However, once

found, it would ideally be seamlessly integrated into the

clinical workflow using widely available software. The process

of evaluating the biomarker would be automated such that

accuracy can be guaranteed for a range of expertise levels.

This would enable widespread adoption of the biomarker

as an adjunctive tool for the diagnosis and management

of IESS.
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