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Abstract

Background

This study aimed to illustrate the potential utility of a simple filter model in understanding the

patient outcome and cost-effectiveness implications for depression interventions in primary

care.

Methods

Modelling of hypothetical intervention scenarios during different stages of the treatment

pathway was conducted.

Results

Three scenarios were developed for depression related to increasing detection, treatment

response and treatment uptake. The incremental costs, incremental number of successes

(i.e., depression remission) and the incremental costs-effectiveness ratio (ICER) were cal-

culated. In the modelled scenarios, increasing provider treatment response resulted in the

greatest number of incremental successes above baseline, however, it was also associated

with the greatest ICER. Increasing detection rates was associated with the second greatest

increase to incremental successes above baseline and had the lowest ICER.

Conclusions

The authors recommend utility of the filter model to guide the identification of areas where

policy stakeholders and/or researchers should invest their efforts in depression

management.
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Introduction

Depression is the most prevalent mental health illness worldwide and has demonstrated a 50%

increase in incident cases from 1990–2017 [1]. Depression is among the leading causes of dis-

ease burden worldwide and is associated with a high economic burden [2–5]. Depression also

impacts quality of life, as it has been associated with unemployment, adverse impacts on per-

sonal relationships, economic disadvantage and homelessness [6–8].

In many developed countries, primary care plays a central role in the management of

depression [9–11]. The role of primary care is multifaceted and includes diagnosis, manage-

ment and/ or referral to specialist mental health professionals such as psychiatrists, psycholo-

gists or clinical social workers. Given the important role of primary care practitioners in

provision of mental health care, there is significant interest in developing ways to improve out-

comes for people with depression within this setting. While there are evidence-based treat-

ments for depression, there may be barriers which prevent those in need from receiving the

care needed to optimise outcomes. Therefore, there is potential to improve outcomes by

implementing strategies to improve care at specific points in the treatment trajectory. The key

points in the care pathway include increasing the proportion: 1) of people who are accurately

identified as depressed by their doctor; 2) who are offered evidence-based treatments; and 3)

of patients who adhere to the recommended treatment.

A meta-analysis indicated that only 47% of people who are depressed are recognised as

such by their general practitioner (GP) [12]. Similarly, our study involving over 1,500 Austra-

lian primary care patients found that GPs identified only 51% of patients with elevated depres-

sion scores on the Patient Health Questionnaire (9-items) as having clinically significant

depressive symptoms [13]. Several factors may also impede GPs in offering evidence-based

treatments to people with depression. Providers commonly report barriers related to inade-

quate skills to manage depression, as well as the time required to provide intensive psychologi-

cal therapies [14–16]. When evidence-based treatments are offered, the effectiveness of such

treatments may be hindered by poor patient adherence. Patients with depression have been

found to be more likely to be non-adherent to prescribed treatments than those who are not

depressed [17–20].

With increasing competition for the health dollar, there is interest among policy stakehold-

ers in identifying priority research and investment areas. While complex mathematical model-

ling is typically the norm in decisional analytics [21], the level of sophistication required to use

such methods may be prohibitive for decision or policy-makers and researchers without access

to expertise [22]. A simplified decisional tool that could guide the identification of areas where

policy stakeholders and/or researchers should invest their efforts seems warranted. Such a tool

was developed by members of the research team [23, 24]. The model is derived from a decision

tree concept, using a logic modelling approach to filter data through the sequence of steps

associated with treatment outcomes in healthcare settings. The relationship to a decision tree

is based on the filter model’s use of cost and outcome at key junctures. The model can be used

to compare costs and patient outcomes for two or more scenarios. The application of the

model in this paper is intended to highlight how the tool could be applied to compare the effec-

tiveness and cost-effectiveness of intervention strategies for improving depression outcomes

in primary care.

Aim

To illustrate the potential utility of a simple filter model in understanding the patient outcome

and cost effectiveness implications for depression interventions in primary care.
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Materials and methods

The development of the model has been described in detail elsewhere [23, 24]. The model is

targeted at users without specialised economics or statistical skills or knowledge. It is under-

pinned by theoretical and modelling principles of decision trees and cost-effectiveness analysis

to create a decisional analytic framework. Modelling is conducted using an Excel spreadsheet

with built-in calculations for a series of steps. The user will follow the steps as outlined below.

Steps 1–3: Identify the relevant group data

1. Population: define and quantify the population of interest (e.g., general population, certain

age cohorts);

2. Target group: define and quantify the target of the intervention (e.g., depressed

individuals);

3. Setting attendance: enter the proportion of the target group attending the setting of inter-

est (e.g., depressed individuals attending primary care);

Steps 4–6: Adding the filters representing different intervention scenarios

When the user enters the relevant proportions for the following steps, the number of persons

at each level in the model is calculated and used as output in the subsequent step. For example,

the calculated number of persons of the target group attending the setting of interest who are

detected for the condition of interest (step 4) are used as the starting figure for reach and

adherence (step 5).

4. Detection: the proportion of the target group attending the setting of interest who are

detected for the condition of interest. An intervention can be applied here to increase

detection using relevant intervention effect (increase in proportion detected) and cost

estimates.

5. Reach and adherence: the following are estimated by the user. An intervention can be

applied at each of these steps with the relevant intervention effect (increase reach or

adherence proportions) and cost estimates required.

i. Reach: The proportion of individuals with the condition of interest who are offered treat-

ment by their healthcare provider;

ii. Adherence: The proportion of individuals with the condition of interest who would com-

ply with the offered treatment;

6. Effect on outcome: for a dichotomous outcome measure of treatment success, specify the

expected proportion of those that are offered the intervention that will achieve a success-

ful outcome following the intervention.

The outputs derived from the above data are outlined in Table 1.

Data analytic procedures: Application of the filter model to depression

treatment

To demonstrate the potential utility of the decision analytical filter model for improving

depression outcomes, data for four scenarios, including ‘usual care’, and three hypothetical

conditions, are presented. A successful outcome for the following scenarios was defined as an
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individual reaching ‘remission’, i.e., below threshold depression levels. The baseline scenario

attempted to model standard care in the identification and treatment of depression for pri-

mary care patients, using data drawn from the literature (see Table 2). This scenario assumed

no interventions were implemented and that usual care was provided. The three hypothetical

scenarios represent an improvement above usual care in each of the filters. An estimation of

the intervention effect and relevant costs associated with achieving these improvements were

entered into the model. While efforts were made to draw these estimates from the literature,

the aim of the model, in its current status, is to illustrate hypothetical scenarios. Further, the

population and target group can be adjusted for different countries, regions or settings. The

Australian population has been used in the model presented for illustrative purposes, however,

the derived data is drawn from international references. Filter one, i.e., detection, examined an

intervention aimed at increasing detection of depression in primary care. This involved

administering a free validated depression measure to primary care patients electronically using

a touchscreen computer upon presentation to their appointment. Filter two, i.e., reach,

involved increasing the offer of evidence-based depression treatment from providers. This

intervention is based on training and support for GPs in appropriate management of depres-

sion. Filter three, i.e., adherence consisted of increasing patient adherence to offered treatment.

This involved a telephone intervention to monitor the progress of patients undergoing treat-

ment for depression and provide adherence strategies. All filters were assumed to operate inde-

pendently from one another, for example an increase in the proportion of patients detected for

depression did not increase the proportion of patients offered treatment by GPs. Dollar

amounts are presented in Australian Dollars (AUD).

Results

Table 2 presents the data inputs for each of the steps used in the model’s hypothetical scenar-

ios. The literature used to inform the filters are presented as footnotes in Table 3.

Table 2 highlights the findings of the hypothetical interventions applied in the filter model

for managing depression in primary care. All three filters were found to be both more effective

Table 1. Model outputs and calculations used to derive outputs.

Outcome Data Calculation

Cost per participant exposed

to the intervention

(Total cost of the intervention(s) under a scenario across all targeted patients)

(Number of patients who are offered the intervention)

Cost per successful outcome (Total cost of the intervention(s) under a scenario across all targeted patients)

(Number of patients who achieve a successful outcome)

Incremental cost compared

to baseline

(Total cost of detection and

intervention across all patients in one

scenario)

- (Total cost of detection and intervention

across all patients for baseline or usual

care)

Incremental number of

successes compared to

baseline

(Number of patients who achieve a

successful outcome under a scenario)

- (Number under baseline or usual care)

Incremental cost

effectiveness ratio (ICER)1
(Incremental cost compared to baseline).

(Incremental number of successes compared to baseline)

Policy advice The model provides a summary of whether each scenario is more or less expensive

(in terms of the incremental cost) and more or less effective (in terms of the number

of successful outcomes) compared to baseline or usual care.

1The ICER is the ratio of the change in cost to the change in effectiveness between each scenario and usual care. This

metric can be used to compare the relative cost-effectiveness of different alternatives against the cost and

consequences of usual care.

https://doi.org/10.1371/journal.pone.0246728.t001
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Table 2. Model parameters and output under usual care and three hypothetical intervention scenarios.

Step Definition Proportion Unit Cost of

intervention

No. of

persons

(1) Population Australian population aged 18-75yrs n/a 15,055,403

(2) Target group Current depression a 8.9% 1,339,931

(3) Opportunity for Detection Proportion of target group attending GP at least once per annum b 81% 1,085,344

(4) Detection Proportion detected as at risk
Baseline: (no intervention) c 47% $0 510,112

Filter 1: (intervention: implementation of routine screening for

depression) d
77% $5 835,715

Filter 2: (no change to baseline) c 47% $0 510,112

Filter 3: (no change to baseline) c 47% $0 510,112

(5) i. Reach Proportion detected who were offered treatment
Baseline: (no intervention) e 28% $0 142,831

Filter 1: (no change to baseline) e 28% $0 234,000

Filter 2: (GP intervention: education and training) f 69% $247 351,977

Filter 3: (no change to baseline) e 28% $0 142,831

(5) ii. Adherence Proportion detected, offered treatment who are adherent
Baseline: (no intervention) g 51% $0 72,844

Filter 1: (no change to baseline) g 51% $0 119,340

Filter 2: (no change to baseline) g 51% $0 179,508

Filter 3: (Patient intervention: telephone follow-ups) h 65% $98 92,840

(6) Effect on outcome Proportion achieving remission at 6 months follow-up
Baseline: (no intervention) i 37% $0 26,952

Filter 1: (no change to baseline) i 37% $0 44,156

Filter 2: (no change to baseline) i 37% $0 66,418

Filter 3: (no change to baseline) i 37% $0 34,351

MODEL OUTCOMES

Cost/exposure Cost per participant exposed to intervention
Baseline: $0

Filter 1: $5

Filter 2: $247

Filter 3: $98

Cost/outcome Cost per successful outcome
Baseline: $0

Filter 1: $95

Filter 2: $1,309

Filter 3: $265

Incremental cost Incremental cost compared to baseline
Filter 1: $4,178,574

Filter 2: $86,938,336

Filter 3: $9,098,352

Incremental number successfully

treated

Incremental number of successes compared to baseline
Filter 1: 17,204

Filter 2: 39,466

Filter 3: 7,399

(Continued)
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and more expensive than baseline. Filter one, involving a waiting room intervention to

increase detection rates for depressed patients, resulted in an estimated increase of 17,204

patients reaching remission at six-months follow-up (compared to baseline), at an estimated

cost of $95 per successful outcome. Filter two, consisting of an intervention to educate and

train GPs in better management of depression, resulted in an estimated increase of 39,466

patients with depression reaching remission at six-months follow-up (compared to baseline)

and cost $1,309 per successful outcome. Filter three, involving a telephone intervention to

improve patient adherence to depression treatment, resulted in an estimated increase of 7,399

Table 2. (Continued)

Step Definition Proportion Unit Cost of

intervention

No. of

persons

ICER Incremental cost effectiveness ratio
Filter 1: $243

Filter 2: $2,203

Filter 3: $1,230

Active intervention components at relevant steps are bolded.

https://doi.org/10.1371/journal.pone.0246728.t002

Table 3. References and explanation for data used in the model (footnotes refer to those used in Table 2).

Footnote and description Reference and notes

(a) Depression prev • ABS 2015 [25].

(b) Size of target group

attending GP

• ABS 2013 [26]: Data is for the proportion of the Australian population aged 15

years and over who attend a GP at least once annually.

(c) Detection: baseline • GP detection of depression was assumed to be 47% based on detection rates

reported by Mitchell (2009) [12].

(d) Detection: intervention • An increase in detection of 30% (from 47% to 77%) was based on studies indicating

the sensitivity of the PHQ-9 screening test to be 88% accurate in detecting

depression [27]. This increase in detection was slightly reduced to account for false

positives.

• For an iPad waiting room screening intervention, a cost of $5 per person screened

was estimated.

(e) Reach: baseline • Offer of treatment was assumed to be 28% based on findings reported by Rost

(2001) [28].

(f) Reach: intervention • A 41% (from 28% to 69%) improvement rate for offering treatment was used based

on intervention data reported by Rost, 2001[28] for training and educating GPs in

depression management.

• Costing for the intervention to improve treatment provisions was based on Pyne,

2003 [29] which indicated that implementation and training costs of the GP training

intervention were $247 per person.

(g) Adherence: Baseline • Adherence to depression treatment was assumed to be 51% based on findings

reported by Dietrich (2004) [30].

(h) Adherence: Intervention • Dietrich 2004 [30] found a 14% (from 51% to 65%) improvement in�1 follow-up

appointments at six-months follow-up. While this study did not directly measure

adherence to a particular treatment, attending additional follow-ups was used as a

proxy measure for this.

• Simon 2009 [31] estimated a telephone management intervention project to cost

$98 per patient.

(i) Treatment effectiveness • Six-month remission rates were derived from Dietrich 2004 [30], which found the

intervention group to have a 37% remission rate. As remission was derived from

those who adhered to treatment in step (f), the intervention group statistics were

used for this filter.

https://doi.org/10.1371/journal.pone.0246728.t003
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patients with depression reaching remission at six-months follow-up (compared to baseline)

and costs $265 per successful outcome.

When examining incremental costs of each filter (as compared to baseline), filter one was

the least expensive filter option with an incremental cost of $4,178,574 and an ICER of $243.

Filter two was the most expensive filter with an incremental cost of $86,938,336 and an ICER

of $2,203.

Discussion

Primary care presents a unique opportunity to identify and assist individuals who may be

experiencing depression. Nevertheless, scarcity in funding for service delivery requires careful

consideration of where to invest research funds and healthcare budgets. The simple filter

model used in this paper can help to inform decisions behind such allocation to reduce reli-

ance on opinions or assumptions of decision-makers. The utility of the model in its application

to hypothetical interventions for depression in primary care highlights its potential usefulness.

Comparison with existing literature

Interestingly, the findings of the model in the example above indicated that filter one, which

aimed to increase detection through a screening intervention using touchscreen computer tab-

lets, was the most cost-effective filter. While there is some contention regarding screening for

depression in primary care [32–34], this method of intervening represents a relatively low cost

and low maintenance strategy while greatly increasing the number of successes in the hypo-

thetical scenarios. Further, the considerable investment placed on technological health

advancements [35], including mobile health [36, 37], could provide opportunities to explore

remote screening options via smartphone messages and apps that link in with primary care

medical records. This approach could be conducted automatically and notify healthcare pro-

viders if their patients are at-risk of depression, which would further reduce hardware and per-

sonnel time associated with in-clinic screening. Electronic screening options therefore present

a feasible intervention option to improve administration rates of depression treatment. While

interventions relating to reach and adherence are important areas to examine, the greater level

of intensity required to undertake these interventions, as well as a smaller proportion of

patients accessed, resulted in much higher ICERs for these interventions. As previously stated,

the findings presented from the model are intended to be illustrative, however, where possible,

the data were drawn from the literature. Therefore, the approach of targeting and comparing

these different filters within primary care still warrant consideration.

Strengths and limitations

Use of the model should be considered in light of its limitations. Firstly, the information

derived from the model is only as strong as the input data provided. It is therefore limited by

any inaccuracies or biases that exist in the studies the data is derived from. Further, some data

used in the model were based on research which was more than ten years old. This was due to

the model requiring specific information to meet the parameters, such as intervention costs

per person, relevant targeted interventions (e.g., provider training) and binary study outcomes

(e.g., remission rates). While this limited the data available for use, the parameters of cost and

outcome are of high importance to policy and health services decision makers. This limitation

is also a strength of the model, as outcomes and costs for a single intervention can also be com-

pared when there is uncertainty in key parameters. Nevertheless, future decision-makers utilis-

ing the model to allocate large amounts of resources may consider applying quality checklists

to included studies, such as the risk of bias criteria from the Effective Practice of Care (EPOC)
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collaboration [38] to ensure relevant information can be drawn from high quality research

trials.

Additionally the model assumes that intervening at one filter does not alter rates at other fil-

ters. For instance, in the worked example, training GPs in depression management may

increase the quality of the information provided to patients or improve the likelihood of GP

follow-up, which may inadvertently increase patient adherence to treatment. Furthermore,

incorporating the complexity of certain conditions in to this simple model is difficult. For

example, depression is associated with different levels of severity and treatment pathways differ

based on this severity. The presented model only accounted for intervention-related costs and

did not include health care costs associated with severity of illness and hence, increased treat-

ment intensity, healthcare provider time, nor the patient perspective in estimating costs. Sever-

ity of conditions and health care costs could be considered in future applications of the model.

The model is also not able to account for inaccuracy of detection, such as false positives and

false negatives and therefore issues such as unnecessary treatment and intervention were not

considered. A further strength of the model is its ability to let the user enter a range of values

for key input parameters. Hence, the user can vary the value of any of the filter model’s input

parameters that might be associated with meaningful levels of uncertainty. This then produces

a range of outcome values (or boundaries) that can be considered in decision making.

Implications for research and/or practice

This theoretical filter model, developed using economic cost-effectiveness principles, has the

potential to influence discussions on resource allocation involving decision or policy-makers

for depression management in primary care. The simplicity and accessibility of the filter

model represent the strengths of this approach. It is stored within a Microsoft Excel file and

can be used by individuals without specialised skills, including those working within relevant

care settings for depression. While the model can be applied at a national level, as was demon-

strated in this paper, it could also be used to make decisions at a local level such as within a sin-

gular health services. Further, using this tool to examine depression could be expanded

beyond the primary care setting to specialised mental health or hospital settings. Such an appli-

cation of the tool could be used to examine the ICER of different aspects of treatment being

offered by these services. The calculator is cost-free which makes it a feasible option for health

care facilities to optimise cost-effective treatment outcomes.

Input data required for the tool should be evidence-based regarding target populations,

reach and effectiveness. Generally, these data are likely to be available in the scientific literature

and population health reports. However, another useful aspect of this model is that it high-

lights gaps in the current literature that prevent examining certain aspects of selected care

pathways. For instance, when considering the depression literature examined, there was a lack

of economic analysis reported for intervention studies undertaken. While the effectiveness of

interventions in improving depression outcomes is of great importance, the cost-effectiveness

is equally valuable for determining the feasibility of implementing research findings in to

actual care. Future research examining depression interventions in primary care should care-

fully consider this aspect of research.

Conclusions

This study highlights the utility of a simple and free filter model to conduct cost-effectiveness

analysis for depression management in primary care, without complex software or specialised

statistical or economic skills. Given the substantial economic burden of depression and ongo-

ing competition for limited health care resources, there is a need to focus on strategies that
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optimise depression outcomes. The use of evidence-based information to assist with decision-

making in these circumstances is an important undertaking. The authors recommend utility

of the filter model to individual health services, researchers and decision-makings at a policy

or funding level, to help inform future strategies for the management of depression in health-

care settings.
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