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In this work, we formulated and investigated an optimal control problem of the melioidosis 
epidemic to explain the effectiveness of time-dependent control functions in controlling the spread 
of the epidemic. The basic reproduction number (𝑅0𝑐) with control measures is obtained, using the 
next-generation matrix approach and the impact of the controls on 𝑅0𝑐 is illustrated numerically. 
The optimal control problem is analyzed using Pontryagin’s maximum principle to derive the 
optimality system. The optimality system is simulated using the forward-backward sweep method 
based on the fourth-order Runge-Kutta method in the MATLAB program to illustrate the impact 
of all the possible combinations of the control interventions on the transmission dynamics of the 
disease. The numerical results indicate that among strategies considered, strategy 𝐶 is shown to 
be the most effective in reducing the number of infectious classes compared to both strategy 𝐴
and strategy 𝐵. Furthermore, we carried out a cost-effectiveness analysis to determine the most 
cost-effective strategy and the result indicated that the strategy 𝐵 (treatment control strategy) 
should be recommended to mitigate the spread and impact of the disease regarding the costs of 
the strategies.

1. Introduction

Melioidosis is an emerging infectious disease caused by the environmental gram-negative bacterium called Burkholderia pseudo-

mallei [4,14,30]. This bacterium is commonly found in moist soil and surface water in tropical and subtropical regions, particularly 
in Southeast Asia, Northern Australia and sub-Saharan Africa [10,21,28]. The disease can affect both humans and animals. Hu-

mans acquire infection through ingestion, inoculation and inhalation of the bacteria from contaminated soil or water [10,11,28]. 
Human-to-human transmission is usually uncommon, with only a small number of suspected cases documented to date, which oc-
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curred through contact with the reproductive fluid of an infected human or breastfeeding from an infected mother [7,9,14,36,41]. 
According to recent studies, B. pseudomallei causes approximately 165,000 human infections and 89,000 (54%) fatalities per year 
throughout the world [14,27,47].

Melioidosis is a serious infection in humans and it can cause a wide range of symptoms, from mild flu-like illness to severe sepsis 
and pneumonia. The symptoms may include fever, headache, muscle aches, joint pain, cough, chest pain, difficulty breathing, and 
skin lesions. In severe cases, the infection can lead to septic shock, multiple organ failure, and death [9,13,14,22].

Subsequent studies have indicated the effectiveness of a two-stage antibiotic treatment for melioidosis, consisting of an initial 
phase (the acute phase) of intravenous antibiotics followed by a subsequent phase (the eradication phase) of oral drug. In the acute 
phase, the current antibiotic options are ceftazidime and carbapenem, and the treatment with these antibiotics should continue for a 
duration longer than 2 weeks. While oral trimethoprim-sulfamethoxazole (TMP-SMX) is the antibiotic choice during the subsequent 
eradication phase for 13-26 weeks [10,12,16,41]. However, B. pseudomallei species are intrinsically resistant to several classes of 
antimicrobial agents and some isolates are also resistant to the two-phase antibiotics [16,39]. In addition, the disease infection 
relapse varies from 13% to 23% in patients [39]. The reasons for infection relapse are antimicrobial resistance (severity of B. 
pseudomallei), inadequate or incomplete antimicrobial agents and improper eradication therapy among others [23,39]. To date, there 
is no vaccine for human melioidosis [29]. Prevention measures involve avoiding contact with contaminated soil or water, wearing 
protective clothing and footwear when working in high-risk environments, treating drinking water and practising good personal 
hygiene [8,41].

Mathematical modeling has shown its significant role in the study of epidemiology by providing more insight into the underlying 
mechanisms for preventing and controlling infectious diseases [19,20]. Nowadays, optimal control theory plays a critical role in 
showcasing the effectiveness of various optimal control interventions for a given mathematical model through the incorporation of 
suitable control measures [26,40]. A few researchers have proposed autonomous compartmental mathematical models to address the 
transmission dynamics of the disease, see literature [29,45]. The authors in [29] presented a susceptible-exposed-infected-recovered-

susceptible (SEIRS) deterministic model to show key factors of the disease incidence pattern in Thailand. The authors in [45]

proposed a susceptible-exposed-infected-recovered (SEIR) model of the melioidosis epidemic to address the dynamics behavior of 
the disease in the human population. Also, the author in [44] considered a SEIR compartmental model to achieve the effectiveness 
of hygiene care and treatment control factors on the transmission process of melioidosis. Recently, the authors in [14] developed 
a susceptible-exposed-asymptomatic infectious-symptomatic infectious-recovered-susceptible (SEAIRS) deterministic model that de-

scribes the transmission dynamics of human melioidosis with an asymptomatic class. They presented a detailed stability analysis of 
the steady states of their model qualitatively and quantitatively. They also demonstrated the impact of model parameters on disease 
dynamics. They further carried out numerical experiments to support their theoretical results.

In this paper, we propose an optimal control problem for the dynamics of human melioidosis, which is a continuation of the 
research started in [14]. This work aims to demonstrate the effectiveness and cost-effectiveness of optimal control interventions in 
controlling the spreading of the epidemic.

The rest of the paper is divided into the following Sections: we describe the basic model from the study [14] in Section 2. The 
formulation of an optimal control problem and characterization of the optimal control problem are described in Section 3. Numerical 
simulations of different control interventions and their cost-effectiveness analysis are carried out in Section 4. The concluding results 
are given in Section 5.

2. The autonomous model

The state system is an autonomous system of non-linear ordinary differential equations from the model formulated in [14]. The 
model divides the total human (host) population at time 𝑡, into five distinct compartments: susceptible class (𝑆(𝑡)), latently-infected 
class (𝐸(𝑡)), asymptomatic class (infectious individuals without symptoms and can transmit the disease) (𝐴(𝑡)), symptomatic class 
(infectious individuals that are showing symptoms and can transmit the disease to others) (𝐼(𝑡)), and recovered class (𝑅(𝑡)), where, 
the total population is given by 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) +𝑅(𝑡). The concentration of B. pseudomallei in the environment at 
time 𝑡, is denoted by 𝐵𝑚(𝑡). The susceptible class is assumed to increase due to newborns at a constant recruitment rate given by 
Π. Susceptible humans may be infected through either contact with bacterial class at the rate 𝛽1

𝐵𝑚

𝐶+𝐵𝑚
, or contact with infectious 

classes 
(
𝐴(𝑡)&𝐼(𝑡)

)
at the rate 𝛽2(𝐼 + 𝜎𝐴), where 𝛽1 and 𝛽2, respectively, are transmission rates due to the pathogen and infectious 

individuals, 𝐶 is the constant pathogen concentration in the environment that yields 50% chance of catching the disease, and 𝜎
is the reduction rate in infectivity of 𝐴 with, 0 < 𝜎 < 1. The number of susceptible humans infected by B. pseudomallei due to the 
contaminated environment per unit time is given by 𝛽1

𝐵𝑚

𝐶+𝐵𝑚
𝑆 , while the number of susceptible humans infected by B. pseudomallei

due to 𝐴(𝑡) and 𝐼(𝑡) per unit time is given by 𝛽2(𝐼 + 𝜎𝐴)𝑆 . Hence, the number of susceptible humans infected by melioidosis per 
unit of time is given by 

(
𝛽1

𝐵𝑚

𝐶+𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴)

)
𝑆 and joins 𝐸. The rate at which individuals in 𝐸 progress to 𝐼 is denoted by 𝜃, 

while the individuals in 𝐸 progress to 𝐴 at the rate of (1 − 𝜃). The shedding rate of B. pseudomallei into the environment due to 𝐴
and 𝐼 is given by 𝜂. The respective human and bacterial natural death rates are represented by 𝜇 and 𝜇𝑏. The disease-induced death 
rate is denoted as 𝛿. The recovery rate from 𝐴 is denoted by 𝛾1 while from 𝐼 is denoted by 𝛾2. The individuals in 𝑅 progress to 𝑆 at 
the rate of 𝛼. Moreover, the description, values and sources of the model parameters are given in Table 1. The autonomous system 
2

of the model from [14] is given as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑆

𝑑𝑡
=Π+ 𝛼𝑅− (𝜆+ 𝜇)𝑆,

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 − (𝜌+ 𝜇)𝐸,

𝑑𝐴

𝑑𝑡
= (1 − 𝜃)𝜌𝐸 − (𝛿 + 𝛾1 + 𝜇)𝐴,

𝑑𝐼

𝑑𝑡
= 𝜃𝜌𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾1𝐴+ 𝛾2𝐼 − (𝛼 + 𝜇)𝑅,

𝑑𝐵𝑚

𝑑𝑡
= 𝜂(𝐴+ 𝐼) − 𝜇𝑏𝐵𝑚,

(1)

where, 𝜆 = 𝛽1
𝐵𝑚

𝐶+𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴), with the initial conditions;

𝑆(0) = 𝑆0 > 0, 𝐸(0) =𝐸0 > 0, 𝐴(0) =𝐴0 > 0, 𝐼(0) = 𝐼0 > 0, 𝑅(0) =𝑅0 ≥ 0, 𝐵𝑚(0) = 𝐵𝑚,0 > 0.

For the model equation (1), stability analysis and sensitivity analysis were carried out, and the non-negativity and boundedness 
of the solution components of such system was established in [14]. Also, the basic reproduction number (𝑅0) of the model is given 
as (see, in [14])

𝑅0 = Π𝜌
(
𝛽1𝜂(𝜃𝜖1 + (1 − 𝜃)𝜀2) +𝐶𝜇𝑏𝛽2(𝜃𝜖1 + 𝜎(1 − 𝜃)𝜀2)

(𝜌+ 𝜇)𝐶𝜇𝜇𝑏𝜖1𝜖2

)
=𝑅0ℎ +𝑅0𝑏

where,

𝑅0ℎ =
Π𝜌𝛽2

[
𝜃(𝛿 + 𝛾1 + 𝜇) + 𝜎(1 − 𝜃)(𝛿 + 𝛾2 + 𝜇)

]
𝜇(𝜌+ 𝜇)(𝛿 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)

,

is the basic reproduction number due to human-to-human transmission, and

𝑅0𝑏 =
Π𝜌𝛽1

[
𝜃(𝛿 + 𝛾1 + 𝜇) + (1 − 𝜃)(𝛿 + 𝛾2 + 𝜇)

]
𝐶𝜇𝜇𝑏(𝜌+ 𝜇)(𝛿 + 𝛾1 + 𝜇)(𝛿 + 𝛾2 + 𝜇)

,

is the basic reproduction number due to environment-to-human transmission. 𝑅0 measures the average number of secondary infec-

tious individuals generated by a single infected person (asymptomatic or symptomatic) in completely susceptible humans.

By using the approach given in [14] and the parameter values from Table 1, the most influencing parameter of the model 
are human recruitment rate (Π) followed by the transmission rate due to infectious humans (𝛽2), the transmission rate due to the 
environment (𝛽1) mortality rate of bacteria (𝜇𝑏) and recovery rates (𝛾2 & 𝛾1), respectively. This indicates that a personal preventive 
intervention for susceptible humans and control intervention of the transmission rate (𝛽1) will sufficiently diminish the spread of the 
disease. Also, control strategies that increase the natural mortality rates of bacteria or a strategy that increases the recovery rates of 
infectious humans would be effective in diminishing the spread of the epidemic.

This paper transforms an autonomous mathematical model without controls into a non-autonomous model with controls by 
incorporating two bounded control functions of time, which affect the value of 𝑅0 and the effect of these control functions on it is 
demonstrated in section 3.1. Therefore, to use optimal efforts on interventions to eliminate the disease from the infected population, 
an optimal control problem of melioidosis with cost-effectiveness analysis is discussed in this study.

3. Analysis of the optimal control model

In this section, we formulate an optimal control problem to investigate the effect of two time-dependent preventive and control 
measures on the transmission dynamics of melioidosis. These time-dependent measures are introduced at a specified time 𝑡 ∈ [0, 𝑇 ]
as follows, where T is the final time;

(i): 𝑢1(𝑡) the preventive measure applied on susceptible class: using appropriate personal protective equipment (wearing rubber 
boots, rubber gloves or waterproof dressings to cover wounds or skin) and using treated water for drinking; this is to minimize 
3

the acquisition of the infection in the population.
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(ii): 𝑢2(𝑡) the treatment control measure implemented on infectious classes; this is to reduce the number of infectious individuals in 
the population. The disease infection can be treated by intravenous antibiotics including ceftazidime, imipenem, or meropenem 
for a minimum of 10-14 days, followed by oral trimethoprim-sulfamethoxazole (TMP-SMX) drug for 3-6 months [16,29,39].

The melioidosis non-autonomous model with the time-dependent measures is formulated as;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑆

𝑑𝑡
=Π+ 𝛼𝑅−

(
(1 − 𝑢1)𝛽1

𝐵𝑚

𝐶 +𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴) + 𝜇

)
𝑆,

𝑑𝐸

𝑑𝑡
= (1 − 𝑢1)𝛽1

𝐵𝑚

𝐶 +𝐵𝑚
𝑆 + 𝛽2(𝐼 + 𝜎𝐴)𝑆 − (𝜌+ 𝜇)𝐸,

𝑑𝐴

𝑑𝑡
= (1 − 𝜃)𝜌𝐸 − (𝛿 + 𝛾1 + 𝜉𝑢2 + 𝜇)𝐴,

𝑑𝐼

𝑑𝑡
= 𝜃𝜌𝐸 − (𝛿 + 𝛾2 + 𝜉𝑢2 + 𝜇)𝐼,

𝑑𝑅

𝑑𝑡
= (𝛾1 + 𝜉𝑢2)𝐴+ (𝛾2 + 𝜉𝑢2)𝐼 − (𝛼 + 𝜇)𝑅,

𝑑𝐵𝑚

𝑑𝑡
= 𝜂(𝐴+ 𝐼) − 𝜇𝑏𝐵𝑚.

(2)

The constant coefficient 𝜉 is the control rate of treatment. The incidence rate of infection due environment-to-human interaction 
diminished by the factors (1 −𝑢1(𝑡)) and infectious classes is minimized at the rate of 𝜉𝑢2(𝑡). Next, we need to formulate an appropriate 
objective function for the state system (2). This study is aimed to reduce the size of infectious classes and the associated cost of the 
interventions over the specified time interval. Thus, the form of the objective functional, 𝐽 , to be minimized is given by:

𝐽 (𝑢1, 𝑢2) =

𝑇

∫
0

(
𝑤1𝐴+𝑤2𝐼 +

𝑤3
2
𝑢21 +

𝑤4
2
𝑢22

)
𝑑𝑡 (3)

subject to the model equation (2). We consider the quadratic forms of the cost control functions in the objective functional 𝐽 (𝑢1, 𝑢2). 
The nonlinear nature of the cost of intervention arises based on the fact that there is no linear relationship between the effects of 
interventions and their costs in the infected population. See for more details in some related literature [3,24,33,35,42]. 𝑤𝑘 are the 
positive balancing weight constants, for k = 1, 2. The terms 𝑤1𝐴 and 𝑤2𝐼 , respectively, in the objective cost functional 𝐽 are the 
costs associated with asymptomatic infectious individuals and symptomatic infectious individuals that need to be minimized. The 
expressions 𝑤3

2 𝑢
2
1 and 𝑤4

2 𝑢
2
2 represent the cost associated with prevention and treatment control measures, respectively. Since the 

formulated optimal control problem is aimed to minimize the number of infectious individuals under minimum cost, we seek the 
optimal control pair 𝑢∗1(𝑡) and 𝑢∗2(𝑡)) such that

𝐽 (𝑢∗1 , 𝑢
∗
2) = min

𝑢𝑘∈𝑈
{𝐽 (𝑢1, 𝑢2)}, where 𝑘 = 1,2, (4)

where, 𝑈 is a non-empty bounded admissible control set described by

𝑈 = {
(
𝑢1(𝑡), 𝑢2(𝑡)

)
∶ 0 ≤ 𝑢𝑘 ≤ 1, each 𝑢𝑘 is Lebesgue measurable, for 𝑘 = 1,2, 𝑡 ∈ [0, 𝑇 ]}.

3.1. The effects of the control variables (𝑢1 & 𝑢2) on basic reproduction number of the system (2)

This section presents the effects of the control variables, 𝑢1 and 𝑢2, on the basic reproduction number (denoted by 𝑅0𝑐) of the 
non-autonomous system (2). To obtain 𝑅0𝑐 of the system (2), the next-generation matrix approach [46] is used as follows. The 
associated Jacobian matrices of the new infection terms 𝐹 and the rate of transfer of individuals to the compartments 𝑉 are given 
by:

𝐹 =

⎛⎜⎜⎜⎜⎜⎝

0 𝛽2𝜎Π
𝜇

𝛽2Π
𝜇

(1 − 𝑢1)
𝛽1Π
𝐶𝜇

0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
and 𝑉 =

⎛⎜⎜⎜⎜⎝

𝜌+ 𝜇 0 0 0
−(1 − 𝜃)𝜌 (𝛿 + 𝛾1 + 𝜉𝑢2 + 𝜇) 0 0

−𝜃𝜌 0 (𝛿 + 𝛾2 + 𝜉𝑢2 + 𝜇) 0
0 −𝜂 −𝜂 𝜇𝑏

⎞⎟⎟⎟⎟⎠
.

4

Thus, 𝑅0𝑐 of the system (2) given by
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Fig. 1. Plot showing the effects of 𝑢1 & 𝑢2 on 𝑅0𝑐 for 0 ≤ 𝑢1 ≤ 1,0 ≤ 𝑢2 ≤ 1. The parameter values given in Table 1 are used.

𝑅0𝑐 = 𝜌(𝐹𝑉 −1) = Π𝜌
⎛⎜⎜⎜⎝
(1 − 𝑢1)𝛽1𝜂

(
𝜃𝜖1 + (1 − 𝜃)𝜀2

)
+𝐶𝜇𝑏𝛽2

(
𝜃𝜖1 + 𝜎(1 − 𝜃)𝜀2

)
(𝜌+ 𝜇)𝐶𝜇𝜇𝑏𝜖1𝜖2

⎞⎟⎟⎟⎠
,

where, 𝜖1 = 𝛿 + 𝛾1 + 𝜉𝑢2 + 𝜇, 𝜖2 = 𝛿 + 𝛾2 + 𝜉𝑢2 + 𝜇.

The variation of 𝑅0𝑐 with respect to the controls is depicted in surface plot (see, Fig. 1) for 0 ≤ 𝑢1 ≤ 1, 0 ≤ 𝑢2 ≤ 1. A similar 
approach can be found in [25]. The Fig. 1 indicates that the highest value of 𝑅0𝑐 is achieved when both control variables are at their 
minimum value, 𝑢1 = 𝑢2 = 0. This value, 𝑅0𝑐 = 2.0326, corresponds to the basic reproduction number (𝑅0) of autonomous system 
(1). Another higher value of 𝑅0𝑐 (1.29914 > 1) is obtained when 𝑢1 = 1 and 𝑢2 = 0, which suggests that implementing the preventive 
measure 𝑢1 alone is not effective in eradicating the melioidosis epidemic. On the other hand, when both controls, 𝑢1 and 𝑢2 are set to 
their maximum values (i.e. full efforts), the minimum value of 𝑅0𝑐 is achieved, which is 0.13239 as depicted in Fig. 1. This indicates 
that the combination of both control measures is highly effective in reducing 𝑅0𝑐 . The results suggest that the control strategy 
involving the use of both 𝑢1 and 𝑢2 can lead to the complete elimination of the disease from the infected population. Moreover, when 
only 𝑢2 is used at full effort (𝑢2 = 1) while 𝑢1 is absent (𝑢1 = 0), a lower value of 𝑅0𝑐 is observed, which is 0.219461. This value is 
less than unity, suggesting that the treatment control measure 𝑢2 alone is also effective for eradicating the disease. Consequently, 
a strategy of the combination of both control measures (𝑢1 and 𝑢2) as well as a strategy involving treatment control only would be 
effective in reducing the spread of the disease within the community. Furthermore, the effectiveness and cost-effectiveness of these 
control functions are discussed in the numerical simulation section.

3.2. Existence of an optimal control

Theorem 3.1. Given the objective functional J, defined on the control set U, and subject to the non-autonomous system (2), then there exists 
an optimal control pair 𝑢 = (𝑢∗1 , 𝑢

∗
2) such that the equation (4) holds, provided that the following conditions are hold [15,17,32,34]:

(i) The control set is closed and convex.

(ii) The right hand-side of the state system (2) is bounded by a linear function in the state and control variables.

(iii) The integrand of the objective functional in the equation (3) is convex with respect to the controls.

(iv) There exist constants 𝛼1, 𝛼2 > 0 and 𝛼3 > 1 such that the integrand of the objective functional is bounded below by

𝛼1

( 2∑
𝑘=1

∣ 𝑢𝑘 ∣
) 𝛼3

2
− 𝛼2.

Proof. We need to verify the four hypotheses stated by Theorem 3.1.

(i) Given the control set 𝑈0 = {
(
𝑢1, 𝑢2

)
∶ 0 ≤ 𝑢1 ≤ 1, 0 ≤ 𝑢2 ≤ 1}. Then, 𝑈0 is closed by definition. Further, let 𝑎 and 𝑏 be any two 

arbitrary points in 𝑈0, such that 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2). From the concept of convex set [43], it follows that

𝜙𝑎𝑘 + (1 −𝜙)𝑏𝑘 ∈ [0,1], ∀𝜙 ∈ [0,1], 𝑘 = 1,2.

This implies, 𝜙𝑎 + (1 −𝜙)𝑏 ∈𝑈0. Thus, 𝑈0 is convex set.

(ii) Let 𝑥 = (𝑆, 𝐸, 𝐴, 𝐼, 𝑅, 𝐵𝑚) be the state variables of the model, 𝑢 = (𝑢1, 𝑢2) ∈ 𝑈0 and 𝑓 (𝑡, 𝑥, 𝑢) be the right-hand side of the 
5

system (2) given by
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𝑓 (𝑡, 𝑥, 𝑢) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π+ 𝛼𝑅−
(
(1 − 𝑢1)𝛽1

𝐵𝑚

𝐶+𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴) + 𝜇

)
𝑆

(1 − 𝑢1)𝛽1
𝐵𝑚

𝐶+𝐵𝑚
𝑆 + 𝛽2(𝐼 + 𝜎𝐴)𝑆 − (𝜌+ 𝜇)𝐸

(1 − 𝜃)𝜌𝐸 − (𝛿 + 𝛾1 + 𝜉𝑢2 + 𝜇)𝐴

𝜃𝜌𝐸 − (𝛿 + 𝛾2 + 𝜉𝑢2 + 𝜇)𝐼

(𝛾1 + 𝜉𝑢2)𝐴+ (𝛾2 + 𝜉𝑢2)𝐼 − (𝛼 + 𝜇)𝑅

𝜂(𝐴+ 𝐼) − 𝜇𝑏𝐵𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Then, the equation (5) can be written as 𝑓 (𝑡, 𝑥, 𝑢) = 𝑓1(𝑡, 𝑥) + 𝑓2(𝑡, 𝑥)𝑢, where

𝑓1(𝑡, 𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π+ 𝛼𝑅−
(
𝛽1

𝐵𝑚

𝐶+𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴) + 𝜇

)
𝑆(

𝛽1
𝐵𝑚

𝐶+𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴)

)
𝑆 − (𝜌+ 𝜇)𝐸

(1 − 𝜃)𝜌𝐸 − (𝛿 + 𝛾1 + 𝜇)𝐴

𝜃𝜌𝐸 − (𝛿 + 𝛾2 + 𝜇)𝐼

𝛾1𝐴+ 𝛾2𝐼 − (𝛼 + 𝜇)𝑅

𝜂(𝐴+ 𝐼) − 𝜇𝑏𝐵𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑓2(𝑡, 𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽1
𝐵𝑚

𝐶+𝐵𝑚
𝑆 0

−𝛽1
𝐵𝑚

𝐶+𝐵𝑚
𝑆 0

0 −𝜉𝐴

0 −𝜉𝐼

0 𝜉(𝐴+ 𝐼)

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From Euclidean norm of a matrix in [6,38], we obtain,

∥ 𝑓 (𝑡, 𝑥, 𝑢) ∥≤∥ 𝑓1(𝑡, 𝑥) ∥ + ∥ 𝑓2(𝑡, 𝑥) ∥∥ 𝑢 ∥≤ max{𝐶0,𝐷}(1+ ∥ 𝑢 ∥),

where 𝐶0 and 𝐷 are positive constants given by

𝐶0 =
Π
𝜇

√
𝑐1
(
1 +Π+Π2

)
, and 𝐷 = Π

𝜇

√
max{𝑑1, 𝑑2, 𝑑3}

(
1 +Π+Π2

)
.

With

𝑐1 = 2(𝛽21 + 3𝜉2), 𝑑1 = 𝛽21 + (𝛼 + 𝜇)2 + (𝜌− 𝜌𝜃)2 + 𝜌2𝜃2 + (𝛾1 + 𝛾2)2 + 4𝜂,

𝑑2 =
2𝛽1𝛽2(1 + 𝜎)

𝜇
, 𝑑3 =

𝛽22 (1 + 𝜎)
2

𝜇2
.

(iii) Let 𝑦 = (𝐴, 𝐼) and 𝑎, 𝑏 ∈ 𝑈0, such that 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2). The integrand of the objective functional in the equation 
(3) is the Lagrangian of the form denoted by 𝐿(𝑡, 𝑦, 𝑢) defined as

𝐿(𝑡, 𝑦, 𝑢) =𝐿1(𝑡, 𝑦) +𝐿2(𝑡, 𝑢), (6)

where, 𝐿1(𝑡, 𝑦) = 𝑤1𝐴 +𝑤2𝐼, 𝐿2(𝑡, 𝑢) =
𝑤3
2 𝑢

2
1 +

𝑤4
2 𝑢

2
2. It suffices to show that the function 𝐿2(𝑡, 𝑢) is convex on the control set 𝑈0. 

Thus, we need to show that

𝐿(𝑡, 𝑦,𝜙𝑎+ (1 − 𝜙)𝑏) ≤ 𝜙𝐿(𝑡, 𝑦, 𝑎) + (1 − 𝜙)𝐿(𝑡, 𝑦, 𝑏), ∀𝜙 ∈ [0,1].

The equation (6) gives,

𝐿(𝑡, 𝑦,𝜙𝑎+ (1 − 𝜙)𝑏) =𝐿1(𝑡, 𝑦) +𝐿2(𝑡,𝜙𝑎+ (1 − 𝜙)𝑏),

=𝐿1(𝑡, 𝑦) +
1
2

2∑
𝑘=1
𝑤𝑘

(
𝜙𝑎𝑘 + (1 − 𝜙)𝑏𝑘

)2
,

=𝐿1(𝑡, 𝑦) +
1
2
𝜙2

2∑
𝑘=1
𝑤𝑘𝑎

2
𝑘
+ (1 −𝜙)𝜙

2∑
𝑘=1
𝑤𝑘𝑎𝑘𝑏𝑘 +

1
2
(1 −𝜙2)

2∑
𝑘=1
𝑤𝑘𝑎

2
𝑘
,

and

𝜙𝐿(𝑡, 𝑦, 𝑎) +𝐿(𝑡, 𝑦, (1 − 𝜙)𝑏) = 𝜙
(
𝐿1(𝑡, 𝑦) +𝐿2(𝑡, 𝑎)

)
+ (1 − 𝜙)

(
𝐿1(𝑡, 𝑦) +𝐿2(𝑡, 𝑏)

)
,

1
2∑

2 1
2∑

2

6

=𝐿1(𝑡, 𝑦) + 2
𝜙

𝑘=1
𝑤𝑘𝑎𝑘 + 2

(1 − 𝜙)
𝑘=1
𝑤𝑘𝑏𝑘.
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Since 𝜙2 ≤ 𝜙 ∀𝜙 ∈ [0, 1], it follows that

𝐿
(
𝑡, 𝑦,𝜙𝑎+ (1 − 𝜙)𝑏

)
−
(
𝜙𝐿(𝑡, 𝑦, 𝑎) + (1 −𝜙)𝐿(𝑡, 𝑦, 𝑏)

)
= 1

2
(𝜙2 − 𝜙)

2∑
𝑘=1
𝑤𝑘

(
𝑎𝑘 − 𝑏𝑘

)2 ≤ 0.

As a result, the function 𝐿2(𝑡, 𝑢) is convex on 𝑈0.

(iv) Using the equation (6), the last hypothesis is shown as follows:

𝐿(𝑡, 𝑦, 𝑢) =𝐿1(𝑡, 𝑦) +
1
2

2∑
𝑘=1
𝑤𝑘𝑢

2
𝑘
≥ 1

2

2∑
𝑘=1
𝑤𝑘𝑢

2
𝑘
≥ 𝛼1

( 2∑
𝑘=1

∣ 𝑢𝑘 ∣2
) 𝛼3

2
− 𝛼2,

where, 𝛼1 =
1
2min{𝑤3, 𝑤4}, 𝛼2 > 0, and, 𝛼3 = 2.

3.3. Characterization of the optimal controls

To formulate an optimality system we need to generate the necessary conditions that the optimal control doublet and state must 
satisfy. Such conditions are generated from the Pontryagin’s maximum principle (PMP) [37]. This principle converts the system (2)

together with (3) into a problem of minimizing point-wise, with respect to controls 𝑢1 and 𝑢2, a Hamiltonian function, H, which is 
defined by

𝐻 =𝑤1𝐴+𝑤2𝐼 +
1
2

2∑
𝑘=1
𝑤𝑘𝑢

2
𝑘
+ 𝜆1

[
Π+ 𝛼𝑅−

(
(1 − 𝑢1)𝛽1

𝐵𝑚

𝐶 +𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴) + 𝜇

)
𝑆

]

+ 𝜆2
[
(1 − 𝑢1)𝛽1

𝐵𝑚

𝐶 +𝐵𝑚
𝑆 + 𝛽2(𝐼 + 𝜎𝐴)𝑆 − (𝜌+ 𝜇)𝐸

]
+ 𝜆3

[
(1 − 𝜃)𝜌𝐸 − (𝛿 + 𝛾1 + 𝜉𝑢2 + 𝜇)𝐴

]
+ 𝜆4

[
𝜃𝜌𝐸 − (𝛿 + 𝛾2 + 𝜉𝑢2 + 𝜇)𝐼

]
+ 𝜆5

[
(𝛾1 + 𝜉𝑢2)𝐴+ (𝛾2 + 𝜉𝑢2)𝐼 − (𝛼 + 𝜇)𝑅

]
+ 𝜆6

[
𝜂(𝐴+ 𝐼) − 𝜇𝑏𝐵𝑚

]
,

(7)

where, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 and 𝜆6 are the adjoint variables associated with their respective state variables. The PMP [37] and the 
existence of the optimal control from [see Theorem 4.1, [17]] can be used to obtain the following theorem.

Theorem 3.2. If Φ∗ = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑅∗, 𝐵∗
𝑚
) and 𝑢∗ = (𝑢∗1 , 𝑢

∗
2) are optimal state and optimal control solutions for the optimal problem 

(3), respectively, then, there exist six adjoint variables 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 and 𝜆6 that satisfy the adjoint system given by

𝑑𝜆1
𝑑𝑡

=
(
𝜆1 − 𝜆2

)(
(1 − 𝑢1)𝛽1

𝐵𝑚

𝐶 +𝐵𝑚
+ 𝛽2(𝐼 + 𝜎𝐴)

)
+ 𝜆1𝜇,

𝑑𝜆2
𝑑𝑡

= 𝜆2(𝜌+ 𝜇) − 𝜆3(1 − 𝜃)𝜌− 𝜆4𝜃𝜌,

𝑑𝜆3
𝑑𝑡

= −𝑤1 + (𝜆1 − 𝜆2)𝛽2𝜎𝑆 + 𝜆3(𝛿 + 𝛾1 + 𝜇 + 𝜉𝑢2) − 𝜆5(𝛾1 + 𝜉𝑢2) − 𝜆6𝜂,

𝑑𝜆4
𝑑𝑡

= −𝑤2 + (𝜆1 − 𝜆2)𝛽2𝑆 + 𝜆4(𝛿 + 𝛾2 + 𝜇 + 𝜉𝑢2) − 𝜆5(𝛾2 + 𝜉𝑢2) − 𝜆6𝜂,

𝑑𝜆5
𝑑𝑡

= −𝜆1𝛼 + 𝜆5(𝛼 + 𝜇),

𝑑𝜆6
𝑑𝑡

= (𝜆1 − 𝜆2)(1 − 𝑢1)
𝛽1𝐶

(𝐶 +𝐵𝑚)2
𝑆 + 𝜆6𝜇𝑏,

(8)

with transversality conditions,

𝜆𝑘(𝑇 ) = 0, 𝑘 = 1,2, ...,6.

Furthermore, the optimal controls 𝑢∗1 and 𝑢∗2 are characterized by

𝑢∗1 = min

{
1,max

{ (𝜆2 − 𝜆1)𝛽1𝑆
𝐵𝑚

𝐶+𝐵𝑚
𝑤3

,0
}}

, 𝑢∗2 = min

{
1,max

{ 𝜉𝐴(𝜆3 − 𝜆5) + 𝜉𝐼(𝜆4 − 𝜆5)
𝑤4

,0
}}

. (9)

Proof. We apply PMP in order to obtain the adjoint relations, the transversality conditions and the optimal control doublet. By 
7

taking partial derivatives of the formulated Hamiltonian in the equation (7) with respect to the state variables 𝑆, 𝐸, 𝐴, 𝐼, 𝑅 and 𝐵𝑚, 
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Table 1

Values and description of parameters of the model.

Parameter Description Value Unit Source

Π Human recruitment rate 𝜇 ×𝑁0 Humans day−1 [14,45]

𝛽1 Human transmission rate due to pathogen 0.0999 Day−1 Assumed

𝛽2 Human transmission rate due to A & I 0.0004 (Humans day)−1 Assumed

𝜃 Probability of progress of E to I 0.5125 Dimensionless Assumed

𝜇 Natural death rate of humans
1

65×365
Day−1 [45]

𝛿 Disease-induced death rate of A & I 0.0732 Day−1 [14,45]

𝛾1 Recovery rate from A 0.0248 Day−1 [14,29]

𝛾2 Recovery rate from I 0.0157 Day−1 [14,29]

𝜌 The progression rate of E to A & I 0.088 Day−1 [14,44]

𝜎 Reduction rate of infectivity A 0.0493 Dimensionless Assumed

𝛼 Disease waning immunity 0.0726 Day−1 Assumed

𝜂 Rate at which bacteria increase by A & I 0.13 No. of B. pseudomallei cell

Humans day
[44]

𝜇𝑏 Natural death rate of bacteria 0.0185 Day−1 [14,44]

𝐶 Concentration of B. pseudomallei 5000 No. of B. pseudomallei cell Assumed

as follows; 𝑑𝜆1
𝑑𝑡

= − 𝜕𝐻
𝜕𝑆
, 𝑑𝜆2
𝑑𝑡

= − 𝜕𝐻
𝜕𝐸
, 𝑑𝜆3
𝑑𝑡

= − 𝜕𝐻
𝜕𝐴

=, 𝑑𝜆4
𝑑𝑡

= − 𝜕𝐻
𝜕𝐼
, 𝑑𝜆5
𝑑𝑡

= − 𝜕𝐻
𝜕𝑅
, 𝑑𝜆6
𝑑𝑡

= − 𝜕𝐻

𝜕𝐵𝑚
, 𝜆𝑘(𝑇 ) = 0, 𝑘 = 1, 2, ..., 6, yields the adjoint 

system given in the equation (8).

Finally, the characterization of optimal controls can be derived from H in (7) by using the optimal condition for each control 
measure 𝑢𝑖, where 0 < 𝑢𝑖 < 1, for 𝑖 = 1, 2. Thus,

𝜕𝐻

𝜕𝑢𝑖
= 0, for 𝑖 = 1,2 (optimal condition) (10)

Solving the equation (10) for optimal controls 𝑢∗1 and 𝑢∗2 we obtain the following characterization.

𝑢∗1 =
(𝜆2 − 𝜆1)𝛽1𝑆

𝐵𝑚

𝐶+𝐵𝑚
𝑤3

, 𝑢∗2 =
𝜉𝐴(𝜆3 − 𝜆5) + 𝜉𝐼(𝜆4 − 𝜆5)

𝑤4
.

Since the two control measures have lower bounds zero and upper bounds 1, we have

𝑢∗1 ∈ 𝑢⇒ 𝑢∗1 =
⎧⎪⎨⎪⎩
0, if Ψ1 ≤ 0,
Ψ1, if 0 <Ψ1 < 1,
1, if Ψ1 ≥ 1.

and 𝑢∗2 ∈ 𝑢⇒ 𝑢∗2 =
⎧⎪⎨⎪⎩
0, if Ψ2 ≤ 0,
Ψ2, if 0 <Ψ2 < 1,
1, if Ψ2 ≥ 1,

where, Ψ1 =
(𝜆2−𝜆1)𝛽1𝑆

𝐵𝑚
𝐶+𝐵𝑚

𝑤3
, Ψ2 =

𝜉𝐴(𝜆3−𝜆5)+𝜉𝐼(𝜆4−𝜆5)
𝑤4

. Therefore, in compact notation the optimal controls 𝑢∗1 and 𝑢∗2 given in the 
equation (9) are characterized by

𝑢∗1 = min{1,max{Ψ1,0}}, 𝑢∗2 = min{1,max{Ψ2,0}}.

4. Numerical results and cost-effectiveness analysis

4.1. Numerical methods

We compare the numerical results of the autonomous model (1) and the controlled model (2) to evaluate the effectiveness of the 
control strategies in controlling the spread of the disease. To perform this, we used an iterative method so-called Forward-Backward 
Sweep method (FBSM) based on the fourth-order Runge-Kutta Method (RKM-4) in the Matlab program, described in detail in a 
book by Lenhart and Workman [26]. The process begins with an initial guess for the control variables, we solve the state equations 
over the interval [0, 250] using forward RKM-4. Then, we apply the backward RKM-4 to solve the adjoint equations by using the 
current iteration solution of (2). The control values are updated by averaging the previous value and the new value from the control 
characterization (9), and the process is repeated until the required convergence occurs. The parameters values used in the simulations 
are given in Table 1.

For those parameters values the basic reproduction number is obtained as 𝑅0 ≈ 2.0326 > 1, the unique positive endemic 
equilibrium 𝜀∗12 =

(
235.5204, 1.6735, 0.8452, 0.7296, 0.4297, 13.833

)
, with initial conditions of state variables 𝑆(0) = 452.09, 𝐸(0) =

48, 𝐴(0) = 𝐼(0) = 10, 𝑅(0) = 0, 𝐵𝑚(0) = 200. In addition, the weight constants values and the control rate of treatment are chosen as; 
8

𝑤1 = 10, 𝑤2 = 10, 𝑤3 = 8, 𝑤4 = 10, 𝜉 = 0.75. It is important to note that, the choice of treatment control rate (𝜉 = 0.75) is based on the 
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Fig. 2. Simulations of the model system (2) showing the effects of the “Strategy A”; (a) dynamics of susceptible class with and without optimal control 𝑢1 , (b) dynamics 
of latently infected class with and without optimal control 𝑢1 , (c) dynamics of infectious classes (𝐴 + 𝐼) with and without optimal control 𝑢1 and (d) dynamics of the 
bacterial population with and without optimal control 𝑢1 .

melioidosis infection relapse cases, which varies from 13% to 23% in patients [23,39] (see details in the introduction section of the 
paper).

4.2. Numerical results

To illustrate the impact of different optimal control strategies for melioidosis epidemic, we implemented all the three possible 
optimal strategies of alternative combinations of the control measures, 𝑢1 and 𝑢2:

• Strategy A: Preventive measure only (𝑢1 ≠ 0, 𝑢2 = 0),

• Strategy B: Treatment of infectious individuals (asymptomatic and symptomatic) (𝑢2 ≠ 0, 𝑢1 = 0),

• Strategy C: Combination of both preventive measure and treatment control (𝑢1 ≠ 0, 𝑢2 ≠ 0).

4.2.1. Strategy A: Preventive measure only (𝑢1 ≠ 0, 𝑢2 = 0)

This strategy implements the preventive measure 𝑢1 only. As shown, in Fig. 2 (a), the number of susceptible individuals decreases 
without strategy A compared to the number of susceptible individuals with the strategy. On the other hand, in Fig. 2 (b) the size 
of latently infected individuals decreases rapidly when the strategy is implemented throughout the intervention period, while in the 
absence of the strategy the number of latently infected individuals increases rapidly to peak in the first 35 days and then diminishes 
slowly in rest of time interval. In Fig. 2 (c), it can be seen that the size of infectious individuals (asymptomatic + symptomatic) 
increases more sharply without preventive measures than the number of infectious individuals with the preventive measure in the 
first 50 days, while the size of infectious individuals (asymptomatic + symptomatic) decreases more rapidly with preventive measure 
than the number of infectious individuals without preventive measure in the rest of interventions days. A similar situation is observed 
9

in Fig. 2 (d) for Burkholderia pseudomallei population. Further, in Fig. 5 (a), the control profile for the “strategy A” shows that the 
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Fig. 3. Simulations of the model system (2) showing the effect of the “Strategy B”; (a) dynamics of susceptible class with and without optimal control 𝑢2 , (b) dynamics 
of latently infected class with and without optimal control 𝑢2 , (c) dynamics of infectious classes (𝐴 & 𝐼) with and without optimal control 𝑢2 and (d) dynamics of 
bacterial population with and without optimal control 𝑢2 .

preventive effort 𝑢1 should be implemented at maximum coverage (100%) for the initial 236.8 days. After that period, preventive 
effort should be gradually reduced to the lower bound for the rest of the simulation time.

4.2.2. Strategy B: Treatment control only (𝑢2 ≠ 0, 𝑢1 = 0)

This strategy is applied to the optimal use of treatment control 𝑢2 for infectious individuals. In Fig. 3(a), we observed that 
the susceptible human population gradually increases in size when control measure 𝑢2 is implemented, in contrast, the number of 
susceptible individuals decreases rapidly in the absence of control measure. From Figs. 3 (b) - 3 (d) we observed that the number 
of latently infected humans, infectious individuals (asymptomatic + symptomatic) and the size of pathogen population decreased 
dramatically when the optimal control is implemented throughout the simulation period. This illustrates that the number of infective 
classes (𝐸, 𝐴, & 𝐼), and 𝐵𝑚 could be vanished when the strategy is implemented. In general, from Figs. 3 (a) - 3 (d), we observed 
that this strategy is more effective in reducing the spread of disease in the infected population than strategy A. Furthermore, the 
control profile of this strategy in Fig. 5 (b) shows that the treatment control 𝑢2 should be maintained at the upper bound (100%) for 
the first 84 days and subsequently it should be gradually reduced to zero (lower bound) for the rest of the simulation time.

4.2.3. Strategy C: Combination of both preventive and treatment measures (𝑢1 ≠ 0, 𝑢2 ≠ 0)

This strategy implements both intervention measures 𝑢1(𝑡) and 𝑢1(𝑡). In Fig. 4 (a), we noted that the population’s number of 
susceptible individuals gradually rises when the optimal strategy C is present. Conversely, in the absence of the strategy, the number 
of susceptible individuals declines rapidly over the simulation period. In Fig. 4 (b) - 4 (d), we noted that the size of latently infected 
humans, infectious individuals (asymptomatic + symptomatic), and the size of the pathogen population diminished more rapidly 
when the strategy C implemented. The size of latently infected and infectious individuals increase sharply to a peak point in the 
10

first 40 days and then decrease slowly in the remaining simulation period in the absence of optimal control as shown in Figs. 4 (b) 
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Fig. 4. Simulations of the model system (2) showing the effect of the “Strategy C”; (a) dynamics of susceptible class with and without combined optimal controls 
𝑢1 & 𝑢2 , (b) dynamics of latently infected class with and without combined optimal controls 𝑢1 & 𝑢2 , (c) dynamics of infectious classes (𝐴 & 𝐼) with and without 
combined optimal controls 𝑢1 & 𝑢2 and (d) dynamics of bacterial population with and without combined optimal controls 𝑢1 & 𝑢2 .

and 4 (c). The same situation is observed in Fig. 4 (d) for the pathogen population. Further, in Fig. 5 (c), the control profile for the 
“strategy C” indicates the following:

(i) The preventive effort should be maintained at the upper bound (100%) for the first 126 days.

(ii) The treatment control should be kept at the upper bound (100%) for the first 28 days.

After the specified durations, both controls should be gradually reduced to the lower bound for the rest of the simulation time.

4.2.4. Comparison of the three control strategies

In this section, we compare the effectiveness of the three strategies 𝐴, 𝐵 and 𝐶 , to determine the most effective strategy, typically 
for minimizing the infectious classes. Further, the comparison of the simulations of the model with and without the strategies for 
populations of susceptible humans, latently infected individuals, infectious individuals (𝐴 + 𝐼) and bacteria are demonstrated in 
Figs. 6(𝑎) - 6(𝑑). From Fig. 6(a), it can be seen that strategy 𝐶 is the most effective in reducing the size of the susceptible class 
getting infected by the disease, followed by strategies 𝐵 and 𝐴, respectively. While in Fig. 6(𝑏) we observed that strategy 𝐶 is the 
most effective to reduce the size of the latently infected class compared to strategies 𝐴 and 𝐵. Likewise, Fig. 6(𝑐) shows that strategy 
𝐶 has the highest number of infectious averted humans (𝐴 + 𝐼) followed by strategy 𝐵 and then strategy 𝐴. Moreover, strategy 𝐶 is 
most effective in reducing the growth of bacterial population in the environment as indicated in Fig. 6(𝑑).

In view of the numerical simulations of the three control strategies, the implementation of the control strategies 𝐵 and 𝐶
dramatically minimizes the size of infectious classes in the population as well as the concentration of bacteria in the environment as 
illustrated in Figs. 3(𝑐) & 3 (𝑑) and in Figs. 4(𝑐) & 4 (𝑑). Therefore, these control strategies target-fully reduce disease transmission in 
the human population. While, the numerical results indicate that strategy 𝐶 is more effective in diminishing the number of infectious 
11

classes compared to strategy 𝐵 regardless of the costs of the optimal control strategies as confirmed in Fig. 6. These results agree 
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Fig. 5. Simulations showing the control profiles of the three strategies (𝐴,𝐵 & 𝐶).

Fig. 6. Simulations of the model system (2) showing the comparison of the three optimal control Strategies (𝐴, 𝐵&𝐶) with the autonomous system (1); (a) the 
effectiveness of all three strategies with the autonomous system (1) for susceptible humans, (b) the effectiveness of all three strategies with the autonomous system (1)

for latently infected individuals, (c) the effectiveness of all three strategies with the autonomous system (1) for infectious individuals (𝐴&𝐼) and (d) the effectiveness 
of all three strategies with the autonomous system (1) for the bacterial population.

with the results obtained in section 3.1. Furthermore, the cost profiles for each of the three strategies are depicted in Figs. 7(𝑎), 7(𝑏)
and 7(𝑐). To determine the most cost-effective strategy among the three control strategies, we carry out a cost-effectiveness analysis 
12

in the next section.
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Fig. 7. Simulations showing the cost profiles of the three Strategies (𝐴,𝐵 & 𝐶).

4.3. Cost-effectiveness analysis

The cost-effective analysis is one of most economical evaluation tool used to measure mainly the costs of alternative interventions 
and therefore, it is used to compare and assess how the greatest health benefits can be generated and to rank the implemented 
strategies in-terms of their cost [5].

In this section two approaches, namely the average cost-effectiveness ratio (ACER) and the incremental cost-effectiveness ratio 
(ICER) are performed to obtain the most cost-effective strategy among the three alternative strategies (A, B, and C), using the ideas 
in [1,2,15,18,31].

4.3.1. Average cost-effectiveness ratio (ACER)

The average cost-effectiveness ratio (ACER) of an optimal control strategy 𝑆 is given by the formula:

ACER(S) =
Total cost produced by the strategy S

Total number of infection averted by the strategy S
(11)

It is concerned with a single optimal strategy and measures the strategy against baseline option. The total number of infection 
averted is given as the difference between the total number of infectious individuals over the simulation period without control and 
the number of total infectious individuals with control. A strategy with the least ACER value is the most cost-effective measure.

The total number of symptomatic infection averted during the intervention period is approximated from;

𝑇𝐼 =

250

∫
0

𝐼(𝑡)𝑑𝑡−

250

∫
0

𝐼∗(𝑡)𝑑𝑡 (12)

where, 𝑇𝐼 total number of symptomatic infections averted,

250

∫
0

𝐼(𝑡)𝑑𝑡

represents the total symptomatic infectious cases without control over [0,250], and 𝐼∗(𝑡) is the optimal solution associated to the 
susceptible infections. In the same manner, the total number of asymptomatic infection averted during the intervention period is 
approximated from;

𝑇𝐴 =

250

∫
0

𝐴(𝑡)𝑑𝑡−

250

∫
0

𝐴∗(𝑡)𝑑𝑡 (13)

It is important to note that the total number of infections averted for the strategies is calculated using the MATLAB program, based 
on the above equations (12) and (13). The total number of infections averted for each strategy is determined by taking the average 
value of both the total number of symptomatic infections averted and the total number of asymptomatic infections averted by the 
strategy. These values are provided in the second column of Table 2.

While the total cost associated to the intervention is approximated from

𝑇𝐶 = 1
2

250

∫
0

(
𝑤3𝑢

2
1 +𝑤4𝑢

2
2

)
𝑑𝑡.
13

Specifically, the total cost produced by the strategy A, strategy B, and strategy C are, respectively, approximated as:
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Table 2

Total infection averted, total cost produced by control strategies, ACER values and ICER

values.

Strategy Infection averted Total Cost ($) ACER values ICER values

Strategy A 880.3 972.9036 1.1 1.1

Strategy B 2868.0042 934.3206 0.33 -0.0194

Strategy C 2940.8231 1219.6 0.4 3.9

𝑇𝐶𝑎 =
1
2

250

∫
0

(
𝑤3𝑢

2
1

)
𝑑𝑡, 𝑇𝐶𝑏 =

1
2

250

∫
0

(
𝑤4𝑢

2
2

)
𝑑𝑡, and 𝑇𝐶𝑐 =

1
2

250

∫
0

(
𝑤3𝑢

2
1 +𝑤4𝑢

2
2

)
𝑑𝑡, using MATLAB.

The ACER for each of the strategies is calculated using the equation (11) and the values are given in fourth column of Table 2. From 
the Table 2, we conclude that the strategy B is the most cost effective of all the three possible strategies under consideration for this 
particular investigation.

4.3.2. The incremental cost-effectiveness ratio (ICER)

The incremental cost-effectiveness ratio is given by the formula:

ICER =
Difference in total intervation costs between strategies

Difference in the total number of infection averted between strategies
(14)

The ICER’s numerator includes (if applicable) the differences in the cost of interventions, costs of disease averted or costs of prevented 
cases among others. While the denominator given in the equation (14) determines the differences in health outcomes which include 
the total number of infections averted or the number of susceptibility cases prevented. To implement the ICER, we simulate the 
model using the three interventions strategies. Based on these simulation results of the optimal control problem, the intervention 
strategies are then ranked according to their increasing order of total number of infection averted. We have that strategy A averts the 
least number of the disease infections, followed by strategy B, and strategy C which averted the most number of infections as shown 
in Table 2. The ICER value for each strategy is computed using the equation (14) as follows:

ICER(A) = 972.9036 − 0
880.3 − 0

≈ 1.1, ICER(B) = 934.3206 − 972.9036
2868.0042 − 880.3

≈ −0.0194,

ICER(C) = 1219.6 − 934.3206
2940.8231 − 2868.0042

≈ 3.9.

From ICER values of the strategies, we observed that ICER (C) is greater than ICER (A). It follows that, strategy C is more costly 
and less effective than strategy A. Therefore, it is better to remove strategy C from the list of alternative interventions and then the 
strategy A will be compared with the strategy B, by re-calculating ICER for each as follows.

ICER(A) = 972.9036 − 0
880.3 − 0

≈ 1.1, ICER(B) = 934.3206 − 972.9036
2868.0042 − 880.3

≈ −0.0194.

The result of comparison between two strategies, indicates that strategy B is strongly dominated by the strategy A. Thus, the strategy 
A is more costly and less effective than the strategy B. Consequently, the strategy B (treatment control) is most cost-effective of all 
the strategies for control of melioidosis infection under consideration for this particular study. This result agrees with the result of 
the ACER method obtained earlier. Furthermore, figures for the total number of infections averted, the total cost, ACER values and 
ICER values of the strategies are given below in Fig. 8, Fig. 9, Fig. 10 and Fig. 11, respectively.

5. Conclusion

In this work, we formulated and analyzed an optimal control problem that demonstrates the effectiveness of different control 
functions for eliminating the epidemic, as well as the overall cost-effectiveness of the introduced controls. The formulated optimal 
control model is a continuation of the basic model presented in [14]. The model is extended by incorporating two time-dependent 
control variables, namely personal prevention 𝑢1(𝑡) and treatment control 𝑢2(𝑡). The effect of these control variables on the basic 
reproduction of the non-autonomous system is illustrated graphically in Fig. (1), and the results are discussed. The standard results 
for the existence and characterization of optimal controls are established to obtain the optimality system for the optimal control 
problem. The optimality system is simulated by using the forward-backward sweep method in the MATLAB program to assess the 
impact of the three alternative optimal strategies by comparing them without controls on the transmission dynamics of the melioidosis 
epidemic: Strategy A-implementation of personal prevention control only, Strategy B-implementation of treatment control only, and 
Strategy C-implementation of the combination of both personal prevention and treatment controls. The numerical results show that 
the Strategy C will effectively reduce the number of infected individuals (both asymptomatic and symptomatic) in the population 
as demonstrated in Figs. 4. Additionally, the Strategy B has also a significant impact in reducing the infected classes as depicted in 
Fig. 3. These results are confirmed quantitatively in terms of the total number of infections averted. It is observed that the Strategy C 
14

averted the highest number of infectious individuals, followed by the Strategy B, and the Strategy A, which averted the least number 
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Fig. 8. Total number of infected averted for control strategies.

Fig. 9. Total cost produced by control strategies.

Fig. 10. ACER values for all strategies.

of infectious individuals, as demonstrated in Table 2 and Fig. (8). However, the cost-effectiveness analysis carried out reveals that the 
Strategy B is the most cost-effective intervention strategy of all the three intervention strategies as confirmed quantitatively by ACER

and ICER in Table 2, and in Figs. 10 and 11. This shows that the treatment control strategy should be recommended to diminish 
the spread of the disease when available resources are limited. Therefore, using all the control strategies as suggested in [44] is not 
15

recommended regarding the costs of the optimal control strategies.
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Fig. 11. ICER values for all strategies.
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