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ABSTRACT

Dendritic cells (DC) are professional antigen present-
ing cells that develop from hematopoietic stem cells
through successive steps of lineage commitment
and differentiation. Multipotent progenitors (MPP)
are committed to DC restricted common DC progen-
itors (CDP), which differentiate into specific DC sub-
sets, classical DC (cDC) and plasmacytoid DC (pDC).
To determine epigenetic states and regulatory cir-
cuitries during DC differentiation, we measured con-
secutive changes of genome-wide gene expression,
histone modification and transcription factor occu-
pancy during the sequel MPP-CDP-cDC/pDC. Spe-
cific histone marks in CDP reveal a DC-primed epige-
netic signature, which is maintained and reinforced
during DC differentiation. Epigenetic marks and tran-
scription factor PU.1 occupancy increasingly coin-
cide upon DC differentiation. By integrating PU.1 oc-
cupancy and gene expression we devised a tran-
scription factor regulatory circuitry for DC commit-
ment and subset specification. The circuitry provides
the transcription factor hierarchy that drives the se-
quel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4,
Spib and Stat factors. The circuitry also includes

feedback loops inferred for individual or multiple fac-
tors, which stabilize distinct stages of DC develop-
ment and DC subsets. In summary, here we describe
the basic regulatory circuitry of transcription factors
that drives DC development.

INTRODUCTION

Denderitic cells (DC) represent specialized immune cells that
develop from hematopoietic stem cells (1,2). DC are widely
distributed in both lymphoid and non-lymphoid tissues and
bridge innate and adaptive immune responses. DC func-
tion builds on their capacity to capture, process and present
antigens to T cells (1,3,4). DC are divided into distinct sub-
sets according to their localization, phenotype and function
(1,3,4). Lymphoid tissues contain classical/conventional
DC (cDC) and plasmacytoid DC (pDC), which represent
the main DC subsets. Peripheral organs contain migratory
tissue DC, which capture antigens and migrate to lymphoid
organs for antigen presentation to T cells.

DC development from hematopoietic stem cells com-
prises two critical steps: DC commitment and DC sub-
set specification (1,2,5). First, multipotent hematopoietic
stem/progenitor cells (MPP) are committed toward the
DC lineage, which yields the DC-restricted common DC
progenitor (CDP). Second, CDP further develop into the
specific DC subsets, cDC and pDC. ¢cDC are specialized
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for antigen processing and presenting, while pDC produce
large amounts of type I interferon e.g. in response to viral
infections.

Genome-wide gene expression and gene knockout studies
in mice identified several critical regulators for DC commit-
ment and subset specification, such as Flt3, Stat3, 1d2, Irf8
and Tcf4 (1,3,6-13). Hematopoietic master regulators, such
as the transcription factors PU.1 and Gfil, were also shown
to regulate DC development (3,6,14,15). However, how the
various transcription factors interact to regulate DC devel-
opment has remained elusive.

Epigenetic mechanisms regulate cell development, iden-
tity and function. This occurs by positioning specific hi-
stone modifications at promoter and enhancer sequences
that impact on transcription factor binding and thus gene
expression (16,17). Histone H3 lysine 4 trimethylation
(H3K4me3) and H3 lysine 27 trimethylation (H3K27me3)
at gene promoters are associated with gene activation
and repression, respectively. H3 lysine 4 monomethyla-
tion (H3K4mel) marks genomic regions that indicate
primed enhancers. Additionally, key developmental genes
have bivalent modification where large domains of repres-
sive H3K27me3 coexist with small domains of activating
H3K4me3 (18-21). These genes are poised/primed for ei-
ther activation or repression during differentiation. Chro-
matin structure and transcription factor binding provide
the foundation for the topology of complex gene regulatory
networks that determine cell fate decisions (16,17,22).

Epigenetic modifications and transcription factors also
regulate hematopoiesis, the development of hematopoietic
stem cells into all cells in blood and blood-borne lymphoid
organs (22,23). Hence, current efforts on high-throughput
mapping of histone modifications and transcription fac-
tor binding are directed toward elucidating the regulatory
codes that drive lineage commitment and differentiation
during hematopoiesis (23-26). For example, specific his-
tone modification patterns control hematopoietic stem cells,
T cell development and erythropoiesis (20,27,28). Global
histone modification and transcription factor occupancy
in inflammatory DC stimulated with lipopolysaccharide
and in monocyte-derived DC and pDC were also stud-
ied (26,29). Recent genomic studies on blood cell forma-
tion from hematopoietic stem cells covered all conventional
hematopoietic lineages, but did not include DC (23).

Here, we determined how DC transcription factors are
wired to drive DC lineage commitment and subset specifica-
tion. First, we generated high resolution genome-wide maps
of gene expression, histone modification and transcription
factor occupancy in MPP, CDP, ¢cDC and pDC. Second, we
developed an integrative computational approach by com-
bining differential transcription factor binding, gene ex-
pression data and motif enrichment analysis to reverse en-
gineer a DC regulatory circuitry for DC commitment and
subset specification. The circuitry was further validated and
provides the transcription factor hierarchy that drives the
sequel MPP-CDP-cDC/pDC and includes several feedback
loops that stabilize distinct stages of DC development and
DC subsets.
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MATERIALS AND METHODS
Cell culture

Culture of progenitor cells from mouse bone marrow and
their differentiation into DC were done as previously de-
scribed (5). MPP, CDP, ¢cDC and pDC were obtained
by FACS sorting (FACSAria, BD Biosciences) and used
for RNA preparation and chromatin immunoprecipitation
(ChIP).

Bone marrow cells of Irf8+/+ and Irf8—/— mice (30)
were cultured as described in Felker ef al. (5) and CDP
(Grl-Flt3+c-kit+M-CSFR+) were obtained by FACS sort-
ing. RNA was prepared (RNeasy Mini Kit with DNase I
digestion, Qiagen) and subjected to gene expression pro-
filing (Affymetrix Mouse Gene 1.0 ST Array) as described
(5). DC progenitors (5) were infected with StatSa-ER-GFP
retrovirus vector (31) containing a constitutively active ta-
moxifen (tmx) inducible Stat5. Cells were stimulated with
tmx for 8, 16 and 24 hours and GFP+ and GFP- cells were
isolated by FACS sorting. Samples were subjected to gene
expression profiling as above.

Gene expression analysis

DNA microarray data are from GSE22432, GSE15907,
GSE34915 and GSE45467 and were analyzed as described
(5). Differentially expressed genes between two cell types
were detected using limma #-test with criteria of fold change
>2 and P values < 0.05. Raw P values were adjusted by
Benjamini-Hochberg multiple test correction (32). To gen-
erate lineage-specific clusters, all differentially expressed
genes were subjected to fuzzy ¢-mean algorithm (33) and
further aggregated into six clusters according to their gene
expression patterns. Clusters were depicted in heat map for-
mat. The boxplot analysis of gene expression data was done
in R. Gene set enrichment analysis was performed using
DAVID bioinformatics tools (34).

Chromatin immunoprecipitation and deep sequencing (ChIP-
seq) analysis

ChIP assays were performed as described (35) with mi-
nor modifications (see Supplementary Data). The ChIP-seq
data are available from NCBI GEO series GSE57563 and
GSE64767 and visualized by a customized UCSC genome
browser track data hub (http://www.molcell.rwth-aachen.
de/dc/). The PU.1 ChIP-seq data are from GSE21953,
GSE31233, GSE21621 and GSE36104. The ChIP-seq data
of Irf4, Irf8 and Stat3 in ¢DC and Irf8 and Tcf4 in pDC
are from GSE36104, GSE53311, GSE27161, GSE62702,
GSE43876 and GSE66899 (see also CODEX database
(30)).

Short reads of the ChIP-seq experiments were aligned to
the mouse reference genome (NCBI37/mm9) using Bowtie.
The aligned ChIP-seq data sets of transcription factor PU.1
and the enhancer mark H3K4mel were then processed
to identify genomic regions with sequence enrichment de-
scribed as peaks using MACS software (version 1.4.2; (37)).
Peaks of H3K4me3 and H3K27me3 were identified using
SICER, a spatial clustering approach for the identification
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of larger ChIP-enriched regions (38). The signals of spe-
cific histone modifications (H3K4me3 and H3K27me3) for
gene centric analysis were obtained by calculating the aver-
age tag density in =1 kb interval centered around transcrip-
tion start site (TSS) for each Refseq annotated gene. The sig-
nals of PU.1 and the enhancer mark H3K4mel were calcu-
lated by the average tag density of 50 kb centered around
TSS. Principal component analysis (PCA) was based on the
PU.1 peaks identified in MPP, CDP, ¢cDC and pDC. The
peak signals for these PU.1 data sets (GSE57563) and refer-
ence PU.1 data sets (GSE21953, GSE31233, GSE21621 and
GSE36104) were calculated by the coverage of reads within
the peaks. Data were quantile normalized and subjected to
PCA.

Identification of PU.1 co-binding transcription factors and
construction of DC regulatory networks

An integrative approach was designed to detect transcrip-
tion factor motifs that are highly enriched in PU.1 peaks.
Briefly, we focused on differentially expressed transcription
factors upon DC development and collected their sequence
motifs from public databases. We then performed motif
search around PU.1 differential peaks to determine the en-
richment of transcription factor binding sites for each cell
type and to identify cell-specific PU.1 co-binding partners.
PU.1 co-binding transcription factors and selected key DC
regulators from the literature (6,39-45) were used to build
lineage-specific transcription factor networks and the DC
regulatory circuitry (see details in Supplementary Data). A
further enrichment analysis was performed on footprints of
cell-specific H3K4mel peaks following Gusmao et al. (46).
This general workflow is based on tools from the Regula-
tory Genomics toolbox (www.regulatory-genomics.org).

RESULTS

Global maps of gene expression and histone modification in
DC development

MPP were induced to differentiate in vitro into CDP (DC
commitment) and further into cDC and pDC (DC subset
specification; Figure 1A; (5,47)). A total of 3194 genes were
differentially expressed between the differentiation stages
(fold change > 2, P value < 0.05). An increasing num-
ber of genes was found to be differentially regulated dur-
ing DC commitment (429 genes) and DC subset specifica-
tion (1773 and 2181 genes; Figure 1A). Among them, 210
genes encode transcription factors including many critical
DC regulators, such as Irf4, Irf8, Batf3, Relb, Id2, Spib
and Tcf4 (also known as E2-2; (3)). Differentially expressed
genes were categorized in six cell-specific clusters: progeni-
tors (MPP/CDP), MPP, CDP, Pan-DC (¢cDC/pDC), cDC
and pDC cluster (Figure 1B and Supplementary Table S1).
These clusters match very well to gene expression profiles
calculated from in vivo sorted DC progenitors and DC (Sup-
plementary Figure S1; (11)) and functional enrichment of
GO terms (Supplementary Table S1).

The MPP cluster contains Gata2, Gfil and Tall, which
are down-regulated from MPP to CDP and have low or
no expression in DC. This reflects the gradual restriction

of development from early hematopoietic progenitors to-
ward DC committed progenitors and DC (Figure 1B). The
pan-DC cluster comprises genes, such as Flt3, with impor-
tant roles in both ¢cDC and pDC (Figure 1B). The cDC
and pDC clusters identify DC subset-specific genes, such as
1d2, Irf4 and Zbtb46 for cDC and Irfl and Tcf4 for pDC.
Taken together, our analysis captures known and putative
DC regulators and thus provides the basis for investigating
the underlying epigenetic architecture and transcriptional
circuitry of DC commitment and subset specification.

Next we determined how histone marks (H3K4mel,
H3K4me3 and H3K27me3) and PU.1 binding relate to
stage-specific gene clusters in DC development by ChIP-seq
for MPP, CDP, cDC and pDC (Figure 1B and C). The active
mark H3K4me3 in MPP and CDP was confined to progeni-
tor genes, while H3K27me3 was observed for these genes in
c¢DC and pDC. Conversely, H3K4me3 in cDC and pDC was
observed for DC genes, while H3K27me3 was seen for these
genes in progenitors (Figure 1B and C). Importantly, the
enhancer mark H3K4mel and PU.1 binding were detected
in both progenitor and DC specific genes and followed the
pattern of H3K4me3. Moreover, PU.1 occupancy was ob-
served for all stage-specific gene clusters in CDP, suggesting
that CDP acquire a DC-primed PU.1 binding profile dur-
ing DC commitment. This observation is also in line with
the role of PU.1 as a pioneer transcription factor in cell fate
specification (25,48,49).

DC-specific epigenetic priming in CDP

To investigate DC epigenetic priming in CDP, we focused
on genes differentially expressed during DC commitment
(Figure 1A). Upon MPP-CDP transition, up-regulated
genes acquire H3K4mel, H3K4me3 and PU.1 in CDP,
whereas down-regulated genes acquire H3K27me3 or bi-
valent marks without obvious change in PU.1 occupancy
(Supplementary Figure S2A and B). Importantly, these pat-
terns are maintained in differentiated DC (cDC and pDC),
indicating epigenetic DC priming of lineage-specific gene
promoters and enhancer regions. Additionally, genes with
an increase of H3K4me3 (e.g. Cd74) during DC commit-
ment are associated with immune related functions, such as
immune response and leukocyte activation (Supplementary
Figure S2C and D).

The DC-primed epigenetic signatures in CDP are en-
hanced upon CDP-cDC or CDP-pDC transition, which
is particularly prominent for H3K4mel and PU.1 occu-
pancy (Supplementary Figure S3A and B). For example, the
¢DC gene Cd83 shows an increase in H3K4mel, H3K4me3
and PU.1 occupancy during CDP-cDC transition and is
repressed in pDC due to bivalent modifications (Supple-
mentary Figure S3C). The epigenetic profile of the pDC
gene Siglec-H during CDP-pDC transition changed accord-
ingly (Supplementary Figure S3D). Collectively, CDP ac-
quire DC lineage-specific epigenetic signatures during DC
commitment. These lineage-primed H3K4mel, H3K4me3
and PU.1 marks initiate the transcriptional program, and
thus drive DC commitment and subset specification, while
H3K27me3 mark restricts alternative developmental op-
tions.
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Figure 1. Gene expression, H3K4mel, H3K4me3, H3K27me3 and PU.1 occupancy in DC development. (A) Schematic representation of DC commitment
from MPP to CDP and DC subset specification from CDP to cDC or pDC. The number of differentially expressed genes between a pair of cell states is given
in red. (B) Differentially expressed genes were clustered according to their expression in MPP/CDP, MPP, CDP, pan-DC, ¢cDC and pDC as indicated. Heat
map representation of gene specific mRNA expression (red, high expression; blue, low expression) and the respective H3K4mel, H3K4me3, H3K27me3
and PU.1 occupancy is shown (dark colors indicate high occupancy; light or white colors indicate low or no occupancy). H3K4me3 and H3K27me3 signals
at promoter regions (TSS=+1kb); H3K4mel and PU.1 signals at distal regions/enhancers (TSS+50kb). Key regulatory factors are listed. (C) For each of
the six clusters, mRNA expression, H3K4mel, H3K4me3, H3K27me3 and PU.1 occupancy were calculated using the geometric mean of the levels of
respective genes and are shown in heat map format. Color code as in (B). (D) Occupancy for H3K4mel, H3K4me3, H3K27me3, PU.1 and mRNA profile
(log2 expression) of Flt3 gene in MPP, CDP, ¢cDC and pDC. Promoter and enhancer regions with PU.1 binding are indicated (gray box).

Next, we focused on the analysis of individual representa-
tive genes, including Gfil, FIt3, Id2 and Irf8 for progenitor,
pan-DC, ¢cDC and pDC affiliated genes, respectively (Fig-
ures 1D and 2). All these genes are implicated in DC de-
velopment based on gene knockout studies (see below Sup-
plementary Figure S9; (1,3)). Flt3 is a key cytokine recep-
tor for DC development and regulated by PU.1 (6). Fit3
promoter shows prominent H3K4me3 signals, which in-
crease upon differentiation, concomitantly with a decrease
of H3K27me3 signals (Figure 1D). H3K4mel and PU.1
peaks reveal multiple enhancer regions in the body of the

Flt3 gene in CDP, cDC and pDC, which relate to an increase
of Flt3 expression upon DC differentiation.

The progenitor gene Gfil has prominent H3K4me3 sig-
nals at the promoter in MPP and acquires H3K27me3 upon
DC differentiation, thus forming a bivalent modification
(Figure 2). A similar pattern was observed for Cepba. cDC
genes (Id2, Batf3) show an accumulation of H3K4me3 and
PU.1 signals in promoter or enhancer regions, respectively,
in cDC. The pDC gene Spib shows pronounced H3K4me3
and PU.1 signals at the promoter in pDC. Similar chromatin
profiles were also observed for the pDC genes Tcf4 and 117r.
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Figure 2. Histone modifications and PU.1 binding dynamics of key DC transcriptional regulators during DC development. Occupancy for H3K4mel,
H3K4me3, H3K27me3 and PU.1 and mRNA expression (log2 expression) of DC progenitor genes (Gfil and Cebpa), cDC genes (Id2, Batf3) and pDC
genes (Tct4, Spib, Irf7r and Irfl) in MPP, CDP, ¢cDC and pDC. Irf8, a central DC transcription factor, is also shown. Arrow indicates the direction of
transcription.



The Irf family genes Irfl and Irf8 show particular promi-
nent H3K4me3 occupancy at promoters in DC, which in-
crease during DC development (Figure 2). In summary, our
analysis reveals the stage-specific changes in histone marks
and PU.1 binding that are associated with DC differentia-
tion.

PU.1 in lineage fate determination of DC

PU.1 (encoded by Sfpil gene) represents a master regulator
in hematopoiesis with a prominent role in multiple cell fate
decisions, including DC development (6,14). PU.1 occu-
pancy in differentially regulated genes during DC commit-
ment and specification is prominently up-regulated (Supple-
mentary Figures S2A and S3A and B), suggesting that PU.1
has a determining function in establishing the DC lineage.
Principal component analysis of PU.1 ChIP-seq data of DC
and multiple hematopoietic lineages (26,50-52) reveals a
DC-specific developmental pathway induced by PU.1 (Fig-
ure 3A). Interestingly, CDP cluster with DC and are po-
sitioned distant from MPP, indicating that CDP exhibit a
DC-primed PU.1 binding profile. cDC and GM-DC are po-
sitioned very close to CDP, which supports the hypothesis
that differentiation of cDC represents the default pathway
of DC development (3,6,39).

Genome-wide analysis of PU.1 ChIP-seq data reveals
a preference for PU.1 binding to gene bodies and inter-
genic regions in MPP, CDP, ¢cDC and pDC (Supplemen-
tary Figure S4A). This is consistent with previous studies
and PU.1 function as an enhancer factor (25,26). Addition-
ally, a prominent increase of PU.1 binding is observed in
the promoter regions from MPP to CDP and ¢cDC (Supple-
mentary Figure S4A). An increasing number of PU.1 peaks
in CDP, ¢cDC and pDC were found in active promoter and
enhancer regions (H3K4me3 and H3K4mel, respectively)
compared to MPP (Figure 3B). A similar trend was ob-
served in GM-DC ChlIP-seq data (Supplementary Figure
S4B; (26)). These results are in line with PU.1 recruiting
chromatin modifiers (25) and initiating DC lineage commit-
ment. Moreover, the genomic distribution of PU.1 peaks is
different for cDC and pDC (Supplementary Figure S4A),
indicating that PU.1 is also involved in DC lineage diversi-
fication.

Next, we analyzed the consecutive changes of PU.1 peaks
during DC development and the associated PU.1 motifs
(Figure 3C). A total of 19 944 MPP and 23 054 CDP differ-
ential peaks were detected. MPP peaks reveal an alternative
de-novo motif with a weak GGAA sequence, while CDP
peaks show the classical PU.1 motif (UP00085; (53)), con-
taining an ETS binding site (GGAA core site; Figure 3C).
Similarly, PU.1 occupancy is also different between cDC
and pDC. The PU.1 binding sequence in cDC resembles the
classical PU.1 motif, while the pDC binding sequence has a
similar motif with less specificity (Figure 3C). These results
are in support of DC-primed PU.1 binding profiles in CDP.
They also suggest that using different PU.1 binding char-
acteristics represents yet another level of fine-tuning stage-
and cell type-specific gene regulation. Furthermore, PU.1
binding was significantly associated with transcriptional ac-
tivation of lineage-specific genes in CDP, ¢cDC and pDC
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(Figure 3D), indicating a positive role of PU.1 in DC lin-
eage fate determination.

Identification of PU.1 co-binding transcription factors

Transcription factor networks control hematopoietic cell
differentiation, including DC development (3,4,11,54,55).
Genome-wide approaches, interrogating gene expression,
ChIP-seq data and transcription factor binding motifs, have
been used to identify gene regulatory network (26,56). To
identify PU.1 co-binding partners in DC development, we
designed an integrative computational approach to analyze
sequences around PU.1 peaks of differentially expressed
genes (see Materials and Methods; Supplementary Figure
S5).

In total, 23 transcription factors (represented by 28 mo-
tifs) are significantly enriched at different stages of DC
development (Figure 4A). Transcription factors with op-
posing expression and enrichment patterns (Supplementary
Figure S6) were excluded from further analysis. Twenty
transcription factors, including PU.1 itself (red in Fig-
ure 4A), were predicted as PU.1 partners and classified into
6 stage-specific clusters. Irf§ and Ets-domain transcription
factor Spib (Cluster I; Figure 4A) are known interaction
partners of PU.1 and also implicated in DC differentia-
tion (3). Irf8-deficient mice lack many mature DC subsets.
Spib is also indispensable for DC development, particular
in pDC (57). Both factors show a significant enrichment
in MPP, CDP and the two DC subtypes, indicating that
they undergo composite binding with PU.1 in each step
of DC development. Moreover, Gata?2 is enriched only in
MPP (Cluster I'V), in line with cooperated functions of both
Gata2 and PU.1 in myeloid cell fates (58).

Upon DC commitment a panel of transcription factors,
such as Irfl/4/5/8, Statl, Egrl, Klf4, and Runxl, are en-
riched in CDP (Cluster II; Figure 4A). This indicates that
PU.1 initiates the DC program by recruiting or cooperat-
ing with multiple DC regulators, including known and novel
PU.1 interacting factors. For example, up-regulation of 1d2
expression is accompanied by an increase of PU.1 binding
in the Id2 promoter from MPP to CDP (Figure 4B). Within
this PU.1 binding region, PU.1, Irf8, KIf4 and Egrl bind-
ing sites were detected, suggesting that these factors are re-
cruited by PU.1 to promote Id2 expression.

Upon DC subset specification, PU.1 is predicted to col-
laborate with distinct sets of transcription factors to restrict
the developmental program toward to either cDC or pDC,
such as Rel/Nfkbl for ¢cDC and Tcf4 for pDC (Clusters
II1, V and VI; Figure 4A). The Id2 gene, a prototype cDC
marker, contains specific PU.1 peaks at promoter and distal
regions in cDC, which are associated with binding sites of
PU.1, Jun, Rel/Nfkb, Irf8, Kif4 and Egrl (Figure 4B). Con-
versely, the pDC-affiliated gene Irfl contains PU.1 binding
regions, which harbor the binding sites of Tcf4, a prototype
pDC transcription factor, Irf8 and Etsl (Figure 4B).

Frequently, PU.1 peaks harbor predicted Irf8 binding
sites. Thus, to validate co-binding of PU.1 and Irf8, we
generated Irf8 ChIP-seq data of cDC and pDC. We also
included a recently published Irf8 ChIP-seq data set by
Grajales-Reyes et al. (59). Irf8 ChIP-seq data validate the
predicted Irf8 binding in Id2 and Irfl genes in ¢cDC and
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pDC (Figure 4B). Receiver operating characteristic (ROC)
curves further show the accuracy of Irf§ binding site pre-
diction within the PU.1 peaks (Supplementary Figure S7).
Additionally, many ¢cDC or pDC specific regulators identi-
fied in this analysis were found to be enriched in CDP (Fig-
ure 4A), such as Jun/Fos/Batf3 and Stat3/Stat5, again sup-
porting the notion of DC priming in CDP.

Next we examined co-localization of PU.1 peaks and
H3K4mel footprints, which represent enhancer regions
with potential transcription factor binding (46,60). We
found an increasing overlap of PU.1 binding and H3K4mel
from 20% in MPP to 70% in ¢cDC (Supplementary Fig-
ure S8A), indicating an increasing recruitment of PU.I
to enhancer elements during DC development. However,
other enhancer elements did not show PU.1 occupancy.
We therefore performed transcription factor motif enrich-
ment analysis in H3K4mel footprints with PU.1 peaks
(Supplementary Figure S8B). The analysis captured many
PU.1 co-binding transcription factors identified above (Fig-
ure 4A) and two additional factors (Cebpa and Bhlhe40),
yet not the MPP factor Gata2 and the cDC-specific fac-
tors Jun/Batf3, Rel/Nfkbl and Stat3/5. Further enrich-
ment analysis in H3K4mel footprints without PU.1 peaks
identified much less transcription factors (Supplementary
Figure S8C). Given the deficiency in capturing crucial cDC
transcription factors (3) using only H3K4mel footprints,
we continued our analysis with the PU.1 co-binding factors
identified in Figure 4A.

Construction of cell-specific transcription factor regulatory
networks

We proceeded to construct cell-specific transcription fac-
tor regulatory networks (Figure 5A). In each network,
nodes represent the potential PU.l co-binding partners
(Figure 4A) and selected key DC regulators (e.g. Flt3, c-Kit
and Id2; (3,11)). An edge between two nodes indicates that a
particular transcription factor is associated with activation
of its target gene.

Different topologies and connectivity densities of the four
stage-specific networks reflect how consecutive recruitment
of PU.1 co-binding factors drives DC development (Fig-
ure 5A). In CDP, PU.1 recruits a core set of transcription
factors (e.g. Irf8, KlIf4, Runx1, Egrl and Statl) to activate
the expression of DC marker genes (e.g. Id2, Csfl and Tcf4,
Figure 5A). In ¢cDC and pDC, DC subtype-specific tran-
scription factors collaborate with PU.1 to define ¢cDC or
pDC identity (Figure 5A). For example, Rel/Nfkb and Irf4
exclusively co-bind with PU.1 in ¢cDC, whereas Tcf4, Etsl,
Irfl and Spib only cooperate with PU.1 in pDC.

Auto-regulatory feedback loops are important building
blocks of transcriptional regulatory networks (61,62). PU.1
was shown to control hematopoietic development by form-
ing auto-regulatory loops (63,64). Intriguingly, several pos-
itive auto-regulatory loops of key DC genes are captured in
our networks (Figure 5A). The auto-regulatory loop of Irf8
in CDP indicates that Irf8 induces its own transcription,
emphasizing the important function of Irf8 in DC commit-
ment (Supplementary Figure S9). An auto-regulatory loop
of Irf8 was also observed in pDC, which is in line with Irf8
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being abundantly expressed in pDC and required for pDC
development (65). Similarly, an auto-regulatory loop was
also observed for Irf4 in ¢cDC, which is in accordance with
Irf4 function in cDC development (Supplementary Figure
S9; (3)).

To confirm predicted network connections, we performed
functional tests for Irf8 and Stat5 (Figure SB-E). The pre-
dicted Irf8 target genes show higher gene expression in
Irf8+/+ CDP compared to Irf§—/— CDP (Figure 5B and
C), which is further supported by Irf8 knockout studies
in common myeloid progenitors (CMP) and macrophage
dendritic cell progenitors (MDP) (Figure 5C). Similarly,
Stat3/Stat5 targets in Stat5-ER DC progenitors show an
overall up-regulation in response to tamoxifen treatment
compared to untreated cells (Figure SD and E).

Transcription factor regulatory circuitry of DC development

We proceeded to integrate the four stage-specific transcrip-
tion factor networks in one DC regulatory circuitry (Fig-
ure 6). Each regulator in the circuitry is positioned at a
specific stage of DC development in which it is involved.
Additionally, some of the positive or negative interactions
between DC regulators were included based on the litera-
ture (6,39-45). For example, PU.1 was observed to inhibit
Gatal /2 activation, which led to specific myeloid cell fates
(58). All key regulators of the circuitry play crucial roles in
DC development, which is in line with gene knockout stud-
ies (Supplementary Figure S9A; (1)). Furthermore, the con-
nectivity of a factor also relates with its function in DC de-
velopment (Supplementary Figure S9B-H).

During MPP-CDP transition, PU.1 is connected with
FI1t3, Statl/3/5, Irf5/8, Kif4 and Egrl, suggesting that it
induces in concert with these factors a genetic program to
initiate and establish DC lineage fate (Figure 6; Supple-
mentary Figure S9B). Additionally, PU.1 appears to restrict
MPP-CDP transition by directly or indirectly inhibiting al-
ternative lineage fates, ¢.g. by inhibiting Gata2 (58). Follow-
ing DC commitment, CDP can undergo two different de-
velopmental options: the subset specification into cDC and
pDC. DC subset-specific factors control the antagonized
developmental pathways leading to either cDC or pDC. For
example, high expression of the cDC marker Id2 inhibits the
pDC gene Tcf4 and vice versa, resulting in cDC or pDC de-
velopment, respectively (10,66).

In the DC circuitry, the cDC marker Irf4 is predicted to be
regulated by multiple transcription factors, including PU.1,
Irf8, Stat3 and Irf4 itself (Figures 6 and 7). ChIP-seq data
demonstrate PU.1, Irf4, Irf8 and Stat3 co-binding in the en-
hancer region of the Irf4 gene (Figure 7A and B), which pro-
vides experimental evidence for the predicted interactions
within the network. Furthermore, Irf4 binding in the pro-
moter and enhancer regions of Irf4 gene supports the auto-
regulatory loop inferred for Irf4 (Figure 7A and B).

Multiple feedback loops were observed between pDC
factors, such as Irf1, Ets1, Spib and Tcf4 (pDC sub-network
in Figure 6), yet such feedback loops were not shown
for ¢cDC factors (Fos/Jun/Batf3, Rel/Relb/Nfkb, Id2 and
Irf4). ChIP-seq data demonstrate PU.1, Irf8 and Tcf4 co-
binding in the enhancer regions of Spib and Irfl, two key
pDC genes (Figure 7C-E; Supplementary Figure S10). Col-
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lectively, our study reveals multiple interactions among the
Irf1, Ets1, Spib and Tcf4 transcription factors, which might
be indicative for reinforcement of the pDC program and un-
derpins the hypothesis that cDC is the default DC develop-
ment pathway. Branching off the default pathway and es-
tablishing the pDC subset require specific regulatory mech-
anisms to stabilize the pDC program.

DISCUSSION

Here, we generated high-resolution genome-wide maps of
H3K4mel, H3K4me3, H3K27me3 and PU.1 for DC com-
mitment and subset specification. We demonstrate that con-
secutive changes of stage-specific expression for key DC reg-
ulators, including PU.1, Irf1, Irf8, Batf3, Spib and Tcf4, are
associated with specific histone modifications in promoter
and enhancer sequences. Genome-wide analysis led us to
devise a regulatory circuitry, which provides the basic archi-
tecture of how DC transcription factors are wired to drive
DC development.

Genes that are increasingly expressed during DC de-
velopment show an increase in H3K4mel and H3K4me3
marks and a decrease in H3K27me3, as expected. Interest-
ingly, gain in H3K4mel or H3K4me3 marks on DC genes
activates a DC-primed gene expression profile in CDP,
which results in DC lineage commitment. These results are
in line with our data on the DC-primed transcriptional sig-
nature in CDP (5). Additionally, changes of bivalent do-
mains lead to activation or repression of the DC-primed
gene signature in CDP and of DC subset-specific genes in
DC, suggesting an important role of bivalent marks in DC
commitment and specification.

PU.1 represents a pioneer transcription factor in
hematopoietic cell development that acts in concert with
other lineage specific factors (25,26,49,67). DC progen-
itors and DC subsets express PU.1 and knockout mice
demonstrated the impact of PU.1 on DC development
(68,69). PU.1 controls FIt3 cytokine receptor expres-
sion and FIt3/Stat signaling induces PU.l1 expression,
thus generating a self-reinforcing auto regulatory loop
that drives DC development (6,47). PU.1 also induces
chromatin remodeling of the Irf§8 gene that encodes an
important transcription factor for DC development (14).
Our genome-wide analysis of PU.1 occupancy is very much
in line with the crucial role of PU.1 in DC development.
First, we identified an alternative PU.1 motif in MPP com-
pared to CDP, ¢cDC and pDC. Second, PU.1 is predicted
to associate with stage-specific transcription factors during
the sequel MPP-CDP-cDC/pDC. Both PU.1 binding to
stage-specific cis-regulatory elements and recruitment of
stage-specific co-binding transcription factors translate
into activation of specific target genes. Moreover, the
predicted PU.1 co-binding transcription factors include
key DC regulators, such as Irf family members (i.e. Irfl,
Irf4, Irf5 and Irf8), Klf4, Spib and Tcf4. For example, the
co-binding of Tcf4 and PU.1 was specifically observed in
pDC, while Irf4 and PU.1 co-binding was confined to cDC.
Additionally, PU.1 can also repress gene expression, such
as Gata2 expression, and thereby affect cell differentiation
(58). Thus, both positive and negative activities of PU.1 are
important for directing cell fate.
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Previous work proposed a layered transcription factor
network for inflammatory DC stimulated with lipopolysac-
charide (26). PU.1 was also positioned at the top of this
transcription factor network. However, compared to Gar-
ber et al (26), our regulatory circuitry reveals the tran-
scription factor architecture for the entire sequel MPP—
CDP-cDC/pDC, thus covering all consecutive stages of
DC development. Importantly, the positions and inter-
connections of transcription factors within the circuitry re-
veal their activity in both DC lineage commitment and
subsets specification. Additionally, our regulatory circuitry
describes the successive stages of DC development in the
steady state, while previous work studied inflammatory DC.

Here, we addressed an emerging need for network con-
struction from gene expression and ChIP-seq data (22) and
developed an integrative approach by combining differen-
tial transcription factor binding, gene expression data and
motif enrichment analysis. This allowed us to reverse en-
gineer a transcriptional network model that captures mul-
tiple feedback loops of key DC regulators. This transcrip-

tion factor circuitry for DC development is very much in ac-
cord with the large array of gene knockout studies (Supple-
mentary Figure S9A; (1)). Along those lines, we validated
targets inferred from transcription factor binding predic-
tions. For example, we demonstrate that predicted Irf8 tar-
get genes are more abundantly expressed in Irf8+/+ cells
than Irf§—/— cells. However, such functional studies ap-
pear to be more complex than anticipated. This is because
in regulatory networks nodes receive input from several di-
rections and thus manipulations by only one factor might
cause only limited effects. Additionally, the impact of per-
turbations needs to be measured shortly after transcrip-
tion factor activation (or inhibition) to avoid secondary and
indirect regulation of targets. We addressed this issue by
employing a conditional StatER construct, which allows
a time-dependent target gene activation. We show induc-
tion of predicted Stat3/Stat5 target genes; however, some
Stat3/StatS target genes were not or only marginally af-
fected, suggesting that further factors are involved.
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Importantly, several auto-regulatory feedback loops were
identified for key DC genes, such as Irf4, Irf8, Kif4, Tcf4
and Spib. ChIP-seq data demonstrate co-localization of
PU.1, Irf8, Stat3 and Irf4 at upstream region of Irf4 gene.
This supports the predicted gene-target connections in DC
transcription factor circuitry, including the auto-regulatory
loop of Irf4 inferred from the prediction. Such auto-
regulatory loops reinforce the expression of stage-specific
transcription factors and lock cells in specific differentia-
tion stages, thereby leading to the overall stabilization of the
network. Additionally, in keeping with cDC being consid-
ered as the default DC developmental pathway (3), we sug-
gest a specific pDC subnetwork (Tcf4, Spib, Irfl and Etsl)
containing multiple feedback loops. This pDC circuitry is
predicted to allow pDC to branch off from the ¢cDC default
pathway and to stabilize pDC identity.

In summary, here we describe the basic architecture of
the DC transcriptional regulatory program, which drives
commitment of hematopoietic stem cells and their differen-
tiation into DC. We provide a comprehensive characteriza-
tion of the interplay between individual key DC regulators
at specific stages of DC development, which is expected to
pave the way for specific tailoring of DC development and
function.
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Supplementary Data are available at NAR Online.
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