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Abstract: Respiratory rate is a critical vital sign that indicates health condition, sleep quality, and
exercise intensity. This paper presents a non-invasive, ultra-low-power, and cost-effective wireless
wearable sensor, which is installed on an off-the-shelf KN95 mask to facilitate respiration monitoring.
The sensing principle is based on the periodic airflow temperature variations caused by exhaled hot
air and inhaled cool air in respiratory cycles. By measuring the periodic temperature variations at
the exhalation valve of mask, the respiratory parameters can be accurately and reliably detected,
regardless of body movements and breathing pathways through nose or mouth. Specifically, we
propose a voltage divider with controllable resistors and corresponding selection criteria to improve
the sensitivity of temperature measurement, a peak detection algorithm with spline interpolation
to increase sampling period without reducing the detection accuracy, and effective low-power
optimization measures to prolong the battery life. The experimental results have demonstrated the
effectiveness of the proposed sensor, showing a small mean absolute error (MAE) of 0.449 bpm and a
very low power consumption of 131.4 µW. As a high accuracy, low cost, low power, and reusable
miniature wearing device for convenient respiration monitoring in daily life, the proposed sensor
holds promise in real-world feasibility.

Keywords: airflow temperature; non-invasive respiration monitoring; wireless wearable sensor

1. Introduction

Respiratory rate is an important vital sign reflecting the state of human body. Abnor-
mal respiratory rate is an early diagnostic indicator for many diseases related to lung and
heart. For example, a respiratory rate of ≥30 bpm is an indicator for severe clinical type
of COVID-19 [1], a respiratory rate of >27 bpm is a better predictor of cardiopulmonary
arrest within 72 h than heart rate, as well as systolic blood pressure [2], and a respiratory
rate of ≤8 bpm is associated with 18.1 times the odds of death within one day compared to
normal respiratory rate [3]. Respiratory rate is also essential to classify sleep stages [4], as
well as to detect obstructive sleep apnea, which has a certain chance of sudden death and
an estimated prevalence of 3–7% in men and 2–5% in women [5]. In addition, respiratory
rate reflects exercise intensity more quickly than heart rate, hence can be used to actively
control exercise intensity [6]. Therefore, continuous and accurate monitoring of respiratory
rate is very crucial for early diagnosis of disease, and monitoring of sleep quality or exercise
intensity. However, respiratory rate is often frequently omitted, inaccurately measured and
not recorded [7].

In hospitals, visual observation [8], thoracic impedance pneumography [9] and
Capnography [10] are the primary clinical tools for respiration monitoring. However,
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due to cost and the need for professional operation, these methods are generally only
used during anesthesia or intensive care. Hence, even in hospitals, the respiratory rate
is often the most poorly recorded vital sign [11], not to mention the monitoring in daily
life. With the rapid development of Internet of Things (IoT) technology in recent years,
there has been considerable attention from researchers to provide ubiquitous low-cost
respiration monitoring approaches, which can be classified into three categories: ECG/PPG
based indirect approaches, chest or abdomen movement based approaches, and respiratory
airflow based approaches.

ECG/PPG based indirect approaches extract respiration signals from the electrocar-
diogram (ECG) [12] or photoplethysmogram (PPG) [13] signals, which exhibit amplitude
and frequency oscillations reflecting respiratory rate. Due to the professional installation of
electrodes, expensive monitors, and restricted body movements, the application of these
approaches in daily life is greatly limited.

Chest or abdomen movement based approaches measure respiratory rate by sensing
the vibrations [14], pressure changes [15–19], displacement changes [20–33], or bioelec-
trical signals [34,35] caused by chest or abdomen movements during respirations. These
approaches can provide respiration monitoring at fixed locations [14–17,21–32], such as
specific beds, mattresses, and rooms, or in wearable ways [18–20,30–35]. However, due to
the coupling of respiratory motion and other body movements, reducing the influence of
artefacts caused by other body movements is also challenging. In addition, obstructive
apnoea may go undetected because the chest wall continues to move as the patient attempts
to breathe [36].

Respiratory airflow based approaches measure respiratory rate by sensing the changes
of sound, temperature, or humidity caused by inhalation of fresh air and exhalation of
warm humid air. The changes of temperature around nose and mouth can be detected
with FIR cameres [37,38]. The envelop of breath sound is also a respiratory sign that can
be captured by microphone [39,40]. The acoustic radar [41] utilizes a speaker transmitting
inaudible ultrasound waves and a microphone receiving back scattered echoes to detect
periodic Doppler frequency shift caused by exhaled airflow. However, the thermal images
and sounds may be considered obtrusive in terms of personal privacy. To achieve the
goal of mobile monitoring in daily life, a variety of wearable solutions have been pro-
posed. These solutions take advantage of piezoelectric membrane sensors [42], negative
temperature coefficient (NTC) resistors [43], hot-film resistors [44], micromachined pla-
nar capacitors [45], and alveolus-inspired membrane sensors [46] to sense pressure [42],
temperature [43,44], humidity [45], and nitrogen dioxide [46] variations caused by exhaled
airflow. These sensors, which are attached underneath the nose, are insensitive to body
movement, but cannot detect respiration while airflow is exhaled through the mouth. This
paper is an extended version of [47], where we introduced our preliminary approach to
detect respiration. In this paper, we propose a miniaturized, ultra-low-power, and reusable
sensor attaching to an off-the-shelf KN95 mask to implement wireless, non-invasive, real-
time, ambulatory, and accurate monitoring of respiration in daily life. The sensor leverages
five NTC series resistors installed near vent holes of KN95 mask to sense the temperature
of respiratory airflow, and a Bluetooth low energy (BLE) system-on-chip (SoC) to extract
the respiratory rate, inspiratory time, expiratory time of each respiratory cycle, and the
occurrence time, duration of each apnea by analyzing the temperature variations of respi-
ratory airflow. The sensor can achieve accurate detection of respiration at low sampling
frequency and low power consumption. In addition, the system based on the KN95 mask
has better wearing comfort and detection convenience.

The rest of paper is organized as follows. The system design methodology and detailed
design are illustrated in Section 2. We provide the experimental results and discussion in
Sections 3 and 4. Finally, the work is concluded in Section 5.
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2. Materials and Methods
2.1. Sensing Principle

Figure 1 shows the structure of a KN95 mask with exhalation valve (Kimberly-Clark
63207V). The exhalation valve, which are tightly fastened onto the multilayer composite
fabrics, consists of a plastic valve base, a silicone valve plate and a plastic valve cover. When
inhaling with the mask, the intercostal muscles contract, increasing the size of the thoracic
cavity and creating a negative pressure. The negative pressure makes the valve plate seal
with the base, so that the fresh air can only be drawn into the lung through the multilayer
composite fabrics. During exhaling, the inspiratory muscles relax and the lung contracts,
creating a positive pressure. The positive pressure blows open the valve plate and exhausts
the hot air quickly. As the body temperature is higher than the ambient temperature, the
temperature at the vent holes of exhalation valve increases during exhalation and decreases
during inhalation. Since the mouth and nose are covered by the fabrics of mask, most of the
exhaled air comes out through the exhalation valve. Therefore, respiration can be detected
by sensing the airflow temperature at the vent holes, regardless of breathing pathways
through nose or mouth.

To enhance comfort, the silicone valve plate can be removed. This will disable the
protection function of mask, but the air can be inhaled more smoothly through the exhala-
tion valve instead of the fabrics, making the mask more suitable for respiration monitoring
in exercises. In addition, compared with the static air, the inhaled air can decrease the
temperature at the vent holes more effectively. As a result, the temperature and humidity
change more significantly. Figure 2 shows the temperature signals at the vent hole of
exhalation valve measured with a sample frequency of 100 Hz and a lowpass frequency of
1 Hz. The average temperature variations (peak minus trough) are 1.89 ◦C with valve plate
and 4.44 ◦C without valve plate. In both situations the peaks and troughs can be accurately
detected by the peak detection algorithm [43].

Exhalation valve cover

Exhalation valve base

Multilayer composite fabrics

Silicone valve plate

Vent hole

Exhaled air

Exhaled air
Inhaled air

Inhaled air when 
silicon valve plate 

is removed

Exhalation valve

Figure 1. The structure of a KN95 mask with exhalation valve.
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Time (s)

26

28
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32
With valve plate Without valve plate Peaks Troughs

Figure 2. The measured temperatures at the vent hole of valve.

2.2. System Architecture

As shown in Figure 3, the sensor consists of a sensor printed circuit board (PCB), five
NTC series resistors, a Li-polymer battery, a 3D printed cover, and a 3D printed sealing
plate. The five NTC series resistors are, respectively, installed near the five vent holes of the
3D printed cover, and connects to the sensor PCB installed in the 3D printed cover with a
1.27 mm 2-pin connector. To prevent exhalation airflow from escaping, a 3D printed sealing
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plate is mounted on the cover. So that the vent holes become the main pathway of exhaled
air. The mounting interface of the 3D printed cover is carefully designed according to the
original cover of the exhalation valve, hence it can be easily fastened to and disassembled
from the exhalation valve base without any additional assembly unit, making the sensor
reusable. In addition, the sensor can be adapted to other off-the-shelf masks by 3D printing
matched covers. The sensor leverages a signal processing pipeline running on the BLE SoC
of sensor PCB to extract respiratory parameters and apnea parameters from the resistance
variations induced by respiratory airflows in realtime. The signal processing pipeline uses
a set of controllable divider resistors, as well as the corresponding selection criteria to
improve the measuring sensitivity of temperature. A peak detection algorithm has been
developed to extract parameters of every respiratory cycle and apnea event. Moreover, a
spline interpolation algorithm is proposed to reduce sampling frequency while retaining
measurement accuracy, resulting in a significant reduction in power consumption. The
respiratory parameters and apnea parameters are finally transmitted to smartphone via
BLE 4.0 interface for applications, such as sleep monitoring and exercise monitoring.
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Figure 3. The system architecture of wireless respiration sensor.

2.3. Hardware Design

Accuracy, cost, power consumption, weight, as well as size, are all factors to be
considered in hardware design. Figure 4 illustrates the block diagram and realization of
sensor hardware. Five NTC resistors in series are connected to sensor PCB with a 1.25 mm
connector. The sensor PCB consists of a battery charger, a SPI Flash, a step down voltage
converter, divider resistors, a BLE SoC and corresponding support circuits. The total
38 components are all off-the-shelf and low in price. In addition, due to the small size and
high integration of components, the sensor PCB measures only 24 × 20 mm2, which is
small enough to be installed into the exhalation valve.

For long battery life, low battery cost and light battery weight, the sensor should
minimize its power consumption. This aim is achieved by using low power and high
efficiency components, such as the DA14580 low power BLE SoC with less than 4.9 mA
radio current and 0.6 µA sleeping current, the TPS62740 ultra-low-power step-down buck
DC–DC converter with up to 90% efficiency at 10 µA output current and a ultra low
quiescent current of 0.36 µA, and the W25X20CL SPI Flash memory with 1 mA active
current and 1 µA power-down current. In addition, the battery can be recharged by the
BQ21040 battery charger via the micro USB connector.
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Figure 4. The block diagram and realization of sensor hardware.

To accurately detect light breath during sleep and fast breath during exercise, the
sensor should be provided with both fast response time (small time constant) and large
measurement gain. The time constant of sensor is defined as the time required for the
sensor output to reach to 63.2% of its total step change. Smaller mass, smaller surface area,
and potting material with higher thermal conductivity help to reduce the time constant
of sensor. Hence we select the Murata NCP15WL473J03RC NTC resistor considering its
negligible mass, small size of 1 × 0.5 × 0.5 mm3, ceramic potting, and large B-constant.
To measure its time constant, we conducted a step response experiment, in which the
NTC resistor was heated with body temperature (finger) and cooled with ambient air. As
shown in Figure 5, the measured time constants of heating and cooling are 0.32 s and 0.73 s,
respectively. Generally, the resistance of NTC resistor can be converted to voltage signal
by a Wheatstone bridge and subsequently amplified by a differential amplifier to increase
the measurement gain [44]. However, these components also introduce additional power
consumption. Resistance voltage divider is another low power method, but the constant
divider resistor cannot maintain a high measurement gain over a wide temperature range.
In order to solve the contradiction between measurement gain and power consumption,
we leverage a set of controllable divider resistors and corresponding selection criteria to
convert the resistance of NTC resistors to voltage signals. For a resistance voltage divider
shown in Figure 6, the output voltage can be expressed as

V =
Rd

Rd + Rt
Vp=

Rd

Rd + R0eB(1/T−1/T0)
Vp, (1)

where Rd and Rt are the resistances of divider resistor and NTC resistor, respectively,
Vp = 3 V is the constant supply voltage, R0 = 5× 47 kΩ is the resistance value of five
NTC series resistors in 25 ◦C, B = 4485 is the B-constant of NTC resistor, T is the measured
absolute temperature at the vent holes of exhalation value and T0 = 298.15 K is the absolute
temperatures of 25 ◦C. The output voltage is then sampled by the 10-bit integrated ADC of
BLE SoC. The ADC sampling result N is proportional to the output voltage

N =
210V
Vref

=
1024VpRd

[Rd + R0eB(1/T−1/T0)]Vref
, (2)

where Vref is the reference voltage of ADC. By derivation of (2) respect to T, we yield
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dN
dT

=
1024BVPRdR0eB(1/T−1/T0)

T2Vref[Rd + R0eB(1/T−1/T0)]
2

=
1024BVP

T2Vref(2 + Rd/Rt + Rt/Rd)
.

(3)
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34.65

9.969.230.870.55

T =0.73 s
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f

Figure 5. The step response of NTC temperature sensor, during which the sensor was heated with
body temperature (finger) and cooled with ambient air.
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As can be seen from (3), the gradient of sampling result respect to temperature dN
dT is

determined by the B-constant B, the reference voltage Vref, and the resistance of divider
resistor Rd. To improve the measurement gain, larger B and smaller Vref are preferred.
Hence we select the NCP15WL473J03RC NTC resistor with a large B-constant of 4485, and
the Vref of 1.2 V among the Vref of 1.2 V and 3.6 V provided by the ADC. Rd affects dN

dT in a
complex way. dN

dT increases monotonously with Rd when Rd < Rt, decreases monotonously
with Rd when Rd > Rt, and achieves its maximum when Rd = Rt. As Rt changes with
temperature, a constant Rd cannot remain high measurement gain over wide temperature
range. Ideally, to achieve the maximal dN

dT , Rd should always equal to Rt. However, under
this condition (Rd = Rt), the output voltage computed from (1) is 1.5 V, exceeding the ADC
input range defined by Vref = 1.2 V. For Vref = 1.2 V, the maximal dN

dT is achieved when
the output voltage of voltage divider is 1.2 V, corresponding to Rd = 2

3 Rt derived from (1).
Hence the voltage divider with controllable divider resistors has been adopted to replace
the simple voltage divider with a constant resistance. As shown in the Figure 6, R8− R13
are, respectively, controlled by the 6 general purpose input output (GPIO) pins of BLE
SoC. When a GPIO pin outputs zero, the corresponding resistor is connected to ground
and changes Rd. When a GPIO pin is configured as input, the corresponding resistor is in
high-impedance state and does not change Rd. Therefore, a set of resistance values can be
obtained by controlling the corresponding GPIO pins. In practical application, we change
Rd according to the following strategy: switch to smaller Rd to ensure measuring range
when the output voltage exceeds 1.15 V, and switch to larger Rd to increase measurement
gain when the peak voltage is below 0.95 V over 5 respiratory cycles. The calculated values
of dN

dT under different Rd shown in Figure 7a indicate that the proposed switching strategy
can achieve high measurement gains over the entire temperature range. Figure 7b shows
the effectiveness of the strategy in practical application. Rd gradually switches to higher
resistance values, and the gain ( dN

dT ) increases accordingly. During the switching process,
although the AD sampling value changed suddenly, the calculated temperature is still
not affected. A high gain of about 35.0 LSB/◦C can be achieved. In contrast, the gain for
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constant Rd (70.71 KΩ) at 17 ◦C is only 18.9 LSB/◦C, and the gain may further decrease
with the decrease in temperature.
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(a) The calculated values of dN
dT under different Rd.
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(b) The AD sampling results and calculated tem-
perature.

Figure 7. The verification of voltage divider with controllable resistors.

2.4. 3D Printed Cover Design and Sensor Assembly

Since KN95 masks are consumables and need to be replaced frequently, the sensor
should be easy to reuse. The reusability of sensor is realized by the 3D printed exhalation
valve cover shown in Figure 8. The sensor PCB with a battery attached to its back shown
in Figure 4c,d is fixed on the mounting holes by four screws. The NTC series resistors
shown in Figure 4b are glued to the sensor groove, so that the five resistors are just located
at the five vent holes, respectively. To prevent the exhaled airflow from escaping, the
sensor PCB is covered by a 3D printed sealing plate, making the five vent holes to be the
main pathways of exhaled airflow. The 3D printed exhalation valve cover is designed
with a mounting groove, which just matches the convex ring on the exhalation valve base.
The cover and the base can be tightly fastened with the groove ring and the convex. In
addition, the cover and the base can also be easily separated by force. Therefore, the sensor
can be conveniently reused by replacing the original cover of the KN95 mask (Kimberly-
Clark 63203V/63207V/63310V). The sensor can also adapt to other masks by redesigning
matching covers.

Sealing plate

Micro USB connector

Mounting groove
Vent hole

Sensor groove

PCB mounting hole

Location hole

3D printed sealing plate

Location hole

Micro USB connector

Mounting groove
Vent hole

Sensor groove
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Sensor PCB

Location hole

Original cover

Wireless respiration sensor

NTC resistors

(a) The designed model.
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Micro USB connector

Mounting groove
Vent hole
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PCB mounting hole

Location hole

3D printed sealing plate

Location hole

Micro USB connector

Mounting groove
Vent hole

Sensor groove

PCB mounting hole

Sealing plate

Sensor PCB

Location hole

Original cover

Wireless respiration sensor

NTC resistors

(b) The 3D printed cover.

Figure 8. The design and realization of the exhalation valve cover.

The assembled sensor weighs 11.21 grams and measures 44× 44× 18 mm3. Compared
with the original exhalation valve cover of 2.27 g, it only adds a small weight of 8.94 g,
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imposing negligible impact on wearing comfort and appearance of a KN95 mask. Cost is
also an important consideration for large scale application. The assembled sensor costs as
little as USD 3.67. Moreover, the sensor can be reused to further reduce cost.

2.5. Signal Processing and Algorithms

The signal processing pipeline shown in Figure 3 runs on the BLE SoC at a fixed sam-
pling period Ts. At the beginning, the NTC resistors is turned on by setting corresponding
GPIO pins of selected divider resistors to zero, and turned off immediately by configuring
the GPIO pins as inputs after AD sampling to reduce power consumption. The temperature
T can be computed by substituting the sampling result N into (2). The temperature is
then filtered by a first order low-pass digital filter with cut-off frequency of 1Hz to reduce
high-frequency noise.

Tf(n) =
0.1592Tf(n− 1) + TsT(n)

0.1592 + Ts
. (4)

where Tf(n) is the filtered temperature at the n-th sampling period. During respirations,
the NTC resistors are alternately heated by exhaled airflow and cooled by ambient air,
resulting in periodic temperature changes. The interval between two consecutive peaks
correspond to the respiratory period. We adopt a peak detection algorithm [43] to roughly
detect the peaks and troughs. The algorithm detects peaks (or troughs) by searching the
local maximum (or minimum) and the subsequent lower point (or higher point) with
an absolute difference larger than the detection threshold. To accommodate different
respiration intensities, the detection threshold is set to 0.2 ◦C for sleep monitoring and
0.4 ◦C for exercise monitoring, respectively. Figure 2 demonstrates that the peaks and
troughs can be accurately detected at a sampling period of 10 ms.

However, there is a trade-off between detection accuracy and power consumption.
A smaller sampling period helps to improve detection accuracy while a larger sampling
period reduces power consumption. In order to achieve a good trade-off between accuracy
and power consumption, we implement a cubic spline interpolation algorithm to recon-
struct smooth temperature curve from sparse sampling points. Figure 9 shows that the
proposed interpolation algorithm can well reproduce the temperature signals using only
five samples, and the detection error is dramatically reduced. The interpolation procedure
is as follows.
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Figure 9. Cubic spline interpolation of temperature samples.

(1) Once a peak or a trough with recorded time instant t2 and temperature T2 is
detected by the rough detection algorithm, obtain the previous two samples recorded as
(t0, T0), (t1, T1), and the subsequent two samples recorded as (t3, T3), (t4, T4);

(2) Calculate the smooth temperatures using interpolation equations q1–q4 at a small
interval of 10 ms, where qi is expressed as follows

qi(x) = (1− x)Ti−1 + xTi + x(1− x)[ai(1− x) + bix]

x = (t− ti−1)/Ts, ti−1 ≤ t < ti
. (5)
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ai and bi are the coefficients that satisfy the twice continuously differentiable condition and
natural spline as follows

q
′
i(1) = q

′
i+1(0), i = 1 ∼ 3

q
′′

i(1) = q
′′

i+1(0), i = 1 ∼ 3

q
′′

1(0) = q
′′

4(1) = 0

. (6)

When a trough and a subsequent peak are detected, the time stamps of previous peak
and current trough can be recorded as the inspiratory time and the expiratory time, and
the interval between two consecutive peaks can be recorded as respiratory period. If the
inspiratory or expiratory period and the temperature change are too small, the current fake
trough or peak need to be discarded, and there must be a fake peak or trough between the
previous and subsequent two peaks or troughs. Then, the peak with higher temperature
or the trough with lower temperature is determined as the true peak or trough. If no
respiration is detected for a long time, an apnea is considered to occur. Once a new peak
is redetected, the parameters of current apnea can be calculated. As will be mentioned
in Section 3, the algorithm can effectively improve detection accuracy and greatly reduce
power consumption.

2.6. Low Power Design

Low power consumption not only helps to improve battery life, but also reduces
capacity, size, weight, and cost of battery. In addition to the selection of low power and
high efficiency components in hardware design, the following comprehensive optimization
measures have been taken to further reduce power consumption.

1. Once the signal processing pipeline has been executed, turn off non-essential compo-
nents until the next sampling period. The BLE SoC goes into extended sleep mode,
all the controllable divider resistors are set to high-impedance state, and the Flash
memory is also powered down by instruction to reduce standby current;

2. To reduce wakeup events caused by BLE connection, the connection interval and
slave latency are changed from 30 ms and 0 to 180 ms and 54;

3. Reduce the runtime of the signal processing pipeline. The level 2 and time opti-
mizations of complier have been configured, and the codes have been optimized
by merging calculation steps and using single floating point variables instead of
double floating point variables. In addition, the CORDIC algorithm [48] has been
implemented to accelerate the computation of natural logarithm function, so that its
average computation time decreases from 774.5 µs to 66.4 µs. The above measures
reduce the average runtime of signal processing pipeline from 1488.8 µs to 277.6 µs
with a sampling period of 30 ms;

4. Increase the sampling period to reduce the duty cycle, and implement the cubic spline
interpolation algorithm to compensate for the negative impact of large sampling
period.

2.7. End User Application

In order to monitor respiration in real time, an Android APP used for sleep monitoring
and exercise monitoring has been developed, as shown in Figure 10. The respiratory
parameters, as well as apnea events in sleep and motion parameter in exercise can be
displayed in real time and stored for further analysis. In sleep monitoring, the silicone
valve plate can be removed to smooth the respiratory airflow and improve wearing comfort.
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(a) Sleep monitoring. (b) Exercise monitoring.

Figure 10. The Android APP for real time respiration monitoring.

3. Results
3.1. Overview of Experiments

We conducted a series of experiments to verify the effectiveness, accuracy, and power
consumption of our proposed sensor.

In the experiments of stationary mode, 14 subjects were instructed to wear the wireless
respiration sensors and sit in a chair to breathe naturally. A button connected to the
GPIO of BLE SoC was used to provide reference signals of respirations. The subjects were
asked to press the button when exhaling and release it when inhaling, hence the time
periods of successive button release events exactly correspond to the actual respiratory
periods. The status of button, as well as the airflow temperature were sampled at a high
frequency of 100 Hz and sent to a PC via an UART to USB bridge. A total of 28 tests
(2592 respiratory cycles) were carried out, and the silicon valve plate of mask was removed
in half of these tests (1298 respiratory cycles). In order to facilitate the comparison of
different algorithms, the high frequency temperature samples saved by PC were extracted
to construct samples with different sampling periods and then processed offline by different
algorithms. Figures 11 and 12 show the respiratory rates of 28 tests measured by the button
and the recorded temperature and button status of a test. In the tests of movement mode, the
sensor was evaluated by comparing the number of breaths measured by the sensor and the
number of breaths counted by the subjects. The 5 subjects wearing the wireless respiration
sensors were instructed to run or walk 800 meters around the standard playground. During
the tests, the subjects firstly synchronized the number of breaths they counted with those
measured by sensor, and then counted the number of breaths independently while running
or walking. Finally, the counted number of breaths were compared with those measured by
the respiration sensor to verify the effectiveness of the sensor. Each subject was tested twice,
one with silicone valve plate and the other without silicone valve plate. The respiratory
parameters were detected by the sensor in real-time and transmitted to the Android APP
via BLE 4.0 interface for display and storage. Figures 13 and 14 show the exercise time and
respiratory rates of 10 tests measured by the sensor in movement mode. The sensor was
also tested in high temperature environment to evaluate the effectiveness of the sensor in
the aspect of respiration count and temperature difference. In the test of apnea detection, a
subject was asked to simulate sleep apnea by holding his breath. In the power consumption
tests, the battery of sensor was replaced with a regulated power supply of 3.7 V, and the
currents were measured and logged to PC by an Agilent 34465A digital multimeter with
5000 Hz sampling frequency.
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Figure 11. The respiratory rates of 28 tests measured by the button in the experiments of stationary mode.
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Figure 12. The recorded temperature and button status in a test of stationary mode.
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Figure 13. The exercise time of 10 tests in movement mode.
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Figure 14. The respiratory rates of 10 tests measured by the sensor in the experiments of movement mode.

3.2. Results of Stationary Mode

Figure 15 displays the Pearson’s correlation and the Bland-Altman plots for 28 tests
with 2592 pairs of respiratory rates measured by the proposed algorithm at a sampling
period of 180 ms and the reference signals provided by the release event of button. The
cumulative distribution function (CDF) of corresponding absolute errors is plotted in
Figure 16. The total 2592 measurement pairs show a very high correlation coefficient (r)
of 0.9946, a standard deviation (SD) of 0.62 bpm, a very small mean difference (MD) of
−0.0015 bpm with 95% limits of agreement (LoA) of −1.216 to 1.213 bpm, a mean absolute
error (MAE) of 0.449 bpm and a root mean square error (RMSE) of 0.620 bpm. We also
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compare the performance of the sensor when the silicone valve plate is installed (the
blue squares in Figure 15 and the green dash line in Figure 16) and removed (the red
points in Figure 15 and the blue dotted line in Figure 16). As the removal of valve plate
makes the measured temperature more sensitive to respiration, the measurement pairs
without valve plate demonstrate a slightly better performance than those with valve plate.
Figure 17 shows the correlation coefficients, standard deviations, MAE, and RMSE of the
peak detection algorithm [43] (the red dash line and the blue dash line) and our proposed
algorithm (the brown solid line and the green solid line) for the 28 tests at different sampling
periods. Since the timer of the BLE SoC is accurate only when the multiple of 30 ms is
used as the timing unit, the step for sampling periods is set to 30 ms. As can be seen from
Figure 17, the proposed algorithm can significantly reduce the negative impact of sampling
period growth on the performance of correlation coefficient, standard deviation, MAE, and
RMSE. As a contrast, the performance of peak detection algorithm [43] decreases seriously
with the increase in sampling period. The sampling period of 180 ms is a compromise
value, after which the errors increase with sampling period gradually.
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Figure 15. The Pearson’s correlation (left) and the Bland–Altman (right) plots of respiratory rates
measured at 180 ms period.
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Figure 16. The CDF of respiratory rate estimation error at 180 ms sampling period.

3.3. Results of Movement Mode

Figure 18a shows the partial temperature and respiratory parameters recorded by the
Android APP for subject 1 in the test without silicone valve plate. The peaks of temperature
signals are in good agreement with the time aligned peaks which are 360 ms ahead of
the detected peaks. The delay of 360 ms is mainly caused by the spline interpolation.
Figure 18b shows the measured respiratory rates and GPS speed of the complete test. The
measured respiratory rates are also consistent with the self perception of subject 1. As
can be seen from Figure 18c, the numbers of breaths measured by the proposed sensor
are exactly the same as the numbers of breaths counted by subjects, demonstrating the
effectiveness of the proposed sensor in movement mode.
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Figure 17. The error statistics of 28 tests (n = 2592) measured at different sampling periods.
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Figure 18. The experimental results of 10 tests in movement mode.

3.4. Results in High Temperature Environment

Figure 19 shows the temperature difference and average temperature of 100 breaths in
a hot summer day with reported ambient temperature of 34 ◦C. The average temperature
and the average temperature difference of 100 breaths are, respectively, 34.33 ◦C and 0.83 ◦C.
Although the ambient temperature is very close to the high temperature alarm of 35 ◦C,
the temperature difference caused by breathing is still very obvious, allowing each breath
to be accurately detected. Theoretically, as the ambient temperature continues to rise, the
temperature difference will decrease. However, at this time, the temperature is higher than
the alarm temperature, which is not suitable for people’s outdoor activities.

0 10 20 30 40 50 60 70 80 90 100

Breath count

0

0.5

1

1.5

2

31

32

33

34

35

Figure 19. The temperature difference and average temperature per breath in high temperature environment.
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3.5. Results of Apnea Detection

The process of apnea detection is as follows. An apnea is considered to occur if no new
peak is detected for 9.9 s (55 samples). Then, the sensor sends an alarm to the Android APP
via BLE notification. Finally, the apnea parameters are calculated by sensor and transmitted
to the APP once a new peak is detected. Figure 20 shows the detection process of the
artificially simulated apnea. The data were recorded by the APP. Due to the delay of two
sampling periods introduced by spline interpolation and BLE communication, the time
for APP to receive the parameters of respiration and apnea was slightly behind the time
of peaks. For all that, the alarm time of 9.72 s and 10.12 s was still very close to 9.9 s, and
the durations of 17.13 s and 16.07 s measured by the proposed sensor were also very close
to the apnea durations of 17.1 s and 16.06 s calculated from the time stamps provided by
Android. The above results demonstrate that the system can identify the time lag in the
temperature changes from the breathing. In future work, we will look for real patients who
suffer from sleep apnea to further verify the performance of sensor.

11.1 15.3 25 32.4 36.5 41.3 51.5 57.4 61.4
Time (s)

24
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27
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29

30
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32

Respiratory parameters received

Alarm received Apnea parameters received

10.12 s9.72 s
17.10 s 16.06 s

Figure 20. The example of apnea detection process.

3.6. Results of Power Consumption

As demonstrated in Figure 21, the optimization measures 1–3 proposed in Section 2.6
reduce the average working current of 120 s time window from 2646 µA to 107.5 µA.
Figure 22 shows the measured average working currents at different sampling periods, the
working current can be further reduced by extending the sampling period. The average
working current at the sampling period of 180 ms is as low as 35.5 µA. Hence, a 60 mAh
Li-polymer battery is sufficient for a theoretical battery life of up to 70 days.
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Figure 21. The measured currents of sensor under different optimization measures.
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Figure 22. The measured currents of sensor at different sampling periods.

4. Discussion

Continuous, non-invasive, and accurate monitoring of respiratory rate in daily life has
broad application prospects in the fields of early disease diagnosis, sleep quality analysis
and exercise intensity tracking. However, there is a lack of consumer-grade respiration
monitor that meets the above requirements. Addressing this issue, we provided the detailed
design and evaluation of a reusable wireless wearable sensor measuring the temperature at
the exhalation valve of KN95 mask. The novelties of sensor can be summarized as follows.

• The sensor detects breathing by sensing airflow temperature from vent holes of KN95
mask instead of chest or abdomen movements, hence is immune to motion artifacts
and can be used in all scenarios including sleep, exercise, and other daily activities.
As the vent holes of KN95 mask are the only pathway of exhaled airflows, the sensor
can accommodate both breathing pathways of nose and mouth;

• We propose a lightweight signal processing pipeline to achieve high accuracy (0.449 bpm
MAE) of respiratory rate measurement with very low sampling frequency (5.56 Hz)
and computational complexity (an average computation time of 277.6 µs for 30 ms
sampling period). Table 1 shows the comparisons between our system and the state-
of-the-art systems across sensor type, accuracy performance, sampling frequency, and
time window. The accuracy of our system is superior to the counterparts in smaller
time window and lower sampling frequency;

• We take comprehensive measures to reduce power consumption in both hardware and
software design. The sensor only consumes 131.4 µW in working mode and 55.96 µW
in standby mode, hence a long endurance time can be achieved with a miniaturized
battery. Table 2 shows the comparison between our system and state-of-the-art systems
across power consumption. The current consumption of the proposed sensor is far
less than those of other existing systems;

• We design a 3D printed cover to mount the sensor, as well as the battery, and to replace
the original exhalation valve cover of the off-the-shelf KN95 mask. As the 3D printed
cover can be easily fasten to and disassembled from the exhalation valve base of KN95
mask without any assembly unit, the sensor can be reused conveniently. The sensor
can also be adapted to other off-the-shelf KN95 masks by redesigning the matched
covers. In addition, the installed sensor only adds a very light weight of 8.94 grams to
the KN95 mask, imposing little impact on wearing comfort;

• The sensor has a very simple circuit structure and is only made up of off-the-shelf
electronic components. The bill of material (BoM) cost is as low as USD 3.67.
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Table 1. Performance compared to other sensors.

System Sensor Type Accuracy Performance Sampling
Frequency

Time
Window

This
paper NTC series resistors

LoA =
–1.216/0.647/0.173∼1.213/0.638/0.165 bpm
MAE = 0.449/0.238/0.063 bpm
RMSE = 0.620/0.328/0.086 bpm
Accuracy = 98.01/98.94/99.72%

5.56 Hz
180 ms

1/2/8 cycles
(2.95/5.9/23.6 s)

[9] Bio-impedance LoA = –4.97∼3.63 bpm 256 Hz 8 cycles
[12] ECG MAE = 0.3/0.2 bpm 300 Hz 32/64 s
[13] PPG RMSE = 0.48549 bpm 125 Hz 30 s

[18] piezoresistive MAE = 0.45 bpm (static)
MAE < 1.86 bpm (walking) Unknown 20 s

[22] FIR+NIR cameras LoA = –2.51∼3.46 bpm 8.7 Hz 12 s
[23] Depth images LoA = –1.9∼2.3 bpm 60 Hz 2 min
[24] RFID Accuracy = 98% 64 Hz 25 s
[25] 900 MHz RF signals MAE = 0.13 bpm Unknown 50 s
[26] WiFi CSI Accuracy = 98% 20 Hz Unknown
[27] Doppler radar MAE = 0.38 bpm (average of 6 signals) 50 Hz 8 s
[29] FMCW radar MAE < 0.747 bpm 384.6 Hz/2.6 ms 20 s
[31] Inertial sensors MAE = 1.8 bpm (23 cycles) 32Hz 60 s
[32] Magnetometer MAE = 0.5 bpm 10 Hz 1 cycle

Table 2. Power consumption compared to other sensors.

System Sensor Type Power Consumption
Our NTC series resistors 35.5 µA/131.4 µW
[9] Bio-impedance electrodes ∼5.8 mA
[20] Inductive strain sensor <7 mA/23.1 mW
[28] 24 GHz medical radar 1000–1500 mA
[31] Inertial sensors 12 mA
[32] Magnetometer <1 mA
[44] Hot-film flow sensor 43 mW
[45] Humidity sensor 7–25 mA

Due to budget constraints and epidemic prevention policy, we have not compared
our system with polysomnography (PSG), which is a primary clinical tool for respiratory
monitoring. Instead, we use the button status provided by the subjects as the reference
signal. The button was pressed on when exhaling and released off when inhaling. From
the analysis of respiratory mechanism, the flow time of airflow in the trachea will cause the
peak and valley of temperature to lag behind the real inspiratory start time and expiratory
start time. Due to the subject’s response time, the start time of inhalation and exhalation
measured by button will also introduce lags. Fortunately, since the respiratory period is
obtained by subtracting the time of two consecutive peaks, the above lag will be eliminated
by subtraction. Figure 12 shows the recorded temperature and button status in a test of
stationary mode. The lags between the detected peaks of temperature and the release
events (transition from on to off) of the button, as well as the lags between the detected
troughs and the press events (transition from off to on) are relatively consistent. Therefore,
these delays will not affect the measurement of respiratory period. In future work, we will
compare the peaks and troughs of temperature signal with the onset time of inspiration
and expiration provided by professional medical equipment, and further investigate the
influence of lags.

Breathing patterns vary from person to person. The bandwidth of fast breathing is
greater than that of slow breathing. Hence, the temperature sensor should provide with
high bandwidth (fast response time or small time constant) to capture the temperature
variations induced by respiration. When the bandwidth of the temperature signal exceeds
the bandwidth of the sensor, the measured temperature amplitude will be attenuated. We



Sensors 2021, 21, 6698 17 of 19

select the Murata NCP15WL473J03RC NTC sensor with a small time constant to avoid
the amplitude attenuation. In the experiments of stationary and movement modes, the
sensor has demonstrated its effectiveness for respiratory rates from 9.8–65.2 bpm shown
in Figures 11 and 14. This range basically covers the respiratory rates of bradypnoea
(<12 bpm), normal (12–20 bpm) and tachypnea (>24 bpm). The temperature amplitude of
each respiratory cycle is also a factor affecting whether respiration can be detected. The
small amplitude appears in light breath or high temperature environment. We use the
sensor with small time constant to minimize the amplitude attenuation, and the voltage
divider with controllable resistors to improve the measurement gain. In the experiment
of high temperature environment, the sensor still works at the average temperature of
34.43 ◦C and the average amplitude of 0.83 ◦C. Theoretically, as the amplitude continues to
decrease, breathing will begin to be undetectable. In future work, we will further explore
the limits of sensors in this regard.

Detection threshold is also an important parameter to be carefully tuned. To accom-
modate different respiration intensity, we have tried to dynamically adjust the detection
threshold according to the temperature difference of previous respiratory cycles. However,
in the experiments, we found that respiration may go undetected when the detection
threshold remains high due to previous respiratory cycles and the temperature difference
suddenly decreases. Therefore, in practical applications, the detection threshold is still
empirically set to 0.2 ◦C for sleep monitoring and 0.4 ◦C for exercise monitoring.

The proposed wireless wearable sensor detects respiration by sensing airflow temper-
ature from the exhalation valve of a KN95 mask. For masks without exhalation valve, we
have not test them with the proposed sensor. Since the exhaled airflow of mask without
exhalation goes out through the multilayer composite fabrics, the temperature difference
caused by breathing will be smaller than that of the mask with exhalation valve, making it
difficult to detect breathing. To solve this problem, we will explore the best sensor instal-
lation position for masks without an exhalation valve in future work. In addition, textile
sensor will also be installed on the mask without exhalation valve to detecting respiration
by sensing the strain variation of multilayer composite fabrics.

As an accurate, low cost, and easy-to-use solution for respiration monitoring, the
wireless wearable sensor will have a very broad application prospect in the fields of early
diagnosis of diseases, such as COVID-19, cardiopulmonary arrest, obstructive sleep apnea,
and so on, classification of sleep stages, and exercise monitoring.

5. Conclusions

In this paper, a wireless wearable sensor for non-invasive, real-time, and accurate
respiration monitoring using an off-the-shelf KN95 mask has been designed, implemented,
and evaluated. By sensing the airflow temperature at the exhalation valve of the KN95
mask, the sensor can accurately measure the parameters of every respiration and apnea,
regardless of the breathing pathways through nose or mouth, and the application scenarios
of sleep or exercise. We design a 3D printed cover to install the sensor hardware and to
replace the original cover of the KN95 mask, making the sensor to be easily reused. We
also propose a light weight signal processing pipeline running at a very low sampling
frequency to detect respiration and apnea, and low power optimization measures to extend
battery life. The main advantages of the designed sensor are its high accuracy, low cost,
long battery life, miniaturization, and convenience. In the comprehensive experiments, the
designed sensor shows a small MAE of 0.449 bpm and a very low power consumption of
131.4 µW, demonstrating its promise in practical applications. Our future work will focus
on the sleep stage detection based on these respiratory data and AI technology.
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