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Real-time Functional Analysis of 
Inertial Microfluidic Devices via 
Spectral Domain Optical Coherence 
Tomography
Biqin Dong1,2, Siyu Chen2, Fan Zhou1, Christina H. Y. Chan2, Ji Yi2, Hao F. Zhang2 & Cheng Sun1

We report the application of spectral-domain optical coherence tomography (SD-OCT) technology that 
enables real-time functional analysis of sorting microparticles and cells in an inertial microfluidic device. 
We demonstrated high-speed, high-resolution acquisition of cross-sectional images at a frame rate of 
350 Hz, with a lateral resolution of 3 μm and an axial resolution of 1 μm within the microfluidic channel 
filled with water. We analyzed the temporal sequence of cross-sectional SD-OCT images to determine 
the position and diameter of microspheres in a spiral microfluidic channel under various flow rates. 
We used microspheres with known diameters to validate the sub-micrometer precision of the particle 
size analysis based on a scattering model of spherical microparticles. An additional investigation of 
sorting live HT-29 cells in the spiral microfluidic channel indicated that the distribution of cells within in 
the microchannel has a close correspondence with the cells’ size distribution. The label-free real-time 
imaging and analysis of microscale particles in flow offers robustness for practical applications with live 
cells and allows us to better understand the mechanisms of particle separations in microfluidic sorting 
systems.

Microfluidic systems offer unique capabilities to facilitate sophisticated chemical and biological analyses in min-
iaturized lab-on-a-chip platforms1. However, due to the laminar nature of the microfluidic flow, manipulating 
the motion of objects, such as cells and particles, remains a challenging task. Introducing forces perpendicular 
to the direction of flow offers additional freedoms to position particles2. These forces can be applied actively, 
using external acoustic, electric, magnetic, and optical fields, or passively, using inertial hydrodynamic forces in 
channel systems with various geometries and cross-sections3–9. Among them, spiral inertial microfluidic devices 
have recently attracted considerable interest due to their ability of performing high-throughput particle filtration 
and separation in a continuous flow manner10–15. Specifically, flow in a spiral microfluidic channel can intro-
duce continuous and stable Dean vortices that apply drag force on particles14. Because the induced Dean drag 
force, inertial lift force, and particle centrifugal force scale differently with the particle size, particles of varying 
sizes occupy distinct positions within the microfluidic channel cross-section, enabling high-resolution size-based 
particle separation and sorting14,16. However, the underlying mechanism of particle separation in various spiral 
microchannels is not completely understood16–20 due to limited options for real-time three-dimensional (3D) 
monitoring and analysis of microparticles in microfluidic channels21. Although micro-particle image velocimetry 
using optical confocal microscopy can be used to resolve the position of microparticles in 3D22–25, it often requires 
exogenous labels to provide fluorescence contrast which is not always favorable for live cell analysis. To better 
understand the sorting process and track particles and live cells in unperturbed states, an imaging technology 
capable of functional analysis, such as particle size measurements and spectroscopic characterization, is highly 
desired.

Spectral-domain Optical Coherence Tomography (SD-OCT) is an imaging technology that enables 
high-resolution volumetric imaging in real-time by detecting optical scattering as the intrinsic contrast26. 
SD-OCT is based on low-coherence interferometry, which utilizes the interference caused by the superposition 
of the electrical fields to determine the phase difference of the back-scattered light in relative to the reference. 
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After reconstruction, the interference signals can be used to reveal depth information within the sample. The 
lateral resolution in SD-OCT is diffraction limited, whereas the axial resolution is mainly determined by the 
coherence length of the light source which is inversely proportional to its spectral bandwidth. Therefore, higher 
axial resolution can be potentially obtained using spectrally broadband light sources. Owing to its high resolu-
tion, superb signal-to-noise ratio (SNR) and image acquisition speed, SD-OCT has been employed in study-
ing microfluidic mixing27 and velocity profile28 by using its inherent 3D imaging capability and phase-resolved 
Doppler velocimetry29–31, respectively. Moreover, the spatiotemporal correlation of particles in fluidic flow can be 
tracked by examining correlations between adjacent frames32,33. However, as a more essential way to evaluate the 
performance of microfluidic particle sorting devices, real-time functional analysis of individual microparticles 
with SD-OCT technology remains yet unsolved. The challenge lies in both the need for simultaneous high-speed, 
high-resolution imaging and comprehensive understanding of microparticles’ optical scattering properties.

In this paper, we demonstrate the capability of SD-OCT for visualizing and further enabling functional 
analysis of sorting microspheres and cells using an inertial microfluidic device. By employing line scans at a 
cross-section of a spiral microchannel, the focusing of microspheres along both the horizontal and vertical direc-
tions can be recorded simultaneously. Live HT-29 cells from the human colon adenocarcinoma cell line were 
used as the model system to further demonstrate the feasibility of SD-OCT imaging technology for monitoring 
the sorting process of live cells. This high-resolution 3D volumetric imaging method can be used not only for 
real-time monitoring of microfluidic-based sorting, but also for advancing our general understanding of micro-
fluidic systems and providing guides for the design of novel inertial microfluidic particle sorting devices.

Materials and Methods
SD-OCT imaging of particle sorting. A home-built, free-space SD-OCT system was used to visualize the 
particle sorting in microfluidic channels (Fig. 1(a)). A filtered supercontinuum laser (SuperK, NKT Photonics) 
was used as the broadband illumination light source, covering a spectral band from 512 nm to 620 nm, which 
corresponded to an axial resolution of 1.0 μm in water. The illumination light was split into a sampling arm and 
a reference arm by a 50:50 beam splitter. The sampling beam was scanned by a galvanometer-scanning mir-
ror (Nutfield Technology) to realize a transverse scan through a lens (40-mm-focal-length achromatic lens,  
NA 0.1), which achieved a lateral resolution of 3 μm in water. The reference beam passed through a dispersion 
compensator and a slit, and was reflected by a mirror. The recombined interference spectrum was then dispersed 
by a home-built spectrometer and sampled by a line camera (spL2048-140 km, Basler) with an acquisition rate 
of 70 KHz. Each cross-sectional image (B-scan) contained 200 depth-scans and was recorded at frame rate of 
350 Hz, forming a time sequence of 2D images as illustrated in Fig. 1(a). B-scan images were reconstructed in real 
time and, unless specifically noted, a series of 3200 consecutive B-scans was saved as a time sequence image for 
further analysis.

To recover the structural SD-OCT image, we sequentially applied an inverse fast Fourier transform (iFFT) in 
imaging post-processing34. In order, the spectrometer first records the spectral oscillation induced by the inter-
ference. Secondly, the raw interference spectra are normalized against illumination source and interpolated to be 
equal-interval in k-space, as shown in Fig. 1(b). Finally, iFFT operation translates the interference pattern into its 
conjugate spatial domain. The magnitude of the resulted complex sequence corresponds to the spatial intensity 
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Figure 1. (a) Schematic of SD-OCT for visualizing particle sorting in spiral microfluidic channels.  
SL: supercontinuum laser; GM: galvano mirror; DC: dispersion compensator; S: slit; M: mirror. (b) Typical 
A-line spectrum of a single 10.8-μm microsphere recorded by a linear charge-coupled device (CCD). (c) Depth 
resolved information calculated by inverse fast Fourier transform. (d) Schematic of inertial particle sorting in 
the spiral microfluidic channel, illustrating the Dean vortices in a rectangular cross-section spiral channel and 
the direction of forces acting on particles.
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profile in the depth (z) direction as shown in Fig. 1(c). By repeating the process along the x-axis, a B-scan image 
is formed in the x-z plane of the microfluidic channel.

Fabrication of microfluidic channel for particle sorting. Microfluidic channels were fabricated 
using a soft lithography method35. A 150-μm thick SU-8 (MicroChem, USA) layer was spin coated on a 4-inch 
silicon wafer (University Wafer, USA). After soft baking at 95 °C for 40 minutes, the SU-8 layer was patterned 
using a mask aligner (MA/BA6, SUSS MicroTec) with a UV light (365 nm) and a negative photo mask. After 
subsequent post-exposure bake steps at 65 °C for 1 min and 95 °C for 5 min, the wafer was developed using 
SU-8 developer (MicroChem, USA). The wafer was used as the master mold to cast the microfluidic channels. 
Poly(dimethylsiloxane) elastomer (PDMS, Sylgard 184, Dow Corning, MI, USA) was mixed in a 10:1 ratio with 
the curing agent and then kept in a dessicator to remove air bubbles. The microfluidic device was then fabricated 
from the master mold by covering the mold with PDMS. After baking (70 °C, 1 h) and cooling, the PDMS replica 
was peeled away from the master mold and trimmed to the desired dimensions. Additional holes were punched 
to serve as the inlets and outlets for the microfluidic device. The lower surface of the PDMS replica was further 
treated with oxygen plasma to ensure strong bonding onto a pre-cleaned 1-mm-thick glass slide (VWR, USA). 
Finally, polyethylene tubing was inserted into the punched holes to serve as feeds for the inlet and outlets. A 
syringe pump (WPI 200i, WPI Instruments) was used to control the injections of the microfluidic channel from 
the inlet.

Inertial particle sorting in the spiral microfluidic channel. The design of the spiral microfluidic chan-
nel for inertial particle sorting used in our experiments has a rectangular cross-section (width: 500 μm; height: 
150 μm). To provide sufficient length for the particle migration, the microfluidic channel has a 5-loops single-inlet 
spiral with increasing radiuses from 10 mm to 14 mm.

Pressure-driven flows through a rectangular channel have a hyperbolic profile with its maximum velocity at 
the centroid of the cross section and zero velocity at the wall surfaces. The lift forces FL on particles are dominant 
by the wall-effect lift (Fwall), which is a force to push the particle away from the wall when it is getting close to the 
wall, and by the shear-gradient-induced lift (Fshear), which is directed down the shear gradient and toward the 
wall10. The fluid that flows through the spiral channel will also experience centrifugal acceleration, which gives 
rise to secondary transverse flows. As shown in Fig. 1(d), the transverse flows can be characterized by two 
counter-rotating vortices, known as the Dean vortices, at the top and bottom halves of the channel. Two dimen-
sionless numbers, the Reynolds number (Rp) and the Dean number (De), can be defined to describe how these 
forces scale in flows through curving channels. The Reynolds number Rp = Re(a/Dh)2 depends on the intrinsic 
properties of the fluid described by the channel Reynolds number Re = ρUmDh/μ. Here a is the particle diameter; 
Um is the maximum channel velocity; Dh = 2wh/(w + h) is the hydraulic diameter (where w and h are the width 
and height of the channel); and μ and ρ are the viscosity and density of the fluid, respectively. As a measure of the 
magnitude of the secondary rotational flow (Dean flow) caused by inertia of the fluid, dean number can be 
defined as De = Re(Dh/2r)1/2, where r is the radius of the curvature. The lift force FL has been shown to scale with 
the Reynolds number squared36 and the transverse Dean flow introduced drag force FD scales with the Dean 
number squared37. Figure 1(d) illustrates particles flow through a curved rectangular channel at an equilibrium 
position, where Fshear (red arrows), Fwall (blue arrows), and FD (the purple arrow) balance. The ratio between the 
total lift force FL = Fwall + Fshear and the drag force can be estimated as 
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lies between 2 and 3. This force ratio varies exponentially with the particle diameter and suggests that the lift force 
towards to the inner wall is higher for particles with larger diameter. Therefore, particles with larger diameter tend 
to be focused closer to the inner wall.

Microsphere blend. We used two types of polystyrene microspheres (Spherotech Inc., USA) with mean 
diameters of 10.8 μm (standard deviation: 0.5 μm) and 15.5 μm (standard deviation: 0.5 μm), respectively. The 
size of microsphere was chosen to represent the size of common cell types, such as red blood cells, white blood 
cells, neural stem cells, and circulating tumor cells. Suspensions were provided at 1% w/v with 1 vol% of Tween-20 
surfactant (Sigma-Aldrich) for preventing particle aggregation. Equal volumes of two suspensions were mixed 
and diluted to 0.1% w/v using de-ionized (DI) water.

Suspension of HT-29 cells. The human colon adenocarcinoma cell line (HT-29) was routinely grown in 
medium containing McCoy’s 5a + 10% (v/v) FBS in a humidified 37 °C/5% CO2 incubator. The size of HT-29 cells 
is 14.1 ± 2.5 μm analyzed by a particle analysis plugin (ImageJ) from a calibrated optical micrograph. The density 
of live HT-29 cells used in the microfluidic experiment was 5 × 106 cells/ml.

Results
Particle imaging and size analysis. In order to study the capabilities of SD-OCT to image particles within 
the microfluidic device, we first imaged polystyrene microspheres and live cells under stationary conditions. To 
this purpose, microspheres were suspended in agarose hydrogel, while HT-29 cells were suspended in culture 
media. 3D volumetric images containing multiple microspheres and cells were acquired through raster scanning 
in a 1.5 mm × 1.5 mm area using a pair of galvanometer-scanning mirrors. Figure 2(a–c) show seven consec-
utive B-scans, recorded with 3-μm interval along the axis perpendicular to the B-scan direction for a single 
microsphere with a diameter of 10.8 μm, a single microsphere with a diameter of 15.5 μm, and a live HT-29 cell. 
SD-OCT images of the microspheres showed an interference pattern with three vertically aligned bright spots 
rather than the circular border of a sphere. To be noticed, the presented images in Fig. 2 were stretched along the 
z-direction in order to better illustrate these vertically aligned bright spots. The origins of this observed pattern 
have been explained previously by Ji et al34. Briefly, the vertically aligned bright spots (denoted by numbers in 
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Fig. 2(a,b)) are produced by the interference of light waves reflected by the front and back surface of the micro-
sphere. In addition, the Mie scattering from the microsphere forms broadened sidebands near the center spot. 
When the scanning beam has relevantly small numerical aperture, we also observed that B-scans do not pass 
through the sphere’s centroid still exhibit similar interference patterns34. Consequently, the spacing between the 
spots remains identical throughout consecutive B-scans, as clearly shown in Fig. 2(a,b). For these B-scans, the 
light couples from the edge of the particle and the intensities of the spots are smaller due to decreased light 
coupling efficiency. Therefore, regardless of whether or not the B-scan intersect the centroid of the sphere, the 
consistent spacing of the spots enables adequate calculation of the microsphere diameter, as long as the image 
has sufficient SNR. The SD-OCT images of a single HT-29 cell shown in Fig. 2(c) exhibit different characteristics 
from the images of microspheres due to the cell’s weak dielectric contrast against aqueous background, irregular 
shape, and the additional scattering from subcellular organelles. Scattering within the cell leads to images show-
ing boundaries at the cell surface and interference patterns within the cell. This potentially makes the size analysis 
of cells difficult at high flow speed, because the optical B-scan cannot always go across the center of each cell.

To analyze the diameter of the microspheres, we used the first two brightest spots (Position 1,2 as indicated in 
Fig. 2(a)) since they typically have higher SNR. The diameter was calculated by a = aoct/nps, where aoct is the dis-
tance between the first two brightest spots measured in SD-OCT image and nps = 1.596 is the refractive index of 
polystyrene microspheres at a center wavelength of 550 nm38. In Fig. 2(d), the results show that microspheres are 
highly monodispersed. The mean sizes and standard derivations of the two microspheres are 10.8 ± 0.46 μm and 
15.5 ± 0.39 μm, respectively. The precision of the size analysis mostly relies on the axial resolution and SNR of the 
SD-OCT system, which has been demonstrated to be sufficient to identify sub-micro variations (Fig. 1(c)). Since 
the shape of HT-29 cells is not perfectly spherical, we calculated the area of the image pattern to better estimate 
the diameter of the cell. The mean refractive index of the cancer cells used in the calculation is 1.37139. As shown 
in Fig. 2(e), the diameter distribution for HT-29 cells was broadly distributed with a pronounced peak at 14.5 μm, 
which matched well with the diameters measured by analyzing cell sizes from the optical micrograph (see details 
in Materials and Methods).

Microfluidic sorting imaging. To test the capability of SD-OCT to analyze particles under flow conditions, 
we imaged a mix of microspheres separated under inertial flow in a spiral microfluidic channel, as shown in 
Fig. 3. The mix contained PS microspheres (density ~ 1.05 g ml−1) with diameters of 10.8 μm and 15.5 μm, sus-
pended in water (density ~ 1.0 g ml−1). The suspension passed through the spiral microfluidic channel at a volu-
metric flow rate of 2 ml/min (Re = 152) at the last turn (r = 14 mm), with corresponding Rp (10.8 μm) = 0.34 and 
Rp (15.5 μm) = 0.69. Microspheres of varying diameters, which are initially well distributed at the inlet, occupy 
distinct horizontal focusing positions within the microchannel cross-section, indicating Rp dependent focusing 
effect. In addition to horizontal focusing, particles are also focused in two parallel streams along the altitude of 
the microchannel, creating an upper band and a lower band (Fig. 3(b)). Notably, the deformation of the bottom 
boundary of the PDMS channel can be found in the SD-OCT image (as highlighted by the white solid line in 
Fig. 3(b)).

Based on the analytical method introduced before, properties of microsphere can be obtained through the 
analysis of SD-OCT images. Here we show an example by using the aforementioned experimental result in Fig. 3. 
As shown in Fig. 4, microspheres were analyzed and further classified by their sizes. Figure 4(a,b) show the size of 
each measured particles plotted versus the displacement of the horizontal focusing position (x). The two clusters 
correspond to the two groups of microspheres with different sizes. Figure 4(c,d) are the corresponding histograms, 

Figure 2. Consecutive SD-OCT images of single microspheres with mean diameters of (a) 10.8 μm and 
(b) 15.5 μm suspended in agarose and (c) HT-29 cells in culture media. Scale bars: 20 μm. (d) Calculated 
size distribution of 1,503 10.8-μm microspheres (red bars) and 1,251 15.5-μm microspheres (blue bars) in 
suspension, respectively. (e) Calculated size distribution of 621 HT-29 cells.
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which clearly show the separation of the two types of microspheres used in the experiment. Figure 4(e,f) show the 
size of each of the measured particles plotted versus the equilibrium altitudes and Fig. 4(g,h) are the correspond-
ing histograms. By inspecting of the histogram, the populations of microspheres with respect to the equilibrium 
altitude in the lower and upper bands are similar, suggesting the influence of gravity is minor since the density of 
polystyrene (1.05 g/cm3) is close to water. Furthermore, the position of microspheres in two bands can be plotted 
as a function of time, as seen in Fig. 4(i,j). As shown in Fig. 4(k), by overlaying the center positions of micro-
spheres obtained from the original SD-OCT image (yellow box in Fig. 3(b)), the distinct focusing of the two sizes 
of microspheres are visualized.

Under different flow rates, the imaging results clearly verified the focusing positions, as shown in Fig. 5(a–e). 
As indicated in Fig. 5(a), the displacements d and the equilibrium altitudes h of focusing positions were calcu-
lated by using the surface of the glass substrate and the inner wall of the microchannel as references. Figure 5(f) 
plots the displacement under various flow rates. The displacements of focusing positions at the upper and lower 
bands are highly consistent for each microsphere size. In contrast, the equilibrium altitudes of each band changed 
when the flow rate increased. This is most likely caused by the deformation of the PDMS channel under increased 
water pressure at higher flow rates. In Fig. 5(g), the altitude varies 5 μm and 10 μm for the 10.8-μm microsphere 
at upper and lower bands, respectively, while it varies 3 μm and 5 μm for the 15.5-μm microsphere at upper and 
lower bands, respectively. This suggests that particles focused closer to the center of the microchannel have a more 
significant descend at their equilibrium altitude.

In order to demonstrate the application of the imaging technique for live cells, we further tested SD-OCT 
using live HT-29 cells flowing in the microchannel. Due to the cell’s weak dielectric contrast against the aqueous 
background, the scattering/reflection of cells is weaker than that of microspheres, resulting a much lower SNR in 
the acquired SD-OCT imaging (Fig. 6(a)). Combined with the washout effect happened at a relatively high flow 
speed used in the experiment, the accuracy of cell size analysis can be significantly compromised. Nevertheless, 
the centroid of individual cell can still be accurately calculated based on the imaging result, as shown in Fig. 6(b–
f). It is worth mentioning that, although the size distributions in the upper and lower bands are similar, a clear 
influence of gravity can be observed from the significant difference in population. Since the density of cells are 
around 1.10 g/cm3, which is larger than that of the PS microsphere, more cells concentrated at the lower band 
instead of equally dispersing between two bands. This phenomenon has been overlooked in most sorting exper-
iments using inertial microfluidics19. However, this may offer additional freedom in 3D sorting for particles with 
different densities.

Discussion
Although the behavior of particles in microfluidic channels has been characterized extensively in the past, there 
is a debate about the relationship between the focusing positions and various parameters such as the particle 
size and the flow rate. Based on empirical observations of the focusing position from the top view, it’s difficult to 
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determine whether the equilibrium altitudes are near the center of the channel depth6,13,16 or form two separate 
focusing lines17–20. There is limited direct experimental observation to uncover the equilibrium altitude due to the 
lack of sufficient imaging tools with both high imaging speed and 3D imaging capabilities. By employing SD-OCT 
for microfluidic investigation, particle size and equilibrium distribution can be directly observed. Our results vis-
ualized the equilibrium altitude of the focusing position at micrometer resolution and can accurately measure its 
change with increasing flow rate and the pressure-induced deformation of the microchannel. In practical applica-
tions of microfluidic devices for live cell sorting, focusing position of cells can be derived based on single particle 
analysis without fluorescent labeling. This potentially offers a more accurate way to monitor the sorting process of 
unperturbed cells, which is indispensable in practical biomedical studies and clinical applications.

To date, PDMS is the most commonly used polymer material for constructing microfluidic devices due to 
its elasticity, inexpensiveness, good optical clarity, and ability to create a fluid-tight seal on flat surfaces. Since 
PDMS is a relevantly soft polymer, a significant deformation is expected at a high flow speed which induces a high 
pressure onto the side-wall of the microchannel. For example, the height of the channel at the center position can 
increase 10.7% even at a modest flow rate of 2 ml/min in our experiments. This may alter the sorting performance 
from the original design especially under higher flow. However, device distortion is usually ignored in the design 
of inertial microfluidic, which may contribute to the inconsistency between theory and experimental observation.

Furthermore, it has been extensively demonstrated that the SD-OCT can obtain spectroscopic features from 
biological tissues containing valuable information on cellular morphology and biological functions40–47. The 
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Figure 4. Particle analysis based on Mie’s theory. Red circles represent the position of 10.8-μm microspheres, 
while blue circles represent the centroid of 15.5-μm microspheres. The distribution of particle size with 
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respectively. The corresponding histogram of particle number with respect to the focusing position in (c) lower 
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microspheres.
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spectral signatures from the wavelength-dependent scattering and absorption profiles determined by the size, 
shape and refractive index of microparticles48,49 as well as nanoparticle-based exogenous contrast agents50–54 can 
be potentially acquired by the reported technique to further provide multi-functional analysis of microparticles 
in microfluidic devices.

Conclusions
In conclusion, we developed an imaging technique based on SD-OCT for label-free volumetric imaging in inertial 
microfluidic devices. This technique can provide single-particle-based real-time functional analysis for synthetic 
micro-particles and live cells, demonstrating its practicality in biomedical studies and clinical applications. It 
further offers capability of acquiring comprehensive information from microfluidic size-based particle sort-
ing systems, which is essential for improving our understanding of microfluidic systems for high-resolution, 
high-throughput, and multidimensional sorting.
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