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Abstract: With the rapid development of sensor technology, various professional sensors 

are installed on modern machinery to monitor operational processes and assure operational 

safety, which play an important role in industry and society. In this work a new operational 

safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent 

vibration signals is proposed. On the basis of a professional sensor and the corresponding 

system, sensor-dependent vibration signals are acquired and analyzed by a second 

generation wavelet package, which reflects time-varying operational characteristic of 

individual machinery. Derived from the sensor-dependent signals’ wavelet energy 

distribution over the observed signal frequency range, wavelet Rényi entropy is defined to 

compute the operational uncertainty of a turbo generator, which is then associated with its 

operational safety degree. The proposed method is applied in a 50 MW turbo generator, 

whereupon it is proved to be reasonable and effective for operation and maintenance. 

Keywords: operational safety assessment; turbo generator; sensor-dependent; vibration 

signal; wavelet Rényi entropy; second generation wavelet package 

 

  

OPEN ACCESS 



Sensors 2015, 15 8899 

 

 

1. Introduction 

Turbo generators are a key part of power systems which have found increasing service in the power 

industry throughout the world. They can produce a great amount of electrical energy depending on 

their size and weight. They usually require regular upkeep and scheduled maintenance. With a 

detailed, long term maintenance plan in place, utilities can ensure that their facilities will safely deliver 

as much reliable power to the grid as possible. The criteria for turbo generator is high reliability, high 

performance, with many starts and flexible operation throughout the service life [1]. In addition, 

modern turbo generators are built to last between 30 and 40 years. With aging generator units and 

mechanical components, safety assessment is one of the most important and imperative indicators for a 

plant to prevent failures.  

Safety refers to the ability of a system or component to perform its required function under stated 

conditions for a specified period of time without accidents, which is very important for industrial 

enterprises to protect running reliability against damage, faults, failures and economic losses. 

Therefore, safety is studied worldwide by many researchers and engineers. Matteson proposed a 

dynamic multi-criteria optimization framework for sustainability and reliability assessments of power  

systems [2]. Lo Prete proposed a framework to assess and quantify the sustainability and reliability of 

different power production scenarios [3]. Moharil et al. analyzed the generator system reliability with 

wind energy penetration in the conventional grid [4]. Since turbo generator faults have a significant 

impact on safety, Whyatt et al. identified failure modes experienced by turbo generators and described 

their reliability [5]. Tsvetkov et al. presented a mathematical model for analysis of generator 

reliability, including development of defects [6].  

Generally speaking, traditional approaches entail collecting sufficient failure samples to estimate 

the general probability of the system or component failures and the distribution of the time-to-failure. 

It is usually difficult to use probability and statistics for turbo generator safety analysis due to the lack 

of failure samples and time-to-failure data. The failure rate of a generator includes all the failures 

which cause the generator to shut down and also depends on the maintenance and operating policy of  

utilities. In fact, turbo generators are usually set on different operating parameters and conditions  

(e.g., temperatures, vibration, load, stress). The variations of the operating parameters can affect 

operational safety whenever a single parameter or condition is out of limit and failures can also be 

caused by the interaction of operating parameters. It has been realized from the real-time operation that 

a component will experience more failures during heavy loading conditions than during light loading 

conditions, which means that the failure rate of a component in real-time operation is not constant and 

varies with operating parameters [7]. Depending on the operating parameters and conditions, the 

constitutive components of a turbo generator will go through a series of degradation states evolving 

from functioning to failure. Therefore, there is a great demand of ways of assessing the operational 

safety of turbo generators with time-varying operational parameters and conditions during their whole 

life span, which is beneficial for implementing optimal condition-based maintenance schedules with 

low failure risk. 

When condition monitoring is performed during plant operational transients, the intrinsically 

dynamic behavior of the monitored time-varying signals should be taken into account [8–10]. 

Monitoring the condition of a component is typically based on several sensors that estimate the values 

http://en.wikipedia.org/wiki/Reliability_engineering
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of some measurable parameters (signals) and triggering a fault alarm when the measured signal is out 

of limit. To this purpose, Baraldi et al. proposed approaches based on the development of several 

reconstruction models and the signals were preprocessed by means of Haar wavelet transforms for a 

gas turbine during start-up transients [8]. Lu et al. proposed a simplified on-board model with sensor 

fault diagnostic logic for turbo-shaft engines [11]. Li et al. established a hybrid model for hydraulic 

turbine-generator units based on nonlinear vibration [12]. Hua et al. proposed a novel performance 

degradation estimation method based on an adaptive failure threshold and degradation signal data 

series [13]. The above operational safety diagnosis and assessment methods have mainly utilized 

dynamic monitored information, so how to process the monitored information and associate it with 

operational safety is very essential. 

Information entropy is an effective indicator to measure a system’s degree of uncertainty. On the 

basis of the information entropy theory, the most uncertain probability distribution (such as the equal 

probability distribution) has the largest entropy, and the most certain probability distribution has the 

smallest entropy. On this basis, the use of information entropy is widespread in engineering 

applications. Different types of information entropy have been defined in accordance with their own 

usage, such as topological entropy of a given interval map [14], spatial entropy of pixels [15], 

weighted multiscale permutation entropy of nonlinear time series [16], Shannon differential entropy 

for distributions [17], min-and max-entropies [18], collision entropy [19], permutation entropy [20], 

time entropy [21], multiscale entropy [22], wavelet entropy [23] and so on.  

Entropy is well used in machinery fault diagnosis. Sawalhi et al. used minimum entropy and 

spectral kurtosis for fault detection in rolling element bearings [24]. Tafreshi et al. proposed a 

machinery fault diagnosis method utilizing entropy measure and energy map [25]. He et al. 

approximated entropy as a nonlinear feature parameter for fault diagnosis of rotating machinery [26]. 

Wu et al. proposed a bearing fault diagnosis method based on multiscale permutation entropy and 

support vector machine [27].  

In the branch of information entropy, Rényi entropy was introduced by Alfréd Rényi in 1960 [28], 

It is known as a parameterized family of uncertainty measures. It is noteworthy that the classical 

Shannon entropy [29,30] is a special case of Rényi entropy when the order α of Rényi entropy is equal 

to one. Similarly, other entropy measures that have appeared in various literatures are also special 

cases of Rényi’s entropy [31]. Besides being of theoretical interest as a unification of several distinct 

entropy measures, Rényi entropy has found various applications in statistics and probability [32], 

pattern recognition [33], quantum chemistry [34], biomedicine [35], etc.  

Therefore, a new method of operational safety evaluation based on wavelet Rényi entropy from 

sensor-dependent vibration signals is proposed. Firstly, the sensor-dependent vibration signals 

reflecting the time-varying characteristic of an individual turbo generator are acquired by professional 

sensors and then analyzed by the second generation wavelet package since the wavelet transform 

excels in analyzing unsteady signals in both the time domain and frequency domain. Derived from the 

sensor-dependent signals’ wavelet energy distribution over the observed frequency range, wavelet 

Rényi entropy is defined to compute the operational uncertainty, which is then transformed to an 

operational safety degree. Finally, the proposed method is applied in a 50 MW turbo generator to 

validate the effectiveness of the proposed method for operation and maintenance. 
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The organization of the paper is as follows: the basic theory of probability and Rényi entropy is 

briefly reviewed in Section 2. The proposed operational safety assessment method with wavelet Rényi 

entropy from sensor-dependent vibration signals is explained in Section 3. A case study of a 50 MW 

turbo generator is conducted in Section 4. General conclusions are drawn in Section 5. 

2. Theory Background 

2.1. Probability Space and Random Variable 

As usual, a finite probability space is given by a non-empty finite set  and a probability function 

𝑃: Ω → [0,1] with ∑ 𝑃(𝜔) = 1𝜔∈Ω , taking it as understood that the 𝜎-algebra is given by the power set 

of Ω [32]. For a random variable 𝑋: Ω → 𝜒, where its range 𝜒 is assumed to be finite. The distribution 

of 𝑋 is denoted as 𝑃𝑋: 𝜒 → [0,1], i.e., 𝑃𝑋(𝑥) = 𝑃(𝑋 = 𝑥), where 𝑋 = 𝑥 is a shorthand for the event  

{ 𝜔 ∈ Ω|𝑋(𝜔) = 𝑥}. The standard notation for intervals in ℝ, e.g., [0,1] and [1,∞] are denoted the 

respective intervals [0,1]={r ∈ ℝ|0 ≤ r ≪ 1}and [1,∞] ={r ∈ ℝ|1 < r }. 

2.2. Rényi Entropy 

Rényi entropy unifies all the distinct entropy measures. For a parameter α ∈ [0,1) ∪ (1, ∞) and a 

random variable 𝑋, the Rényi entropy of 𝑋 is defined as: 

1
( ) log ( )

1
X

x

H X P x 







  (1) 

where the sum is over all 𝑥 ∈ 𝑠𝑢𝑝𝑝(𝑃𝑋). 

It is well known and not hard to verify that this definition of 𝐻𝛼 is consistent with the respective 

definitions of H0 and H2 and  lim𝛼→1 𝐻𝛼(𝑋)  =  𝐻(𝑋) and  lim𝛼→∞ 𝐻𝛼(𝑋) = 𝐻∞(𝑋). Furthermore, it is 

known that the Rényi entropy is decreasing in α, i.e., 𝐻𝛽(𝑋) ≤ 𝐻𝛼(𝑋) for 0 ≤  𝛼 ≤ 𝛽 ≤ ∞. 

It will be convenient to re-write 𝐻𝛼(𝑋) for α ∈ [0,1) ∪ (1, ∞) as 𝐻𝛼(𝑋) = −log Ren𝛼(𝑋) with: 

1

1 1Ren ( ) ( ( ) )X X

x
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    (2) 

where 
XP


is the α-norm of 𝑃𝑋: 𝑋 → [0, 1] ⊂ ℝ, but we keep in mind that it actually is a norm only in 

case α ≥ 1. We call Renα(X) the Rényi probability (of order α) of X. For completeness, we also define 

Ren0(X) = |supp(PX )|−1, and Ren1(X) = 2−H(X), which is consistent with taking the limits. It is worthy to 

note that the parameter α is set as 0.9 in the following experiment. 

3. Operational Safety Assessment with Wavelet Rényi Entropy from Sensor-Dependent 

Vibration Signals 

3.1. Second Generation Wavelet Package Transform (SGWP) 

The second generation wavelet inherits the good multi-resolution ratio characteristics and the  

time–frequency localization properties of the first generation wavelet transform, which is a more 

effective and faster implementation of the wavelet transform and has the advantages of simple 

construction, small amount of calculations and in-place calculation [36]. It has been proved by 
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Daubechies that arbitrary wavelet transforms can be implemented by using a lifting scheme [37]. The 

second generation wavelet package transform belongs to the lifting scheme based on wavelet packet 

transform, which contains the forward transform (decomposition) and inverse transform 

(reconstruction). The inverse transform can be realized by running the forward transform backwards. 

The detailed procedure is explained as follows: 

1. Decomposition  

The forward transform of a second generation wavelet package for signal decomposition contains 

three steps: split, prediction and update. 

Split: Supposing there is an original signal { ( ), },S x k k Z   the original signal can be divided into 

an even series { ( ), }e es s k k Z   and an odd series { ( ), }o os s k k Z  : 

( ) (2 )es k x k , k Z  (3) 

( ) (2 1)os k x k  , k Z  (4) 

The reason for splitting an original signal into two series is that adjacent samples are much more 

correlated than those far from each other. Therefore, the odd and even series are highly correlated.  
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Figure 1. Illustration of the forward transform of second generation wavelet package.  

Prediction and update: Several samples of even series can be used to predict a certain sample in the 

odd series, and the prediction difference is defined as a detail signal. The even series can be updated 

using the obtained detail signal and the modified even series is defined as an approximation signal: 

1 ( 1)1 ( 1)1( )l l o l es s P s    (5) 

2 ( 1)1 1( )l l e ls s U s   (6) 

1 1(2 1) ( 1)2 ( 1)2
( )l l ll l o l e

s s P s   
   (7) 

12 ( 1)2 (2 1)
( )l l ll l e l

s s U s 
   (8) 

where 1 2 2
, , , ll l l

s s s  are the decomposed signals, in each frequency band respectively, after thl  

decomposition; 1( 1)1 ( 1)2
, , ll o l o

s s  
 are odd series respectively after the th( 1)l   decomposition; 

1( 1)1 ( 1)2
, , ll e l e

s s  
 are even series respectively after the th( 1)l   decomposition; P  is defined as N  point 

predictor whose prediction coefficients are 1 2, , , Np p p  and N is predictor order. U  is denoted as N  
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point updater with update coefficients 1 2, , ,
N

u u u  and N  is updater order. The coefficients 

1 2, , , Np p p  and 1 2, , ,
N

u u u  can be attained based on [37,38]. The forward transform of second 

generation wavelet package transform is illustrated in Figure 1.  

2. Reconstruction 

The inverse transform for signal reconstruction can be derived from the forward transform by 

running the lifting scheme as illustrated in Figure 1 backwards. The signal in one frequency band after 

decomposition is set to be reconstructed, and the others are set as zero. The signal reconstruction  

of second generation wavelet package transform for an appointed frequency band is carried out  

as follows: 

1( 1)2 2 (2 1)
( )l l ll e l l

s s U s 
   (9) 

1 1( 1)2 (2 1) ( 1)2
( )l l ll o l l e

s s P s   
   (10) 

1 1( 1)2 ( 1)2
(2 ) ( )l ll l e

s k s k  
 , k Z  (11) 

1 1( 1)2 ( 1)2
(2 1) ( )l ll l o

s k s k  
  , k Z  (12) 

( 1)1 2 1( )l e l ls s U s    (13) 

( 1)1 1 ( 1)1( )l o l l es s P s    (14) 

( 1)1 ( 1)1(2 ) ( )l l es k s k  , k Z  (15) 

( 1)1 ( 1)1(2 1) ( )l l os k s k   , k Z  (16) 

where ( 1)1 ( 1)1 ( 1)2 ( 1)2
(2 ) (2 1), , (2 ) (2 1)l ll l l l

s k s k s k s k   
 、 、  are the reconstructed signals of the 

appointed frequency band from the th( 1)l   reconstruction of the second generation wavelet  

package transform. 

3.2. Energy Distribution of Second Generation Wavelet Package Transform 

Since the second generation wavelet package transform obeys the energy conservation principle due 

to its bi-orthogonal basis, each of the attained 2l  frequency bands has the same bandwidth and end to 

end after the thl  decomposition and reconstruction. Supposing , ( )l is k  is the reconstructed signal at the 

thl  decomposition in the thl  frequency band, its energy ,l iE  and relative energy ,l iE  are respectively 

defined as follows: 
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Obviously, 
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,
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l

l i
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 , the sum of total relative energy equals to one. 
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3.3. Operational Safety Degree with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals 

The operational safety degree with wavelet Rényi entropy R  from sensor-dependent vibration 

signals is defined as: 

2

,2
1

1
1 log ( )

1

l

l l i

i

R E 

 

 


  (19) 

where the parameter α ∈ [0,1) ∪ (1, ∞).  

An illustration of the proposed operational safety assessment method with wavelet Rényi entropy is 

presented in Figure 2, which mainly includes condition monitoring and signal acquisition, signal 

processing with second generation wavelet package transform and operational safety assessment with 

wavelet Rényi entropy.  

 

Figure 2. Illustration of operational safety assessment with wavelet Rényi entropy from 

sensor-dependent vibration signals. 

4. Application in Operational Safety Assessment of a Turbo Generator 

4.1. Sensor-Dependent Vibration Signal Monitoring and Acquisition 

A comprehensive vibration monitoring study was conducted on a 50 MW turbo generator unit 

shown in Figure 3 to ensure its normal start-up and operation. An MDS-2 portable vibration 

monitoring system and professional sensors are used for vibration monitoring for the 1~#6 bearing 

app:ds:bearing
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bushings in the high pressure cylinder, low pressure cylinder and electric generator as illustrated in 

Figure 4. With the increased speed and load in the start-up process, all the bearings are in normal states 

since the peak to peak vibration in the vertical direction is less than 50 m, except for the vibration of 

the #4 bearing in the low-pressure cylinder which is out of limit. Therefore, the condition monitoring 

emphasis is focused on the vertical vibration of the #4 bearing. In the start-up process with empty load, 

the peak to peak vibration in the vertical direction of #4 bearing is 24.7 m at the speed of 740 r/min. 

Moreover, the peak to peak vibration in the vertical direction is increased to 63.2 m at the speed of 

3000 r/min and even to 86.0 m at the speed of 3360 r/min.  

 

Figure 3. The illustration of a 50 MW turbo generator unit. 

high pressure 

cylinder

1# 2# 3# 4# 5# 6# 

low pressure 

cylinder

electric 

generator  

Figure 4. The structure diagram of the 50 MW turbo generator unit. 

Afterwards, vibration monitoring is conducted in a stable speed of 3000 r/min with several given 

loads. The peak to peak vibration is about 74 m with the load of 6 MW, 104 m with the load of  

16 MW, and it even increases to 132 m with the load of 20 MW. The vibration is too severe to 

increase the load more, so the load is decreased to 6 MW and the peak to peak vibration is about  

75~80 m. The acquired vibration waveform is shown in Figure 5, which shows disorder and 

dissymmetry in the top and bottom of the vibration signal. The sampling frequency is 2 KHz. The FFT 

spectrum of the vibration signal is shown in Figure 6. The amplitude of the running frequency is the 

largest in the whole frequency range. In addition, there are some harmonic frequency components from 

two times the running frequency to ten times the running frequency, whose amplitudes are also large. 

 

 

Figure 5. The waveform of the sensor-dependent vibration signal in time domain. 
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Figure 6. The FFT spectrum of the sensor-dependent vibration signal in frequency domain. 

4.2. Sensor-Dependent Vibration Signal Analysis 

In order to further analyze the sensor-dependent vibration signal, a second generation wavelet 

package is adopted to decompose the original signal to the extent of level 2, level 3 and level 4, 

respectively. Each frequency band has the same bandwidth end to end. Afterwards, the relative energy 

of the corresponding frequency band analyzed by the second generation wavelet package is computed 

according to Equation (18).  

The four signals obtained analyzed by the second generation wavelet package in level 2  

are illustrated in Figure 7, which respectively correspond to the frequency bands of 0~250 Hz,  

250~500 Hz, 500~750 Hz and 750~1000 Hz.  

 

Figure 7. The sensor-dependent signals analyzed by the second generation wavelet 

package in level 2. 

The sensor-dependent signal’s relative energy of the corresponding frequency band is calculated 

according to Equation (18), which is shown in Figure 8. The relative energy of the first frequency band 

is the largest, while the relative energy of the second frequency band is larger than that of the last two 

frequency bands. 
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Figure 8. The sensor-dependent signal’s relative energy distribution in level 2. 

On the basis of the level 2 study, the original signal is further decomposed to the extent of level 3 as 

shown in Figure 9. The eight signals obtained correspond to the frequency bands of 0~125 Hz,  

125~250 Hz, 250~375 Hz, 375~500 Hz, 500~625 Hz, 625~750 Hz, 750~875 Hz and 875~1000 Hz. 

The relative energy is distributed in the eight frequency bands as shown in Figure 10. The energy of 

the first four frequency bands is much larger than that of the rest.  

 

Figure 9. The sensor-dependent signals analyzed by second generation wavelet package  

in level 3. 

 

Figure 10. The sensor-dependent signal’s relative energy distribution in level 3. 
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On the basis of the level 3 study, the original signal is further decomposed to the extent of level 4 as 

shown in Figure 11. The obtained sixteen signals correspond to the frequency bands of 0~62.5 Hz, 

62.5~125 Hz, 125~187.5 Hz, 187.5~250 Hz, 250~312.5 Hz, 312.5~375 Hz, 375~437.5 Hz,  

437.5~500 Hz, 500~562.5 Hz, 562.5~625 Hz, 625~687.5 Hz, 687.5~750 Hz, 750~812.5 Hz,  

812.5~875 Hz, 875~937.5 Hz and 937.5~1000 Hz. The signal’s relative energy of each frequency band 

is computed as shown in Figure 12.  

 

Figure 11. Signals analyzed by second generation wavelet package in level 4. 

 

Figure 12. Wavelet package energy distribution in level 4. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1

Band sequence number 

R
el

at
iv

e 
en

er
g
y
 

 



Sensors 2015, 15 8909 

 

 

The relative energy of the first band is much larger than that of the other frequency bands. Except 

for the first largest frequency bands, the energy of the fourth to the ninth frequency band is larger than 

that of the rest. It is inferred that there are some fault information contained in the fourth to the ninth 

frequency band.  

4.3. Operational Safety Assessment with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals 

The operational safety degree is calculated according to Equation (19) from level l = 2 to level l = 4, 

respectively. From Table 1, it is seen that the current operational performance of the turbo generator is 

not suitable, since all of the calculated safety degrees from level l = 2 to level l = 4 are under 0.4, the 

lowest of which is 0.2467 in level l = 3. Since mechanical faults and unhealthy parameters can make 

machinery operational condition become uncertain, the probability distribution of the monitored 

vibration signal become uncertain and thus induces a much lower operational safety. 

Table 1. The operational safety degree before maintenance from sensor-dependent vibration signals. 

Decomposition Level l = 2 l = 3 l = 4 

Operational safety degree 0.3363 0.2467 0.2812 

4.4. Fault Diagnosis 

As the above analysis, the amplitude of the running frequency is the largest among the whole 

frequency range and some harmonic frequency components from two times the running frequency to 

ten times the running frequency are also large in Figure 6. Signals analyzed by the second generation 

wavelet package and wavelet package energy distributions in level 2, level 3 and level 4 exhibit  

non-stationary, nonlinear and colored noise characteristics. 

Considering the start-up process with no load and loading operation conditions, the vertical 

vibrations of the #3 and #5 bearings which are adjacent to the #4 bearing are not high (under 20 m). 

Different from the #3 and #5 bearings, the vibration of the #4 bearing increases with increased speed 

and load. It is concluded that the vibration is not caused by imbalance and misalignment for the reason 

that vibrations would be out of limits in multiple bearing position if an imbalance or misalignment 

fault occurs. Therefore, the problem is focused on the #4 bearing itself. It is inferred that the monitored 

non-stationary and nonlinear components in the vibration signal of the #4 bearing may be caused by 

mechanical looseness and local friction, so the bearing force and support status of the sizing block and 

bearing lodgement must be checked.  

With the above analysis, the turbo generator unit is stopped and overhauled. The preload of the #4 

bearing bushing is about 0.11 mm, which is far from the requirement of 0.25 mm. The gaps of the left 

and right sizing block are checked by a filler gauge. The 0.05 mm filler gauge can be filled into 30 mm 

of the left sizing block and 25 mm of the right sizing block. The gap in the bottom of the #4 bearing  

bushing is also far away from the obligate gap of 0.05 mm. Therefore, the gaps of the 4# bearing bush 

are re-corrected and the preload is added to the requirement of 0.25 mm.  

After maintenance, the turbo generator unit is operated again. The sensor-dependent vibration signal 

is decreased in the start-up process with increasing speed. The peak to peak vibration in the vertical 

direction in the #4 bearing bushing is about 40~55 m with a load of 45 MW, which is much better 
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than before. In order to assess the operational safety of the turbo generator unit after maintenance, 

vibration monitoring via sensors is conducted in a stable speed of 3000 r/min with a load of 6 MW, 

which is as the same as the case before maintenance. The waveform of the acquired vibration signal 

shown in Figure 13 shows some differences compared with the vibration signal before maintenance in 

Figure 5, such as the symmetry between the top and bottom of the vibration signal is much better than 

before and the peak to peak vibration is about 45 m, which falls in the permissible range. The FFT 

spectrum of the vibration signal is shown in Figure 14, which is different from the spectrum before 

maintenance shown in Figure 6. The amplitudes of the harmonic frequency components from two 

times the running frequency to ten times the running frequency are decreased. The second generation 

wavelet package is adopted to analyze the acquired vibration signal on level 2, level 3 and level 4, 

respectively. Afterwards, the relative energy of the corresponding frequency band analyzed by the 

second generation wavelet package is computed according to the Equation (18).  

 

Figure 13. The waveform of the sensor-dependent vibration signal in time domain after maintenance. 

 

 

Figure 14. The FFT spectrum of the sensor-dependent vibration signal after maintenance. 

The four obtained signals analyzed by the second generation wavelet package in level 2 are 

illustrated in Figure 15. The signals’ relative energy after maintenance is concentrated in the first 

frequency band shown in Figure 16 and the relative energy of the last three frequency bands is very 

little, which is quite different from Figure 8. It is shown that the relative energy in the second 

frequency band of Figure 8 before maintenance is generated by the machinery fault information of the 

gaps in the #4 bearing bushing and the whole energy is decentralized in frequency bands. 

The sensor-dependent vibration signal is processed to the extent of level 3, which is shown in  

Figure 17. The signals’ relative energy distribution shown in Figure 18 is also different from that in 

Figure 10 before maintenance, such as the relative energy of the last seven frequency bands is very 

small in Figure 18. 
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Figure 15. Signal analysis by the second generation wavelet package in level 2 after maintenance. 

 

Figure 16. The sensor-dependent signal’s relative energy distribution after maintenance. 

 

 

Figure 17. Signal analysis by the second generation wavelet package in level 3 after maintenance. 
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Figure 18. The sensor-dependent signal’s relative energy distribution in level 3 after maintenance. 

It is inferred that the relative energy from the second frequency band to the fourth frequency band 

in Figure 10 is caused by the machinery’s fault information concerning the gaps in the #4 bearing 

bushing. The sensor-dependent vibration signal is finally processed to the extent of level 4, which is 

shown in Figure 19.  

 

 

Figure 19. Signals analysis by second generation wavelet package in level 4 after maintenance. 
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As shown in Figure 20, the signal’s relative energy distribution after maintenance is also different 

from that before maintenance in Figure 12, such as the relative energy in the rest frequency bands is 

very little except the first one in Figure 20. 

 

Figure 20. The sensor-dependent signal’s relative energy distribution in level 4 after maintenance. 

It is inferred that the relative energy from the fourth frequency band to the ninth frequency band in 

Figure 12 before maintenance is caused by the machinery fault information of the gaps in the #4 

bearing bushing. It is concluded that machinery fault information can spoil the energy convergence of 

the second generation wavelet package and thus induce the dispersion of the wavelet energy 

distribution. Therefore, it is verified that second wavelet package transform can process the vibration 

signals in different frequency bands to effectively reveal the machinery operation conditions. 

To summarize, it is diagnosed that the extensive vibration is caused by the looseness of the #4 

bearing, poor support and tension force shortage. The vibrations added with increased speed and load, 

which have the characteristics of non-stationarity, nonlinear properties and contain colored noise 

because of the friction caused by looseness faults. 

4.5. Operational Safety Assessment after Maintenance 

The operational safety degree of the turbo generator after maintenance is calculated according to 

Equation (19) from level l = 2 to level l = 4, respectively, in Table 2. It is seen that the operational 

safety degree is improved after maintenance.  

Table 2. The operational safety degree before maintenance from sensor-dependent 

vibration signals after maintenance. 

Decomposition Level l = 2 l = 3 l = 4 

Operational safety degree 0.8627 0.8278 0.8060 

4.6. Discussion on the Operational Safety Assessment Influenced by Decomposition Level l of the 

Second Generation Wavelet Package Transform 

From Tables 1 and 2, it is seen that the calculated operational safety degree is closely related to the 

decomposition level l of the second generation wavelet package transform. When the decomposition 

level l increases, the number of frequency bands is increased and the initially concentrated signal’s 

wavelet energy is scattered with the increased frequency bands. Each frequency band occupies a 

certain energy and the signal’s wavelet energy distribution becomes more uncertain. In Table 2, the 
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computed operational safety is monotonously decreased with increasing level from level l = 2 to level  

l = 4, but in Table 1 before maintenance, the monotone decreasing rule is not obeyed since the 

machinery fault information makes the signal’s wavelet energy distribution decentralized. Therefore, 

the operational safety should be computed at an appropriate level l. Level l = 3 is suggested as a  

very suitable level since it is a middle level between level l = 2 to level l = 4, which is not too large or  

too small.  

4.7. Discussion of the Operational Safety before and after Maintenance 

When turbo generator is degrading or unhealthy, its operational conditions will become more and 

more uncertain. Therefore, the wavelet Rényi entropy of the sensor-dependent vibration signal will 

increase and the operational safety will correspondingly decrease. The operational safety before and 

after maintenance is contrasted in Figure 21, where it is seen that the operational safety after 

maintenance is greater than before at different levels l of the second generation wavelet package 

transform. From Table 1, it is shown that all of the calculated operational safety degrees from level  

l = 2 to level l = 4 are under 0.4, the lowest of which is 0.2467 in level l = 3. The computed operational 

safety is very low, which illustrates that the current operational condition is seriously poor and 

maintenance is needed. While overhauling, it is found that the preload of the #4 bearing bushing is 

below standard and there are some gaps in the left and right sizing block of its bearing bushing, which 

induced a disorder phenomenon in the vibration signals acquired by the sensors. 

 

Figure 21. Contrasting operational safety degree before and after maintenance for different levels. 

After maintenance, all of the calculated operational safety degrees from level l = 2 to level l = 4 are 

over 0.8 in Table 2, the highest of which is 0.8627 in level l = 2. It is seen that maintenance in time can 

increase the operational safety and avoid the occurrence of accidents, so it is concluded that the 

proposed operational safety assessment with wavelet Rényi entropy from condition-dependent signals 

can provide a basis for condition-based maintenance of turbo generators. 

  

2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

before maintenance

after maintenance

S
af

et
y

 d
eg

re
e 

Level l 



Sensors 2015, 15 8915 

 

 

4.8. Operational Safety Assessment with Wavelet Rényi Entropy in Comparison with Wavelet Entropy 

In order to illustrate the effectiveness of the proposed operational safety assessment method with 

wavelet Rényi entropy, the operational safety degree with wavelet entropy R  from sensor-dependent 

vibration signals is defined as: 

2

, ,2
1

1 log

l

ll i l i

i

R E E


   (20) 

which is in contrast with the wavelet Rényi entropy defined in Equation (19). 

The operational safety degree of wavelet entropy is calculated according to Equation (20) from 

level l = 2 to level l = 4, respectively. The comparison results of wavelet entropy and wavelet Rényi 

entropy are shown in Table 3. It is seen that the operational safety degrees are more improved by the 

wavelet Rényi entropy since the operational safety degrees computed from the wavelet Rényi entropy 

are smaller than the wavelet entropy before maintenance and the operational safety degrees computed 

from the wavelet Rényi entropy are increased after maintenance from level l =2 to level l = 4, so the 

differences between before maintenance and after maintenance using the wavelet Rényi entropy are 

bigger than those of wavelet entropy, and are helpful to distinguish the two conditions of turbo 

generator—before maintenance and after maintenance. 

Table 3. Operational safety assessment with wavelet Rényi entropy in comparison with 

wavelet entropy. 

Method Decomposition Level l = 2 l = 3 l = 4 

wavelet entropy 
Before maintenance 0.3564 0.2631 0.3034 

After maintenance 0.6956 0.6663 0.6493 

 Difference between before and after maintenance 0.3392 0.4032 0.3459 

wavelet Rényi entropy 
Before maintenance 0.3363 0.2467 0.2812 

After maintenance 0.8627 0.8278 0.8060 

 Difference between before and after maintenance 0.5264 0.5811 0.5248 

5. Conclusions 

A new method of operational safety assessment based on wavelet Rényi entropy from  

sensor-dependent vibration signals is proposed for turbo generators, which is realized by analyzing  

the sensor-dependent vibration signals. The vibration signals are analyzed by means of a second 

generation wavelet package. Deriving from the signal’s wavelet energy distribution over the observed 

frequency range, the wavelet Rényi entropy is defined to compute the operational uncertainty, which is 

then transformed into an operational safety degree. A case study of a 50 MW turbo generator has been 

studied to evaluate the operational safety before maintenance and after maintenance, which achieves 

desirable results. The operational safety as influenced by the decomposition level l of the second 

generation wavelet package is analyzed and set at an appropriate level. Since timely maintenance can 

increase the operational safety and avoid the occurrence of accidents, the proposed operational safety 

assessment method can serve as a basis for condition-based maintenance of turbo generators. 
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