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Discrete-time dynamic network model for the spread of susceptible-infective-recovered diseases
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We propose a discrete-time dynamic network model describing the spread of susceptible-infective-recovered
diseases in a population. We consider the case in which the nodes in the network change their links due to social
mixing dynamics as well as in response to the disease. The model shows the behavior that, as we increase social
mixing, disease spread is inhibited in certain cases, while in other cases it is enhanced. We also extend this
dynamic network model to take into account the case of hidden infection. Here we find that, as expected, the
disease spreads more readily if there is a time period after contracting the disease during which an individual is
infective but is not known to have the disease.
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I. INTRODUCTION

The importance of the contact pattern of individuals in epi-
demic spreading has long been acknowledged by researchers
[1–4]. With the growth of the field of complex networks,
there have been a number of studies on infection spreading
on networks with nontrivial properties [5–11]. Typically,
the underlying network in epidemic-spreading models is
considered to be static. One can then study the effect of network
structure on disease propagation. While the assumption of a
static network may work well for cases in which the topology
of the network does not change significantly during the course
of the spreading process, in general we cannot neglect the
fact that human contacts evolve over time. Depending on the
disease and the type of contacts in which we are interested, the
time scales for the change of human contacts and the spread
of an epidemic may vary. To take into account the changing
contacts of individuals, many researchers have considered
disease spread on networks in which links change over
time [12–15].

In the epidemiological literature, dynamic models where
contacts are constantly being formed and dissolved have been
considered. Using models based on partnership formation [16–
18], one can study the effect of dynamic contacts due to mixing.
These models do not take into account the contact networks
behind partnership formation and assume that contacts form at
random. Thus, attempts have also been made to consider the
underlying network structure in disease propagation models.
For example, Volz and Meyers [15] considered a susceptible-
infective-recovered (SIR) model on a full network in which
each individual’s contacts change in time. In their model,
referred to as the neighbor exchange model, the dynamics of
partnership is implemented through edge swapping between
two already connected pairs of nodes.

In the complex network community, a class of dynamic
network models that has been considered is the so called
adaptive network models. In these models, a network’s
contacts change in response to the disease. Gross et al. [12]
studied susceptible-infective-susceptible (SIS) dynamics on
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adaptive networks where with a given constant probability,
susceptibles break their links with infected neighbors and
connect the broken links to randomly chosen susceptibles.
With changing rewiring rates, their model shows interesting
behavior where bistable and oscillatory states are possible.
Other adaptive network models with a rewiring procedure have
also been considered [13,14]. A review of epidemic modeling
in complex networks can be found in Ref. [19].

In our study of epidemic spreading on complex networks,
we consider a discrete-time dynamic network model that has
additional dynamics compared to the simpler models discussed
above. The proposed model tries to capture some of the
important features of the dynamics of real human networks.
In this model, social mixing dynamics and disease evasion
causes change in network topology. Social mixing results in
the constant evolution of contacts, which is independent of
the disease status of the nodes, while disease evasion causes
suppression of susceptible-infected links in the network due
to the avoidance of infected nodes by the susceptible nodes.
We study SIR disease on such dynamic networks where, at any
given time, the nodes could be in one of the three possible
states, namely susceptible (S), infective (I ), and removed (R).
Here, R represents the state in which the node is removed from
the network and no longer takes part in any kind of dynamics.
The model considers the case of imperfect evasion where
susceptible nodes cannot avoid infected nodes completely
when new connections are formed in the network. This is in
contrast to other models where, after the susceptible-infected
links are broken, either the broken links are removed or
susceptible nodes reconnect the broken links to noninfected
nodes in the network [12–14]. In our study, we focus on how
the above-mentioned network dynamics influences the value
of disease transmission probability above which the disease
infects a finite fraction of the population in the limit of infinite
system size.

We also study the case of hidden infection in the dynamic
network model discussed above. Here we consider the case in
which there is a period after an individual contracts an infection
during which the individual is infective but asymptomatic.
Thus, contacts between infected individuals in such a state
and susceptibles cannot be avoided. In medical terminology,
“occult infection” refers to an infection that presents no clinical
signs or symptoms. In our model, we are interested in the case
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in which the infected individual, while being asymptomatic, is
infective. In dynamic network models, hidden infection affects
dynamics on and of the network when we have disease evasion
dynamics. Note that the effectiveness of disease intervention
measures cannot be guaranteed when they are based on models
that do not incorporate hidden infection for diseases with such
characteristics.

In the next section, we describe our dynamic network
model. In Sec. III, we give a mean-field analysis for this
model to determine the location of epidemic transition when
the period of infectivity is one time step. In Sec. IV, we extend
the model discussed in Sec. II to incorporate hidden infection.
In Sec. V, we present the results from a computer simulation
of our model, and we conclude in Sec. VI.

II. DYNAMIC NETWORK MODEL WITH BOTH SOCIAL
MIXING DYNAMICS AND DISEASE EVASION

In our model, the dynamics occur in discrete time steps.
We start with all nodes in susceptible state. We then introduce
the disease in the network by randomly choosing a node and
infecting it. Our goal is to characterize the dynamics that follow
after the disease is introduced in this manner.

We consider the acyclic process S → I → R, where R

represents the state in which the node is considered removed
from the network. At any given time step, the total number of
nodes in various states is fixed, i.e., NS,t + NI,t + NR,t = N ,
where N is the number of nodes in the network we started
with, NS,t is the number of susceptible nodes, NI,t is the
number of infective nodes, and NR,t is the total number
of removed nodes in the network at time step t . The total
number of “active nodes” in the population is given by
NS,t + NI,t � N .

In the model, there are three dynamical processes that are
occurring in the network: disease-evasion dynamics, social-
mixing dynamics, and disease spread. At the beginning of
each time step, the evasion process and social dynamics occur
together, followed by disease transmission from infective
nodes to susceptible nodes. The evasion process and the social
dynamics constitute the topological dynamics of the network
in which nodes delete their old links and form new connections.
Because of the suppression of susceptible-infected links due to
disease evasion, each existing S-I link in the network is deleted
with a constant probability η1. Due to social dynamics, we
assume that the nodes delete their links randomly, independent
of their disease status. To account for this, each existing link
in the network is deleted with a constant probability φ. Since
in our model both the evasion process and social dynamics
happen together, each S-S and I -I link is deleted with
probability φ while each S-I link is deleted with probability
α = η1 + (1 − η1)φ.

All the nodes with links deleted via the above process search
for new partners. This also includes nodes from the previous
time steps that have deleted links due to other reasons discussed
below. In our model, nodes attempt to maintain the number of
connections specified by their desired degree (which never
changes). Thus the number of partners that a node seeks is
equal to the number of its deleted links. While searching for
new partners, we assume that the nodes mix randomly. In
the mixing population, a node could appear more than once

and the multiplicity of a node in equal to the number of its
deleted links. While mixing, a node has an equal chance of
meeting any other node, independent of their disease status.
However, we differentiate between nodes meeting each other
and actually forming a new link. When nodes with the same
disease status meet (i.e., a potential S-S or I -I link), they form
a new link with probability 1. When nodes with a different
disease status meet (i.e., a potential S-I link), due to disease
evasion, the link is formed with probability 1 − η2, where η2

is a second evasion parameter. This is the case of imperfect
evasion where the susceptible nodes avoid getting infected
by deleting their links with the infected neighbors, but while
searching for new partners there is again a chance of the
formation of new susceptible-infected links. When a pair of
susceptible and infected nodes is rejected (with probability η2),
the rejected pair move to the next time step to search
for partners. To keep the dynamics simple, in our simula-
tions we allow the nodes to form self-loops and multiple
edges.

In each time step, the topological dynamics described above
is followed by the disease transmission dynamics. Disease
spreads from an infected node to a susceptible node along
each existing S-I link with transmission probability λ. Once a
susceptible node gets infected, while being infective, it remains
in infected state for a fixed period of time τ , after which the
node moves to the removed class. The nodes in the removed
class never change their disease status nor do they take part
in topological dynamics. When a node moves to the removed
class, the active nodes in the network (nodes with disease status
S and I ) delete their links with the removed node. These active
nodes then search for new partners in the next time step.

III. MEAN-FIELD ANALYSIS FOR THE DYNAMIC
NETWORK MODEL FOR τ = 1

Here we present a mean-field analysis giving the location
of epidemic transition for the model described in Sec. II when
the period of infectivity is one time step. We are interested in
finding the value of transition point λ̂ such that for λ > λ̂, a
finite fraction of the population gets infected in the limit of
infinite system size. In our analysis, we assume that networks
are large and sufficiently sparse so that loops can be neglected.

Before analyzing our model, we first review the case
of infinite random static networks with arbitrary degree
distributions in cases in which loops can be neglected [20]. Let
P (d) denote the probability that a randomly chosen node in the
network has degree d. Let Q(d) denote the probability density
function for the degree of a node at the end of a randomly
chosen edge. For random networks, the distribution Q(d) is
given by

Q(d) = dP (d)/〈d〉, (1)

where 〈· · · 〉 denotes the expectation over the distribution P (d).
For the discrete-time SIR model on infinite random net-

works, assuming that we start with one infected node, we are
interested in the size of the infected component connected to
that node. Let zt be the expected number of infected nodes at
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time step t . We then have

zt+1 = λzt

∑

d

(d − 1)Q(d) = λ
〈d2〉 − 〈d〉

〈d〉 zt . (2)

The critical value λc above which the epidemic incidence is
finite is given by zt+1/zt = 1. Thus, for the SIR model on static
networks,

λc = 〈d〉
〈d2〉 − 〈d〉 . (3)

To analyze the dynamic network model proposed in this
paper, we modify the above method. Since we consider that
the networks are large and sparse, and that new connections
in our model are formed randomly, we assume that during the
early stages of the epidemic, the dynamic network has locally
a treelike structure. Similar to the case of static networks
discussed above, to get an estimate of λ̂ in the mean-field
approximation (i.e., neglecting fluctuations), we assume that
at the transition point the expected number of infected nodes
at time step t is equal to the expected number of infected nodes
at time step t − 1. In the following analysis, we set the period
of infectivity of nodes τ to be one time step.

Let MSI,t be the expected number of S-I links in the
network at the beginning of time step t . During the topological
dynamics, each S-I link is deleted with probability α. In the
mean-field approximation, the expected number of S-I links
that get deleted is αMSI,t . Now, let It−1 denote the expected
number of nodes that got infected in time step t − 1. When
the infected nodes from time step t − 2 move to the removed
class in time step t − 1, the newly infected nodes from time
step t − 1 that were linked to infected nodes from time step
t − 2 search for partners in time step t . Thus, the expected
total number of infected nodes that will search for partners in
time step t is

KI = αMSI,t + It−1. (4)

We do not have a contribution from φMII,t in the above
equation because the period of infectivity τ is one time step and
we assumed that the network has locally a treelike structure.
Before the topological dynamics in time step t , infected nodes
from time step t − 2 move to removed class and we do not
have I -I links. Similarly, the expected number of susceptible
nodes that will search for partners is

KS = αMSI,t + 2φMSS,t + η2Xt−1 + Yt−1, (5)

where MSS,t is the expected number of S-S links in the network
at the beginning of time step t . In the third term, Xt−1 is the
number of susceptible-infected pairs that form while nodes
search for partners in time step t − 1. Out of these, a fraction
η2 of them get rejected. The susceptible nodes from those
rejected pairs search for partners in time step t . Finally, the
term Yt−1 accounts for the fact that when infected nodes from
time step t − 2 move to the removed class in time step t − 1,
the susceptible nodes previously connected to them look for
partners in time step t . Here, the time dependence of variables
KI and KS is implied. As discussed in the preceding section,
the multiplicity of a node in KI or KS is equal to the expected
number of its deleted links.

When forming new connections, we assume that the nodes
mix randomly. To keep the dynamics simple, the nodes that
disconnect their links with each other in a particular time
step are allowed again to create links with each other in the
same time step. We also allow for self-loops and multiple
edges. Under these assumptions, when we have K̃I and K̃S

nodes seeking partners [where K̃I and K̃S denote the actual
(integer) number, and not the expected number, of nodes
seeking partners in a particular realization of the system],
the probability of X̃ susceptible-infected pairs forming, when
K̃I + K̃S is even, is given by (see the Appendix A)

2X̃K̃I !K̃S! (K̃I +K̃S )
2 !

X̃! K̃I −X̃
2 ! K̃S−X̃

2 !(K̃I + K̃S)!
. (6)

One can show that over the above distribution, the expected
value of X̃ is K̃I K̃S/(K̃I + K̃S − 1). Similarly, when K̃I + K̃S

is odd, one can show that the expected value of X̃ is
K̃I K̃S/(K̃I + K̃S). We assume that the number of nodes
seeking partners is large, and we approximate the expected
number of susceptible-infected pairs, Xt , as

KIKS

KI + KS

. (7)

Of the Xt pairs of nodes, (1 − η2)Xt is the expected number
of pairs that actually form links. Thus, the expected number of
new S-I links that get created at time step t is

(1 − η2)
KIKS

KI + KS

. (8)

We plug in KI and KS from Eqs. (4) and (5) in the above
equation and make further simplifications. Since we assume
that the networks are large, this means that MSS,t is large.
We also assume that the expected number of infected nodes is
small at the transition point. Thus, for φ greater than a certain
value, at the transition point, KI and αMSI,t + η2Xt−1 + Yt−1

will be much smaller than φMSS,t . Neglecting terms of higher
order, from Eqs. (4), (5), and (8) we get the expected number
of new S-I connections at time step t as

(1 − η2)[αMSI,t + It−1]. (9)

After the topological dynamics, the total number of S-I links
in the network at time step t includes the S-I links that did not
get deleted during the link deletion step, and the newly created
S-I links in the equation above. Thus, the total number of S-I
links after the topological dynamics at time step t is

(1 − α)MSI,t + (1 − η2)[αMSI,t + It−1]. (10)

For each of these susceptible-infected links, the probability
of disease transfer is λ. Thus, the expected number of new
infections is

It ≈ λ[(1 − αη2)MSI,t + (1 − η2)It−1]. (11)

Assuming a treelike structure of the network, the value

of MSI,t is [ 〈d2〉−〈d〉
〈d〉 ]It−1, where

∑
d (d − 1)Q(d) = 〈d2〉−〈d〉

〈d〉
denote the expected number of edges of an infected node,
discounting the edge through which the infection transferred
to that node. At the transition point, we assume It = It−1,
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FIG. 1. Flow of nodes through different states in the hidden
infection model.

which yields

λ̂ ≈ 1
[ 〈d2〉−〈d〉

〈d〉
]
(1 − αη2) + (1 − η2)

. (12)

IV. EXTENSION OF THE DYNAMIC NETWORK MODEL
TO INCLUDE HIDDEN INFECTION

Here we extend the model described in Sec. II to allow
for hidden infection. In this case, the flow of nodes from one
state to another can be depicted as shown in Fig. 1. When a
susceptible node gets infected, prior to moving to state I , it
moves to state IH . In state IH , the infected node does not show
symptoms of the infection and thus is not known to have the
disease. Although nodes in this state are asymptomatic, they
are infective and can infect the susceptible nodes to which
they are connected. Thus, the risk of infection spreading in the
population increases because the susceptibles cannot avoid
nodes with hidden infection.

In the dynamic network model with hidden infection, after
spending a fixed amount of time τ1 in state IH , the infected
nodes move to state I , where they show symptoms of the
disease and are also infective. For this model, the amount of
time the nodes spend in state I is represented by τ2. The total
period of infectivity τ is thus equal to τ1 + τ2. In our model, we
assume that the nodes in states I and IH infect their susceptible
neighbors with the same probability λ.

For the purpose of topological dynamics, we treat nodes in
states S and IH equally. Thus, during the link deletion process,
S-S, IH -IH , S-IH , and I -I links are deleted with probability
φ, while S-I and IH -I links are deleted with probability α.
While forming new links, nodes mix randomly and form
pairs. Similar to the discussion in Sec. II, when a pair is S-S,
IH -IH , S-IH , or I -I , a new link is formed with probability 1.
When a pair is either S-I or IH -I , a new link is formed with
probability 1 − η2.

V. SIMULATION RESULTS

We simulated the models described in Secs. II and IV
on Erdös-Rényi and scale-free networks with N = 105 and
〈d〉 = 5. The scale-free network, with degree distribution
P (d) ∼ d−γ , has γ = 3.5 and maximum degree 300 (given
by the natural cutoff [21]). At the beginning of simulations,
we introduce the disease in the network by randomly choosing
a node and infecting it, and we study the evolution of the
system’s dynamics. In the results given below, we are primarily
concerned with the location of the epidemic transition with
varying system parameters. The size of the epidemic is
measured by the final number of R nodes in the network after
the disease has died out.
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FIG. 2. λ̂ vs social dynamics parameter φ for Erdös-Rényi
networks discussed in the text. The values of other parameters
are η1 = 0.4, η2 = 0.4, and τ = 1. The arrows show the value of
the epidemic transition for static networks (which almost overlap
for simulations and prediction). Simulation results are obtained by
averaging over 50 000 independent realizations on a single network.

A. Effect of varying social mixing and disease evasion

For the dynamic network model discussed in Sec. II, Figs. 2
and 3 show how the value of λ̂ changes with changing
social dynamics parameter φ for τ = 1 for Erdös-Rényi
and scale-free networks. Results for both simulations and
predictions have been plotted for fixed values of η1 and η2

(both set to 0.4). For the sake of comparison, results for static
networks are also shown. The predictions are obtained from
Eqs. (3) and (12) using the value of 〈d2〉−〈d〉

〈d〉 for infinite random
networks. The epidemic transition in simulations is obtained
using the variability measure given in Ref. [22]. Figures 2 and
3 also demonstrate the range of applicability of our mean-field
prediction. The figures show that the predictions agree very
well with simulations as long as the value of φ is such that
φMSS is large.

When φ is not too small, Figs. 2 and 3 show that as
φ is increased, the value of the transmission probability at
which epidemics first occur also increases. Alternatively, for
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FIG. 3. λ̂ vs social dynamics parameter φ for scale-free networks
discussed in the text. The values of other parameters are η1 = 0.4,
η2 = 0.4, and τ = 1. The arrows show the value of the epidemic
transition for static networks. Simulation results are obtained by
averaging over 200 000 independent realizations on a single network.
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FIG. 4. λ̂ vs social dynamics parameter φ when the total period
of infectivity τ = 2 for Erdös-Rényi networks discussed in the text.
The value of η1 is 0.6, and from bottom to top, η2 = 0.0, 0.2, 0.4,
and 0.6. Simulation results are obtained by averaging over 50 000
independent realizations on a single network.

a given value of transmission probability λ, as φ increases,
fewer individuals in the population get infected. This result is
contrary to the general belief that with increased social mixing,
a disease has a better chance of spreading. In our model, we
get this counterintuitive result because of the presence of the
second evasion parameter η2 and the period of infectivity being
small (τ = 1). As φ increases, a larger number of S-I links
get deleted due to social dynamics. But as the infected nodes
previously connected by these deleted links seek new partners,
they get rejected with probability η2, leading to a reduction in
the number of S-I links in the network through which the
disease can spread. These rejected infected nodes move to
removed class before the next time step.

However, the behavior discussed above for τ = 1 with
varying φ is not general. When the period of infectivity is
increased, in certain parameter ranges λ̂ can decrease with
increasing φ. This is the widely acknowledged behavior that
with increasing social mixing, the disease has a better chance
of spreading. For τ > 1, with increasing φ more I -I links get
deleted and the infected nodes connected by these I -I links can
form new connections with susceptible nodes and can increase
the spread of disease in the network. Figure 4 shows the results
for λ̂ versus φ for τ = 2 for an Erdös-Rényi network. This
figure shows that, in certain cases, λ̂ decreases as φ increases,
while in other cases, λ̂ increases with increasing φ. For τ = 2,
one can derive the predictions for the dynamic network model
in a way similar to that discussed for τ = 1 in Sec. III.
However, for τ = 2 the equations become complicated and
require a numerical solution.

Having explored the role of the social dynamics parameter,
we now study the effect of varying evasion parameters (η1 and
η2) with fixed φ (Fig. 5). The green (light) curve shows the
prediction, while � symbols show the results from simulations,
with varying η1 for a fixed value of η2 (= 0.4). As expected, as
η1 increases, the transition point also increases as the disease
spread is inhibited. The red (dark) curve shows the prediction,
while � symbols show the results from simulations, with
increasing η2 for a fixed value of η1 (= 0.4). As can be seen,
increasing η2 causes an increase in λ̂.

       0.1

       0.2

       0.3

       0.4

0  0.25  0.5  0.75 1

λ̂

η1,η2

prediction (λ̂ vs η1)
simulation (λ̂ vs η1)
prediction (λ̂ vs η2)
simulation (λ̂ vs η2)

FIG. 5. λ̂ vs disease evasion parameters for Erdös-Rényi net-
works discussed in the text. The green (light) curve is the prediction
for changing η1 keeping η2 = 0.4, while the red (dark) curve is the
prediction for changing η2 keeping η1 = 0.4. The values of other
parameters are φ = 0.1 and τ = 1. Simulation results are obtained by
averaging over 50 000 independent realizations on a single network.

In Fig. 6, we show the distribution P (ρ) of the size of the
epidemic ρ from simulations with changing φ, η1, and η2 for
an Erdös-Rényi network when τ = 1. In all three figures, the
value of the transmission probability λ is chosen to be above
the transition point. As can be seen in Fig. 6, the distribution
of the size of the epidemic is bimodal. In Fig. 6(a), the fraction
of points in the right part of the bimodal distributions are
0.40, 0.26, and 0.12 for φ = 0.1, 0.6, and 1.0, respectively. In
Fig. 6(b), the fraction of points in the right part of the bimodal
distributions are 0.54, 0.32, and 0.12 for η1 = 0.0, 0.6, and
1.0, respectively. In Fig. 6(c), the fraction of points in the
right part of the bimodal distributions are 0.74, 0.48, and 0.10
for η2 = 0.0, 0.6, and 1.0, respectively. In agreement with the
results in Figs. 2 and 5, the results in Fig. 6 show that as φ, η1

and η2 are increased, the disease spread is inhibited.

B. The case of hidden infection

Here we present the results for the case of a disease with
hidden infection on an Erdös-Rényi network. For period τ1

after contracting the disease, infected nodes in this case do not
show any sign of infection and thus cannot be detected. Thus,
for a given value of transmission probability, we expect the
disease to infect a higher number of nodes compared to the
case when we do not have hidden infection. Figure 7 shows
the results from simulations for different hidden periods of
infectivity τ1 but fixed total period of infectivity τ , which was
set to five time steps. We fixed the other parameters of the
dynamic network model as φ = 0.1, η1 = 0.4, and η2 = 0.4.
As expected, with increasing τ1, the transition point shifts
toward lower values of λ. For the chosen parameters, when
τ1 = 0, the transition point is larger than that for the static
network, but for τ1 = 5 the transition point for the dynamic
network is smaller than that for the static network.
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FIG. 6. Distribution P (ρ) of the size of the epidemic ρ with
changing φ, η1, and η2 for an Erdös-Rényi network with N = 105

and 〈d〉 = 5. (a) η1 = 0.4, η2 = 0.4, λ = 0.31. (b) φ = 0.1, η2 = 0.4,
λ = 0.31. (c) φ = 0.1, η1 = 0.4, λ = 0.40. For each case we have 105

simulations and τ = 1.

VI. DISCUSSION AND CONCLUSIONS

The aim of the paper is to propose a dynamic network
model that has some of the important features of the dynamics
of real human networks. Incorporating the effects of changing
network topology due to disease-independent mixing (social
mixing dynamics) as well as disease evasion makes the model
more meaningful. In our dynamic network model with both
social dynamics and disease evasion (Sec. II), we find that,
in certain cases, the value of the transmission probability
at which the epidemic first occurs increases with increased
mixing (Figs. 2, 3, and 4). In other words, as social mixing
increases, disease spread is inhibited [Fig. 6(a)]. This occurs

     0.035
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     0.050

0 1 2 3 4 5

λ̂

τ1

FIG. 7. λ̂ vs τ1 from simulations for a fixed total period of
infectivity τ = 5 for an Erdös-Rényi network with N = 105 and
〈d〉 = 5. The values of other parameters are φ = 0.1, η1 = 0.4, and
η2 = 0.4. The arrow shows the value of the epidemic transition from
simulations for a static network with τ = 5. Simulation results are
obtained by averaging over 50 000 independent realizations on a
single network.

due to the suppression of susceptible-infected links when new
connections are formed. When the period of infectivity is
greater than 1, in certain parameter ranges we get the behavior
that increased social mixing can lead to an increase in the
spread of diseases. This can be seen for τ = 2 in Fig. 4 for
curves with η2 = 0.0 and 0.2.

We also studied the dynamic network model by incorpo-
rating a class of infected individuals IH who are infective
but show no signs of infection (Sec. IV). In static networks,
class IH has no effect on epidemic spreading. In the dynamic
network model with disease evasion dynamics, the addition of
class IH can have a significant effect on disease dynamics. As
shown in the results (Fig. 7), it may be necessary to include
this new class of infectives when studying a disease with such
characteristics.

The model proposed in this paper can be modified further
as needed. For example, in the model in Sec. IV, one
can consider different values of transmission probability for
infective individuals in class I and individuals in class IH .
Other possibilities can also be considered depending on the
problem of interest.
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APPENDIX: DERIVATION OF EQ. (6)

When K̃S susceptible nodes and K̃I infected nodes mix
randomly, the number of ways in which X̃ S-I pairs can
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form is

K̃S(K̃S − 1) · · · (K̃S + 1 − X̃)K̃I (K̃I − 1) · · · (K̃I + 1 − X̃)

X̃!
,

(A1)

where X̃! accounts for the fact that the pairs are unordered. Of
the remaining K̃I − X̃ nodes, the number of ways of selecting
consecutive I -I pairs is K̃I −X̃C2, K̃I −X̃−2C2, and so on. Thus,
the number of ways in which I -I pairs can form is

K̃I −X̃C2
K̃I −X̃−2C2 · · ·
K̃I −X̃

2 !
= (K̃I − X̃)!

2(K̃I −X̃)/2 K̃I −X̃
2 !

, (A2)

where we divided by K̃I −X̃
2 ! because the order of the pairs does

not matter. Similarly, the number of ways in which S-S pairs
can form is

(K̃S − X̃)!

2(K̃S−X̃)/2 K̃S−X̃

2 !
. (A3)

The total possible number of ways in which the pairs can
form is

(K̃S + K̃I )!

2(K̃S+K̃I )/2 K̃S+K̃I

2 !
. (A4)

Multiplying Eqs. (A1), (A2), and (A3), we get the possible
number of cases in which we have X̃ pairs. Dividing this by
Eq. (A4), we get the probability that we have X̃ pairs in a
randomly mixing population.
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