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e Human experimental pain models: A review of 
standardized methods in drug development
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Human experimental pain models are essential in understanding the pain mechanisms and appear to be ideally suited to test 
analgesic compounds. The challenge that confronts both the clinician and the scientist is to match specific treatments to different 
pain-generating mechanisms and hence reach a pain treatment tailored to each individual patient. Experimental pain models offer 
the possibility to explore the pain system under controlled settings. Standardized stimuli of different modalities (i.e., mechanical, 
thermal, electrical, or chemical) can be applied to the skin, muscles, and viscera for a differentiated and comprehensive assessment 
of various pain pathways and mechanisms. Using a multimodel–multistructure testing, the nociception arising from different body 
structures can be explored and modulation of specific biomarkers by new and existing analgesic drugs can be profiled. The value 
of human experimental pain models is to link animal and clinical pain studies, providing new possibilities for designing successful 
clinical trials. Spontaneous pain, the main compliant of the neuropathic patients, but currently there is no human model available that 
would mimic chronic pain. Therefore, current human pain models cannot replace patient studies for studying efficacy of analgesic 
compounds, although being helpful for proof-of-concept studies and dose finding.
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the psychological, behavioral or neurophysiological 
responses.[4]

Most of the animal models of pain rely on detecting 
a change in the threshold or response to an applied 
stimulus and the absence of verbal communication in 
animals is undoubtedly an obstacle to the evaluation 
of pain. Also, the neurobiology of nociceptive systems 
differ between species and this limits the extrapolation 
of findings from animal studies to man.[5] However, the 
animal models can be used as tools to help to find-out 
the relative contribution of different pain mechanisms 
in changing an animal’s behavior in a given situation.[6]

Human experimental pain models can act as a 
translational bridge between animal and clinical 
research and many of the mechanisms tested in animals 
can also be translated [Figure 1] and evaluated in healthy 
volunteers and used to predict the efficacy of a given 
drug in specific patient populations[4] [Figure 2]. Finally, 
reproducibility of the method is an important factor; 
if reproducibility is good, the model can be useful in 
drug screening[7] and randomized controlled trials 
are the ideal to explore the effectiveness of the clinical 
intervention.[8]

Assessment of the output from these pain models can be 
based on psychophysical or neurophysiological methods. [9] 
Psychophysical methods are the simplest way to assess the 

INTRODUCTION

Pain is the most prevalent health care problem, and 
characterization of pain is of major importance in 
the diagnosis and choice of treatment.[1] In clinical 
practice, the different symptoms of the underlying 
disease or complaints relating to psychological, 
cognitive and social aspects of the illness, as well as 
systemic reactions such as fever and general malaise 
confound the characterization of pain.[2] This may 
bias the clinical evaluation in assessing the efficacy 
of analgesics; also, repeated exposures to drug make 
patients familiar with its side effects and increase the 
chance of “active placebo” effects.[3] Because of these 
limitations, human experimental pain models are 
often helpful in preclinical studies of new analgesics. 
Also, in human models, the investigator can control 
the experimentally induced pain, including the nature, 
localization, intensity, frequency and duration of 
the stimulus and provide quantitative measures of 
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pain response[10] and are based on subjective experience of 
pain, measured on standard scales or as pain thresholds and 
neurophysiological methods include measurement of evoked 
brain potentials or nociceptive withdrawal reflexes.

DEFINITIONS

Allodynia
Pain due to a stimulus which does not normally provoke 
pain [Figure 3].

Hyperalgesia
An increased response to a noxious stimulus, caused 
by sensitization of peripheral nociceptors (primary 
hyperalgesia: The area of tissue injury) and/or by 
sensitization of central neurons (secondary hyperalgesia: 
outside the area of the original tissue injury) [Figure 3].

Temporal Summation/Windup Like Pain
It is a phenomenon that occurs when a repetition of a 
stimulus increases pain perception.

Spatial summation
It is a phenomenon that occurs when a non-painful stimulus 
is perceived as painful when applied to a wider area.

Referred pain
Pain that is felt in a part of the body at a distance from the 
area of stimulation.

PAIN-INDUCTION METHODS

Pain models can be classified according to their presumed 
mechanism (inflammatory vs neuropathic), the involved 
tissue (skin vs muscle vs viscera) and their time course 
(phasic – shorter, lasting for milliseconds to seconds 
vs tonic – longer, lasting for minutes). However, 
mechanistically the most important categories are 
peripheral or central sensitization. Conceptually, the two 
forms of sensitization are strictly separated; but, most 
of the pain models are characterized by a combination 
of peripheral and central sensitization. For example, 
cutaneous freeze injury lead to both allodynia and 
hyperalgesia.[11] The present review gives a brief overview 
of the pain models according to the tissue type, with an 
intention for the development of the sensitive pain model 
methods based on the knowledge of earlier methods 
described in the present review.

MECHANICAL STIMULATION

Mechanical stimulation of the skin
Mechanical stimulation of the skin can be grouped into Touch, 
Pin Prick, and Pinching. This method has been used to evaluate 

Figure 1: Human experimental pain models: Focus on translation

Figure 2: Examples for the scope of pain indications

Figure 3: Illustrates hyperalgesia; manifested locally (primary hyperalgesia) and 
by central sensitization (secondary hyperalgesia), for example, after freeze injury 
or 30 minutes after application of capsaicin

the effect of clonidine, oxycodone, morphine, mepivacain, 
bupivacain, gabapentin, carbamazepine, and amitriptyline.

Touch
Sensitivity to touch can be assessed by applying a light 
pressure with a finger[12] or using a von Frey hair.[13] A-beta 
fiber mediate touch sensation.[14]

Major shortcomings
The von Frey hair activates both low threshold 
mechanoreceptors and nociceptors and is not specific.[6] 
Also, touch is used mainly to explore allodynia evoked by 
other pain stimuli.[15]
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Pin-prick
Stimulation of the skin gently with a needle[16] or a safety 
pin[17] or thick von Frey filament and pain is reported 
as pricking or “first pain”.[15] Pin-prick stimulation 
predominantly activates A-delta fibres.[14]

Major shortcomings
The rapidity of pain onset and termination is not easily 
controlled.[6,18]

Pressure
A skin flap can be squeezed between two pressure sensors[19] 
or a finger, toe[20] or an ear lobe[16] can be pinched between 
the algometer probe and a pinch handle.

Major shortcomings
The rapidity of pain onset and termination is not easily 
controlled.[6,18] Pain during pinching is a combination of 
mechanical stimulation and local ischemia.[21]

Mechanical stimulation of the muscle
This is typical exogenous experimental pain model and has 
been used for drug assessment of morphine, oxycodone, 
rofecoxib, tramadol, codeine, imipramine, and ketamine.

Pressure algometry is the most frequently applied technique 
for quantification of pain, where the probe is applied to a 
hard body structures, such as periosteum[16] or soft tissue 
such as muscles.[19] Both A-delta and C-fibers mediate pain 
induced by pressure stimulation.[22]

Major shortcomings
The technique is nonspecific since receptors in the skin, and 
probably deeper tissues will be activated.

Mechanical stimulation of the viscera
Mechanical stimulation of viscera has been used to evaluate 
the effect of serotonin (5-HT)4 receptor agonist tegaserod, 
as well as oxycodone, morphine, Octreotide (a somatostatin 
analog), nifedipine, NMDA receptor antagonist ketamine, 
tricyclic antidepressants like imipramine, amitriptyline.

Mechanical stimulation in viscera using balloon distension 
has been widely used to study pain perception thresholds, 
referred pain and cerebral activation patterns[23] as well 
as, to screen new analgesics in healthy subjects and those 
with gut disorders.[24,25] The introduction of the electronic 
barostat, has helped to ensure proper location of the balloon, 
regardless of the inflation paradigm that was used. The 
newer methods based on impedance planimetry, allows 
recording of the luminal cross-sectional area directly and 
estimation of the radius in the distended segment of the 
esophagus or intestine.[26]

Major shortcomings
Unlike the rectum and the stomach, the esophagus 
doesn’t serve as a storage organ, but rather as a conduct. 
Consequently intraesophageal distensions do not mimic a 
normal, physiologic stimulus and thus perceptual responses 
to such a stimulus may have no scientific merit. In addition, 
difficulties in tolerating balloon distension, commonly 
results in poor recruitment rates as well as the potential 
for esophageal perforation, have made esophageal balloon 
distensions by a barostat a less attractive research tool.

THERMAL STIMULATION

Thermal stimulation of the skin
A cold stimulation/cold pressor pain. Application of ice,[27] a 
cold gel bag,[28] a wet alcohol sponge[12] menthol[29,30] ether, 
or a Peltier thermode to the skin evokes cold sensation. The 
method has been intensively used for drug screening such 
as imipramine, paroxetine, morphine, codeine, tramadol, 
and oxycodone.

Nociceptors of cutaneous veins appear to mediate cold 
pain in humans[31] via activation of A-delta and C-fibres. [32] 
However, a lack of standardization in the cold pressor 
model is revealed, with substantial variation in both 
equipment and methodology used.[33]

Major shortcomings
Vascular reactions strongly affect the response and cold 
pressor pain has shown contradictionary results in the 
testing of analgesics.[7] Also, pain onset and offset are 
gradual, and the experiment is not repeatable within a 1--2 
hour session.[18]

Freeze lesion
Application of cold temperatures (-20°C) at a standardised 
pressure provides stable testing conditions for 1 day.[34]

Major shortcomings
A central component of the analgesia can be explored, 
even if the method is thought to evoke mainly peripheral 
mechanisms.[35]

Contact heat
The most commonly used heat/cold contact stimulators 
are based on the Peltier principle (one direction of the 
current causes cooling and the other way heating).[36] 
Warm sensation is mediated by C-fibers.[37,38] At threshold 
determinations, rapid skin heating activates first A-delta 
fibres, corresponds to the “first pain” followed by a C-fibre 
mediated second pain, being described as ‘throbbing, 
burning or swelling’.[39] Slow heating gives a preferential 
activation of C-fibers (thought to be most important for 
peripheral opioid receptors) and the best evaluation of 
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second pain.[7] In order to prevent injuries to the skin, the 
high temperature limit is recommended to be 50 °C and 
the low limit 5 °C.[40]

Major shortcomings
Contact of the thermode with the skin activates concomitant 
low-threshold non-nociceptors. The rate of thermal 
transfer depends on the thermode-skin contact and thus 
on the pressure of application of the thermode. Therefore 
it is important that the thermode is applied to skin at a 
standardized fashion.

Radiant heat
Laser pulses evoke a distinct pricking pain in skin.[40,41] 
Intensities higher than those evoking pricking pain 
are avoided, as they may cause superficial burns. [42] 
Depending on the stimulus intensity, laser-induced 
thermal stimulation produces a double pain sensation: 
an initial prick sensation attributable to A-delta fiber 
activity[41] and a second diffuse burning sensation due 
to C-fiber activity.[43] Different laser emission sources 
have been developed in pain research e.g. argon, copper 
vapor[44,45] thulium-YAG and laser diodes, but CO2-laser[46] 
is most commonly used.[40] The argon[44] and copper 
vapor lasers[45] operate, a different principle than CO2-
laser, where in CO2-laser, radiation is absorbed within 
the epidermis, independent of skin pigmentation and 
application angle. Whereas, in the Argon-laser much of 
the radiant heat is reflected, causing variation depending 
on the skin pigmentation and the application angle.
[47] In all laser studies, the spot of stimulation has to be 
shifted slightly between consecutive stimuli in order not 
to cause receptor sensitization/fatigue. Irradiation using 
ultraviolet B (UVB), produces stable areas of primary 
hyperalgesia over several hours.[48,49]

Major shortcomings
Variability in responses between the individuals was 
observed.[6,47]

Burn injury
The burn injury model illustrates hyperalgesia. Contact heat 
and radiant heat can induce burn injury by, e.g., application 
of a constant temperature of 47 °C for 5 min (leads to long 
lasting sensitization). The brief thermal sensitization model 
(BTS; 45 °C for 3 min) provides short lasting sensitization 
and can be induced 2–3 times at hourly intervals without 
skin injury. Among the endogenous inflammatory 
mediators, prostaglandin E2 may be responsible for early 
heat hyperalgesia.[50] Whereas in longer lasting mechanical 
hyperalgesia nerve growth factor may be involved.[51,52] Both 
A-delta and C-fibres mediate pain after a burn injury.[15]

Major shortcomings
The threshold for activation of mainly A delta-fibres may 
transform into thresholds for activation of C-fibres. As these 
respond to other stimulus modalities it may confuse the 
testing of an analgesic.[6]

Thermal stimulation of the muscle
Warm and cold pain has been evoked from muscle 
tissue when saline at different temperatures is injected 
intramuscularly.[53]

Major shortcomings
No drug studies have been performed.

Thermal stimulation of viscera
Phasic thermal stimuli of the human gastrointestinal tract 
are believed to activate unmyelinated afferents in the 
mucosa selectively. This is opposed to mechanical and 
electrical stimuli, which activate afferents in both superficial 
and deep layers.[54] Thermosensitive mucosal afferents have 
been demonstrated in the human esophagus, stomach and 
rectum.[26,54] Human gastrointestinal tract shows a uniform 
perception of thermal stimuli with different reflex responses 
from the stomach to the jejunum.[55] The temperature of 
recirculating water, when continuously measured inside 
a balloon positioned in the esophagus, showed a linear 
stimulus–response relationship, demonstrating the validity 
of the activation.[26]

Major shortcomings: Only a few pharmacological studies 
have been performed using thermal visceral stimulation 
(e.g., oxycodone and morphine).

ELECTRICAL STIMULATION

Electrical stimulation of the skin
Various electrical stimulator devices connected to electrodes 
applied either to the skin surface[28] or the intracutaneous 
tissue[56] evoke electrical stimulation. Stimulator devices 
can deliver different stimulation pattern, for example, 
different waveforms, frequencies and duration of stimuli. 
This activates with some selectivity different afferents and 
nervous structures, and hence evokes different kinds of 
pain.[6,7] Electrical stimulation excites nerve fiber populations 
and the relative proportion of activation of individual fiber 
types depends on the stimulus intensity. [7] C-fibers have a 
higher activation threshold than A-delta fibers. Drug studies 
on drug classes like opioids, tricyclic antidepressants and 
NSAIDs have been performed using electrical stimulus of 
different intensities.

Major shortcomings
Electrical stimulation bypasses the receptors and activates 
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the nerve fibers directly, and the method is not a specific 
activation of the nociceptors. The electrical threshold 
is related to the fiber diameter and one cannot usually 
excite small-diameter nerves without additionally exciting 
others.

Electrical stimulation of the muscle
Electrical stimulation of the muscle can be performed via small 
needle electrodes with un-insulated tips.[57] Repeated electrical 
stimulation can induce temporal summation and cause increase 
in referred pain areas, thus reflecting central changes.[58,59] The 
technique has been used to evaluate drugs such as remifentanil, 
morphine, alfentanil, oxycodone, and ketamine.

Major shortcomings
Electrical stimulation is not nociceptive specific as it 
bypasses the receptors. Furthermore, concurrent activated 
muscle twitches may confound the sensation evoked by 
intramuscular electrical stimulation.[60]

Electrical stimulation of the viscera
Electrical stimulation of the gut has been widely used to 
study basic pain mechanisms, pain characteristics, referred 
pain and evoked brain potentials. The use of electrical 
stimulation has demonstrated safety in all parts of the 
gastrointestinal system. Furthermore, the well-defined 
onset and offset of the stimulation eliminates the latency 
as observed with other methods, making this particularly 
suitable for neurophysiological assessments. [2,61] The 
technique has been used successfully in drug studies 
of valdecoxib, parecoxib, morphine, oxycodone, and 
ketamine.

Major shortcomings
Electrical gut stimulation, bypasses the receptors 
and activates the nerve fibers directly. The major 
drawback with earlier methods was the varying  
electrode contact with the mucosa, giving inconsistent 
results.

CHEMICAL STIMULATION

Chemical stimulation of the skin
Capsaicin
Intradermal injection or topical application of capsaicin 
directly evokes pain, and hyperalgesia. [62] Capsaicin 
induced pain has been suggested as a surrogate model of 
changes observed in neuropathic pain. Mostly C-fibres are 
thought to mediate pain.[63] Capsaicin application activates 
transient receptor potential vanilloid 1 (TRPV1) receptors. 
This model is widely used for drug evaluations, such as 
the effect of neurotoxins (e.g., Botox) on TRPV1 sensitive 
nociceptive endings, as well as ketamine, magnesium, 
lidocaine, alfentanil, diclofenac, orphenadrine, gabapentin, 

cannabis, lamotrigine, H1 antagonists, hydromorphone, and 
the lidocaine patch.

Major shortcomings
Variable response was obtained with the model, e.g., 
pharmacological testing of lamotrigine and desipramine 
which are used in the treatment of neuropathic pain 
failed to show any effects in the model.[63,64] On the other 
hand gabapentin, which is also used to treat neuropathic 
pain, suppresses hyperalgesia following heat-capsaicin 
sensitization.[65]

Mustard oil
Topical application of mustard oil induces pain and 
hyperalgesia. C-fibres are thought to mediate the burning 
pain, while A-beta fibers are believed to mediate allodynia 
to light mechanical stimuli.[15]

Major shortcomings
The method has not been used much in the testing of 
analgesics. The use of these models is basically limited to 
target engagement studies.

Chemical stimulation of muscle
Intramuscular infusion of hypertonic saline[59,66] glutamate[67] 
and capsaicin[68] induces pain and referred pain areas. 
Hypertonic saline mimics musculoskeletal pain in both 
subjectively perceived quality as well as its effects on 
motor performance.[69] The dominant sensation following 
hypertonic saline injections in the muscle is a deep and 
diffuse pain, via activation of C-fibres. Earlier manual bolus 
infusions of hypertonic saline were used. Standardization 
of a small bolus volume is easy to accomplish by a 
computer-controlled infusion pump. This provides more 
reproducible method[60] and have been used to evaluate 
the effects of the NMDA receptor blocker, ketamine, as 
well as morphine and alfentanil. Intramuscular injections 
of algesic substances such as bradykinin[70], serotonin[70], 
substance P[70], potassium chloride, L-ascorbic acid, and acid 
phosphate buffer are other chemical stimulation methods 
to evoke muscular pain.

Major shortcomings
Hypertonic saline injections may excite both non-
nociceptive and nociceptive nerve fibers. The chemical 
stimulation methods all have a problematic reproducibility 
with large interindividual differences.[71]

Chemical stimulation of the viscera
Chemical stimulation is believed to be the ideal 
experimental visceral pain stimulus, closely resembles 
clinical inflammation. Acid stimulation of the esophagus is 
the most common method to sensitize the gut.[72] Application 
of glycerol to the large intestine evoked pain in patients 
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with the irritable bowel syndrome.[73] In the colon mucosa, 
injections of 2%--6% hypertonic saline resulted in deep as 
well as referred nonpainful and painful perceptions.[2] Most 
chemical stimuli are believed to activate predominantly 
unmyelinated C-fibers.[74] Application of capsaicin in the 
ileum resulted in a dose-dependent pain response and 
referred pain.[2] Chemical stimulation of gut using algogenic 
substances like alcohol, bradykinin has also been performed 
in humans.[2]

Major shortcomings
The major disadvantage of chemical stimulation is a 
relatively long latency time to the onset of effects and often 
responses are not reproducible when repeated.

ENDOGENOUS METHODS OF MUSCLE STIM-
ULATION

Ischemic stimulation
The tourniquet model is a classical experimental pain model 
that induces ischemic muscle pain. Earlier methods of 
producing experimental pain by occluding the blood flow 
of exercising muscles failed to demonstrate satisfactory 
response. The modified method developed by smith et al.[75] 
more closely resembles pain of pathologic origin. It has 
been used in human analgesic assays such as morphine, 
tramadol, caffeine, rofecoxib, aspirin, ibuprofen. This model 
is applicable in experimental studies requiring a general 
tonic pain stimulus.[60]

Major shortcomings
It is a very efficient model to induce pain in the muscles but 
is non-specific, since skin, periosteum, and other tissues will 
contribute to the overall pain perception. When activating 
nociceptors, concomitantly low-threshold non-nociceptive 
nerves can be activated by the contact of the tourniquet with 
the skin. This activation can exert an inhibitory influence 
on pain mechanisms.

Pain evoked by exercise
Delayed onset muscle soreness (DOMS) is a sensation of 
muscular pain during active contractions or passive stretch 
of a muscle after unaccustomed or eccentric exercise, which 
peaks 24–48 hours after exercise.[76] DOMS is thought to 
be caused by structural damage to muscle that leads to 
the release in the muscle of algogenic substances such as 
prostaglandins.[77-79] These algogenic substances sensitize 
A-delta and C nociceptive fibres.[79] Large mechanoreceptor 
afferents from muscle, muscle spindle and tendons are 
activated in DOMS, and may also contribute to the pain 
syndromes.[80-84] This model was used for drug evaluations, 
such as morphine, tramadol, codeine, ketoprofen, 
diclofenac, ibuprofen, rofecoxib and naproxen.

Major shortcomings
Neural mechanisms that leads to DOMS were incompletely 
understood. Variable results were obtained.[85-87] Animal 
studies show that a stress-induced analgesia can occur with 
eccentric exercise.[88] These also bias the results in analgesic 
testing.

SCOPE OF TRANSLATIONAL PAIN RESEARCH

Traditionally, translational research is regarded as a process 
of bridging bench findings to clinical application and the 
process requires coordinated bidirectional approaches 
between bedside and bench because of the subjective 
nature of the pain. This is an advantage in proof-of-concept 
studies, where the efficacy of a given compound on specific 
mechanisms can be assessed and the dose-response 
relationship can be determined.

The link between sensitization in inflammatory models 
such as UVB burn and clinical inflammatory conditions is 
considerably good. Also, a new model of peripheral and 
central sensitization without inflammation: intracutaneous 
injection of nerve growth factor[89] which appears to 
generate a combination of symptoms similarly found in 
patients. However, even these models only reflect part 
of the disease. Still we lack information about the role of 
trophic factors for the long-term modulation of nociceptor 
structure and sensitivity. Therefore, current theories or 
concepts of pain mechanisms need to be critically reviewed 
and analyzed to provide a new roadmap of contemporary 
pain research.

Spontaneous pain is a salient feature of clinical pain, 
which is the main complaint of neuropathic patients, 
reported to have more severe depression and physical 
disability[90] is not mimicked in most of the human 
pain models.[10] This essential gap is based on ethical 
limitations of human models according to which no 
healthy volunteers can be turned into a chronic pain 
patient. Irrespective of this limitation, the mechanism 
leading to spontaneous pain is unknown and even the 
site of origin is debated.

Finally, the pain arising from the skin, muscles and viscera 
differ from one another, and hence compounds may 
show very different effects on pain from these structures. 
Therefore, the concept of multimodel, multitissue pain 
assessment has been developed, where advanced drug 
screening in healthy volunteers and patients is possible. 
Therefore, a meaningful translation process through clinical 
studies should begin with careful choices of appropriate 
clinical pain conditions that are consistent with the 
conditions examined in preclinical models.
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