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Abstract
Understanding the interaction between life history, demography and population ge-
netics in threatened species is critical for the conservations of viable populations. In 
the context of habitat loss and fragmentation, identifying the factors that underpin 
the structuring of genetic variation within populations can allow conservationists to 
evaluate habitat quality and connectivity and help to design dispersal corridors ef-
fectively. In this study, we carried out a detailed, fine-scale landscape genetic inves-
tigation of a giant panda population from the Qinling Mountains for the first time. 
With a large microsatellite data set and complementary analysis methods, we exam-
ined the role of isolation-by-barriers (IBB), isolation-by-distance (IBD) and isolation-
by-resistance (IBR) in shaping the pattern of genetic variation in this giant panda 
population. We found that the Qinling population comprises one continuous genetic 
cluster, and among the landscape hypotheses tested, gene flow was found to be cor-
related with resistance gradients for two topographic factors, slope aspect and topo-
graphic complexity, rather than geographical distance or barriers. Gene flow was 
inferred to be facilitated by easterly slope aspect and to be constrained by topo-
graphically complex landscapes. These factors are related to benign microclimatic 
conditions for both the pandas and the food resources they rely on and more acces-
sible topographic conditions for movement, respectively. We identified optimal cor-
ridors based on these results, aiming to promote gene flow between human-induced 
habitat fragments. These findings provide insight into the permeability and affinities 
of giant panda habitats and offer important reference for the conservation of the 
giant panda and its habitat.
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1  | INTRODUC TION

As key population parameters, individual dispersal, gene flow and 
their demographic consequences can profoundly affect population 
dynamics and have important ecological and evolutionary conse-
quences. Gene flow is one mechanism that can maintain population 
genetic diversity and increase the likelihood of evolutionary adap-
tation, while demographic isolation will induce population genetic 
structuring and even lead to reproductive isolation and eventually 
speciation (Slatkin, 1987). Several factors can motive the dispersal 
of individuals, including avoidance of inbreeding (Waser, Austad, 
& Keane, 1986) and competition (including among kin, Hamilton & 
May, 1977), and spatial heterogeneity within habitats can act syn-
ergistically with these and other factors (Storfer, Murphy, Spear, 
Holderegger, & Waits, 2010).

For species with moderate dispersal, an isolation-by-distance 
(IBD) model has been classically invoked to describe the relation-
ship between geographic and genetic variation. It predicts lower 
genetic similarity between individuals with increasing geograph-
ical distance, as the homogenizing effects of gene flow dimin-
ish across space (Hutchison & Templeton, 1999; Wright, 1943). 
However, the shape of this relationship may be complex. Many 
empirical studies have demonstrated that dispersal can be im-
peded by significant biotic (e.g., behavioural) and/or abiotic (e.g., 
physical) barriers (Hollatz et al., 2011; Vallinoto et al., 2006). 
These boundaries may result in fine-scale genetic structure 
within populations and which is consistent with the hypothesis of 
isolation-by-barriers (IBB). Habitat heterogeneity, via landscape 
configuration and other environmental effects, can also strongly 
affect gene flow by promoting or hampering individual move-
ments (Cushman, McKelvey, Hayden, & Schwartz, 2006; McRae, 
2006). The magnitude of the impact of landscape features on dis-
persal can also be described in terms of resistance, and isolation-
by-resistance (IBR) models have been developed to evaluate the 
correlation between landscape composition and genetic differen-
tiation (McRae, 2006).

In natural populations, the factors described above may not 
work alone in shaping patterns of genetic variation. Thus, a sim-
ple null-hypothesis test may elicit undetected or misinterpreted 
correlated signals, which would result in spurious inference on 
the role of particular factors in genetic differentiation or result 
in omission of authentic signals. Such misinterpretation could 
compromise future management and conservation of popula-
tions involving, for example, in situ habitat restoration and the 
configuration of dispersal corridors. Against this background, a 
comprehensive analytical framework is required, which simulta-
neously investigates the effects of IBD, IBB and IBR (Cushman & 
Landguth, 2010; Cushman et al., 2006; Ruiz-Gonzalez, Cushman, 
Madeira, Randi, & Gómez-Moliner, 2015). This approach is of par-
ticular importance for natural populations of threatened species, 
which face complex spatial effects because of small population 
size (e.g., Allee effects), fragmented habitat and human-induced 
disturbance. By jointly considering alternative hypotheses, more 

reliable conclusions on the key determinants of spatial genetic 
variation and dispersal processes can be drawn, even in the ab-
sence of direct observational data.

The emblematic giant panda (Ailuropoda melanoleuca) is endemic 
to China and restricted to the mountains on the eastern edge of the 
Qinghai–Tibetan Plateau and to the north of the Sichuan basin. The 
giant panda’s cryptic behaviour has made it difficult to directly ob-
serve important life history processes, including dispersal behaviour, 
rendering approaches such as landscape genetics a promising solu-
tion to shed light on this process using an indirect method. To date, 
however, the sparse sampling that has been possible within and 
among the isolated regional populations of this species have re-
sulted in only a few landscape genetic studies, including Zhan et al. 
(2007) and Hu, Zhan, Qi, and Wei (2010), who both detected a 
female-biased dispersal pattern, and Zhu, Zhan, Meng, Zhang, and 
Wei (2010) who detected the strong barrier effect of large rivers on 
gene flow. However, the recently reported Fourth National Survey 
on Giant Pandas (State Forestry Administration 2015) involved in-
tensive sampling efforts and habitat surveys and has provided an 
unusual opportunity to investigate genetic structure and its causal 
factors in giant panda populations.

Here, we focus on the genetically distinct giant panda pop-
ulation located in the southern slopes of the Qinling Mountains 
in central China. The Qinling population is distinguished geneti-
cally from other Sichuan populations (Lu et al., 2001; Zhang et al., 
2007; Zhao et al., 2013). A recent population genomics study in-
ferred that the Qinling and Sichuan populations diverged about 
300,000 years ago (Zhao et al., 2013). Zhang et al. (2007) sug-
gested that the Qinling population should be regarded as an inde-
pendent management unit in conservation to conserve its locally 
adapted attributes and genetic integrity. However, information on 
the fine-scale structure within this unique population is lacking. 
The giant panda’s well-known specialized diet makes its movement 
behaviour, including dispersal, largely dependent on the distribu-
tion of suitable bamboo forests. For example, giant pandas move 
seasonally between summer and winter habitats located at dif-
ferent elevations, following the availability of bamboo resources. 
Nevertheless, previous ecological studies have indicated that cer-
tain landscape features, such as steep slopes and forest configu-
ration, could influence the dispersal of giant pandas at different 
scales (Qi, Hu, Gu, Li, & Wei, 2009; Qi et al., 2012; Zhang et al., 
2011), but these observations lack a fine-scale geospatial analysis 
that can be provided using landscape genetics. Furthermore, given 
the presence of severe habitat fragmentations, the key factors 
driving dispersal and shaping spatial pattern of genetic differentia-
tion remain unclear for Qinling and indeed for all giant panda pop-
ulation (Wei, Zhang, & Hu, 2011; Wei et al., 2012; Wei, Hu et al., 
2015; Wei, Swaisgood et al., 2015).

In consequence, our study aimed to examine the genetic status 
of the Qinling giant panda population and to address the following 
specific questions: (a) due to long isolation and substantial habitat 
fragmentation, does the Qinling population feature low genetic 
diversity compared to other giant panda populations; (b) as the 
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Qinling population is subjected to considerable human activity, 
IBB, IBD, IBR or a combination of these models which play the main 
force in shaping the genetic differentiation pattern of this giant 
panda population. In answering these questions, conservationists 
can propose more reasonable and effective strategies in conserving 
the species and its habitats.

2  | METHODS

2.1 | Study area and sampling scheme

The Qinling Mountains, which are located in the south of Shaanxi 
province in central China, have been recognized as a natural bound-
ary between north and south China, and it is also currently the 
northernmost distributional border of the giant panda. Different 
from the semi-arid northern slopes of the area, the southern slopes 
feature a mild and moist habitat, providing giant pandas with a natu-
ral refugium (Pan et al., 2001). The Qinling giant panda population 
significantly differs from other giant panda populations, based on 
both morphological and genetic evidences (Chen et al., 2010; Wan, 
Fang, Wu, & Fujihara, 2003; Wan, Wu, & Fang, 2005; Zhao et al., 
2013). However, in the Qinling Mountains, as elsewhere, suitable 
habitat for the giant panda has been declining since the beginning of 
recorded history in the region. By 2015, only 151,466 hectares (ha) 
of suitable habitat remained based on the Fourth National Survey 
of Giant Panda (State Forestry Administration 2015), mainly caused 
by anthropogenic activities in housing development, logging, road 
construction and agriculture.

A total of 537 faecal samples were collected from six counties lo-
cated in the Qinling Mountains, including Foping, Yangxian, Zhouzhi, 
Taibai, Ningshan and Liuba. The samples were collected from March 
to May in 2012 using noninvasive genetic sampling method, follow-
ing random transect lines at two scales. Based on the last large-scale 
survey and recent occurrence records of giant pandas, the entire 
study area was classified into two types: core investigation areas and 
normal investigation areas. The core investigation areas were those 
defined as suitable habitat in previous surveys or using recent oc-
currence records of the animal. They were divided into a grid size of 
2 km2 for a finer scale survey, while normal investigation areas were 
divided into a grid size of 6 km2. A transect with minimum length 
of 0.75 km was made in each survey grid. To collect more samples 
and cover different giant panda habitats, a zigzag movement path 
was adopted when collecting samples inside a survey grid, while a 
“U” shape or a circle movement path was adopted when crossing 
different grids.

2.2 | Molecular analysis

We extracted total DNA from faecal samples using the Qiagen 
DNeasy Stool kit (QIAGEN® Hilden, Germany) following the manu-
facturer’s instructions. Twelve microsatellite loci, Ame-μ10, μ11, 
μ13, μ15, μ22, μ24, μ26, μ27, AY79, AY95, AY217, and AY161213 

(Lu et al., 2001; Shen et al., 2005; Wu et al. 2009, Supporting in-
formation Table S1), were amplified and genotyped for each sam-
ple. To obtain reliable results, a multitube approach (Taberlet et al., 
1996) was applied. PCRs were conducted in a total volume of 
10 μl, comprising 2 μl DNA, 5 μl HotStarTaq Master Mix (QIAGEN), 
0.3 μM of the forward (5′ labelled with FAM, TAMRA or HEX) and 
reverse primers and 1 μg/μl BSA (Promega). PCRs were carried out 
in a Thermo MBS Thermal Cycler, starting with 94°C for 15 min, 
followed by a touchdown approach (a total of 35–39 cycles of 
94°C/15 s, Ta/30 s, 72°C/45 s) and a final step of 60°C for 30 min. 
Ta was decreased by 2°C every second cycle from 60°C to a touch-
down temperature (48–50°C), which was used for an additional 
25 cycles (Zhan et al., 2006). PCR products were separated using 
an ABI 3730xl sequencer and scored using GeneMarker® v 2.2.0 
(SoftGenetics LLC).

2.3 | Genetic diversity analysis

The probability of pairs of individuals bearing an identical multilocus 
genotype (P(ID)) was calculated using GIMLET V1.3.1 (Valière, 2002) 
to confirm the discrimination power of the microsatellites used in 
this study. MICRO-CHECKER (Van Oosterhout, Hutchinson, Wills, & 
Shipley, 2004) was applied to check for null alleles, large allele drop-
out or stuttering. Genetic diversity indices including the number of 
alleles per loci (A), the expected heterozygosities (HE) and the ob-
served heterozygosities (HO) were computed using FASTAT 2.9.3.2 
(Goudet, 2001), which was also used to test whether loci were devi-
ated from Hardy–Weinberg equilibrium. Linkage disequilibrium be-
tween pairs of loci and across the whole data set was assessed using 
FASTAT 2.9.3.2 and GENEPOP 3.4 (Raymond & Rousset, 1995), re-
spectively. We used Bonferroni correction to adjust the significance 
values for multiple comparisons.

2.4 | Genetic structure analysis

A Bayesian clustering approach, implemented with STRUCTURE 
v2.3.4 (Pritchard, Stephens, & Donnelly, 2000), was used to de-
tect genetic structure within the Qinling giant panda population. 
Clustering solutions of K = 1–10 were tested using an admixture 
model with correlated allele frequencies. For each simulation, 106 
Markov Chain Monte Carlo (MCMC) iterations were used after 
105 burn-in simulations. Each value of K was repeated using 20 
independent runs. The log likelihood of the posterior probability 
(LnPr(X|K)) and its rate of change (ΔK) were both evaluated to infer 
population clustering.

2.5 | Spatial autocorrelation analysis

The Mantel correlogram was used to compute spatial autocorrela-
tion with genetic structure at a fine spatial scale, and Mantel test 
was also performed to identify the IDB pattern in the population. 
Both analyses were implemented in GenAlEx 6.5 (Peakall & Smouse, 
2012), with genetic distance between each pair of individuals was 
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estimated using the proportion of shared alleles calculated in MSA 
V4.05 (Dieringer & Schlotterer, 2003). Based on three long-term ra-
diotelemetry and GPS-telemetry studies (Schaller, Hu, & Pan, 1985; 
Pan et al. 2001; Zhang et al., 2014), the radius of mean home range 
has been estimated as 1.9 km. We used this value to define distance 
classes in the analysis, and we analysed up to fifteen distance classes 
among samples.

2.6 | Isolation-by-resistance (IBR)

In order to decipher the role of each landscape factor in shaping 
population genetic structure in giant pandas, we analysed the rela-
tionship between eight landscape variables—elevation, slope aspect, 
slope, topographic complexity (TC), rivers, vegetation, roads and 
human disturbances, with genetic differentiation patterns based on 
an IBR model (McRae, 2006).

First, a simple resistance surface representing the distance 
effect alone (referred to as the model IBD in the following text) 
was constructed by setting a value of “1” to all the raster cells using 
CIRCUITSCAPE V3.5 (McRae, Shah, & Mohapatra, 2013), and the 
partial Mantel tests were evaluated by partialling out this resulting 
resistance matrix. Genetic distance was measured as the proportion 
of shared alleles calculated in MSA V4.05 (Dieringer & Schlotterer, 
2003). A Euclidian distance matrix was estimated in GenAlEx V6.5 
(Peakall & Smouse, 2012). In addition, resistance surfaces for each 
landscape factor were obtained depending on specific ecological 
hypotheses, under the pairwise mode connecting eight neighbours 
based on the average resistance implemented in CIRCUITSCAPE 
V3.5. For the full descriptions of model construction see Supporting 
Information.

Although Mantel and partial Mantel tests have been widely used 
in correlating the landscape pattern with gene flow, these tests have 
been shown to possess a high risk of spurious correlations. Several 
refinements, including causal modelling, have been developed to 
reduce this problem. The approach involving direct competition of 
all hypotheses proposed by Cushman, Wasserman, Landguth, and 
Shirk (2013) could lessen the type I error rate which has been found 
to be high in the original causal modelling analysis. By combining the 
causal modelling approaches proposed by Cushman et al. (2013) and 
Wasserman, Cushman, Schwartz, and Wallin (2010), partial Mantel 
tests could be reliable in estimating the correlation between land-
scape variables and gene flow.

Partial Mantel tests were carried out between each landscape 
resistance surface matrix with the genetic distance matrix. A land-
scape factor was recognized affecting the genetic differentiation 
pattern above that of the null model (the model IBD) when the fol-
lowing criteria were met: (a) the partial Mantel test between genetic 
distance and landscape resistance model must be significant when 
the effect of IBD was excluded (GD~LR|IBD); (b) the partial Mantel 
test between genetic distance and the model IBD was not significant 
when the landscape resistance effect was excluded (GD~IBD|LR). A 
model could be supported independently of other candidate mod-
els if (c) the partial Mantel test between genetic distance and the 

true landscape model was significant when the effect of the reduced 
model was excluded (GD~LM|RM) and (d) the partial Mantel test be-
tween genetic distance and the reduced model was not significant 
when the effect of the landscape model was excluded (GD~RM|LM).

Rather than simply competing the alternative landscape models 
against model IBD, a set of candidate models with similar parameters 
as the top model were assessed against each other by estimating 
their relative support (RS). Relative support can be quantified as: RS

1|2 = GD~LR1|LR2 – GD~LR2|LR1, where the LR1 represented the re-
sistance matrix of landscape variable 1 and LR2 represents the resis-
tance matrix of landscape variable 2. The GD~LR1|LR2 is the partial 
Mantel correlation between genetic distance and landscape variable 
1 when partialling out the effect of landscape variable 2. The best 
candidate model should therefore possess positive RS value for all 
comparisons and has to pass the causal modelling criteria against 
the model IBD.

Considering the complex landscape giant pandas live in, a mul-
tivariate approach was also used to explain gene flow within this 
population. The multivariate resistance surface matrix was equal to 
the sum of univariate resistance matrices of each landscape variable. 
We started with a simple model with only two landscape variables 
which had the highest partial Mantel r value when partialling out 
the effect of the model IBD. We kept the parameter for the first 
variable stable while altering the parameter values for the second 
variable to create a series of bivariate models. The best parameter 
for the second landscape variable was identified by comparing the 
partial Mantel r value removing the effect of the model IBD of bivar-
iate models with each other. Then, we kept the parameter values for 
the second landscape variable constant but altered the parameter 
values for the first landscape variable to obtain the best parameter 
for the first landscape variable in a similar way. We re-optimized the 
remaining variables by adding them one at a time to the initial bivar-
iate model until the parameter set for the best-supported model did 
not change. Multivariate models were also evaluated using their RS 
values, by altering the model parameters for one variable while hold-
ing the others constant until variable parameters did not change. In 
order to be accepted, the multivariate model had to pass the two-
step criteria of the causal modelling to show it was better than model 
IBD. In addition, a landscape variable was excluded from the best-
supported multivariate model, if it did not pass the causal modelling 
criteria with a reduced model, if the GD~(A+B+C)|(A+B) model was 
significant, and the GD~(A+B)|(A+B+C) was not significant.

2.7 | Mixed-effect models

We also implemented a linear mixed-effect model analysis to inves-
tigate the influence of landscape variables on the gene flow using 
the “lme4” package in R (Bates, Maechler, Bolker, & Walker, 2015). 
To correct for the dependency among data points, a maximum-
likelihood population-effect (MLPE) method was followed (Clarke, 
Rothery, & Raybould, 2002; Van Strien, Keller, & Holderegger, 
2012). In these models, differences between sampling units 
were introduced as random-effect terms, while the explanatory 
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variables were introduced as fixed-effect terms, which we were 
most concerned. The parameter set for the MLPE model was fitted 
with the residual maximum-likelihood (REML). After standardizing 
all the explanatory variables, the REML estimates of the intercept 
were the same as estimates obtained from simple linear regres-
sions. Explanatory variables with variance inflation factors (VIF) 
above 5 were suspected of collinearity and excluded from models. 
We built a full model with all the variables without significant col-
linearity to identify the combined effects of multiple variables on 
gene flow. This full model was refined using “MuMIN” package in 
R (Bartoń, 2018). We compared the corrected Akaike Information 
Criterion values (AICc) and AICc weights (wi) among models aver-
aged from the global model to identify the best model. R2

β
, which 

compares a model with fixed effects to a null model (we used the 
model IBD as our null model) with only random effect and an in-
tercept, was also calculated, using Kenward-Roger F and degrees 
of freedom, with the “KRmodcomp” function from the R package 
“pbkrtest “(Halekoh & Højsgaard, 2014). We used the R2

β
 to indicate 

the proportion of variance explained by the models.

2.8 | Current density map and potential corridors

We also formulated a current density map using CIRCUITSCAPE 
V3.5 based on the best-supported hypothesis. The density of 
current flow in an area reflects its connectivity and movement pos-
sibility for the animal. Thus, ecological corridors that will promote 
gene flow effectively can be identified based on this information. 
Several quantitative criteria were also followed when we identi-
fied the optimal position of a corridor in this study: (a) Degree of 
overlap with the area featuring the lowest resistance and highest 
current density. Overlapping with low resistance area, corridors 
could provide giant pandas with even and continuous pathways 
facilitating their dispersal and movement. (b) Reconnecting pop-
ulations divided by major roads. There are several major roads 
running through the Qinling Mountains, which markedly divide 
and isolate habitat patches and local populations. To counter this 
barrier effect and promote gene flow, corridors should cross the 
major roads to connect neighbouring habitat patches. (c) Avoid 
farmlands by more than 1 km and residences by 2 km. Human ac-
tivities impede utilization of corridors. According to a GIS study on 
giant pandas at different spatial scales, anthropogenic activities 
still disrupt the animals’ movements at a relative large range. In 
particular, farmland impedes giant pandas’ movements at a 1 km 
range, while the residences have larger disturbance range at 2 km 
(State Forestry Administration 2015). These criteria could act as 
the model to design corridor for the giant panda in other regions.

3  | RESULTS

3.1 | Genetic variation and genetic structure

A total of 285 multilocus genotypes were obtained from 534 fae-
cal samples, with 178 unique individuals being identified (Figure 1). 

The set of 12 microsatellite loci used in this study were estimated to 
produce random identical genotypes with a probability of 1.2 × 10−8, 
with a probability of 3.6 × 10−4 for full-sibs. We used samples with 
at least nine loci genotyped successfully to guarantee the reliability 
of subsequent analyses. MICRO-CHECKER analysis indicated there 
was no evidence of null alleles, large allele dropout or stuttering in 
this data set. No consistent departures from Hardy–Weinberg equi-
librium or linkage disequilibrium were detected after Bonferroni cor-
rection. Using 12 microsatellites, a mean number of 4.58 alleles per 
locus was estimated, and observed (HO) and expected heterozygo-
sity (HE) were 0.488 and 0.447, respectively, similar to previous stud-
ies (Lu et al., 2001; Zhang et al., 2007), but lower than that of other 
giant panda populations (Supporting information Table S2).

STRUCTURE analysis showed that the most likely number of 
cluster based on LnPr(X/K) was K = 1. When K > 1, the proportion 
of the individual assigned to each cluster was approximately equal, 
indicating there was no genetic structure in Qinling giant panda 
population (Supporting information Figure S1). Overall, the Qinling 
giant panda population showed no evidence of fine-scale population 
substructure.

3.2 | Spatial autocorrelation

The spatial autocorrelation analysis including all individuals 
suggested local genetic structure within the study area. Based on 
the Mantel correlogram, a significant positive correlation between 
the pairwise genetic distance and Euclidean distance occurred in the 
first two distance classes (1–1900 m and 1901–3800 m, Figure 2a). 
This correlation was not significant in all other distance classes, 
with one distance class showing a negative correlation (Figure 2a). 
However, a simple Mantel test of IBD implemented in GenAlEx 6.5 
found no significant correlation (p = 0.444) between pairwise ge-
netic distance and Euclidean distance in our sample set, indicating 
that IBD did not play a key role in the genetic differentiation pat-
tern of the Qinling giant panda population. Compared to the females 
showing significant correlations in the first two distance classes, sig-
nificant positive correlations in males were still found until 9.5 km 
(except for the fourth distance class; Figure 2b,c). In addition, the 
r value for males in first distance class was nearly twice the result 
for females (female: 0.09; male: 0.176), although the bootstrap error 
bars showed the r value for males was not significantly greater than 
that for females.

3.3 | Isolation-by-resistance

A total of 534 models for eight landscape variables with differ-
ent parameters were processed to detect their relationship with 
genetic distance. Ninety slope models were excluded, because the 
Mantel correlations between them and genetic distance were not 
significant (p > 0.05). By ranking the partial Mantel r values of dif-
ferent models, slope aspect was found to be most correlated to 
genetic distance after partialling out the effect of the model IBD 
(Table 1). Topographic complexity had the second highest partial 
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Mantel r value followed by elevation, vegetation and the rest land-
scape factors (Table 1). When these models were optimized based 
on relative support (RS), the parameter values did not change much, 
and only aspect and TC met the casual modelling criteria, which 
would be finally included into the multivariate model construction 
(Table 2).

By changing the parameter values of either factor and keep-
ing that of the other one constant, we finally found that the best-
supported multivariate model included aspect and TC, removing 
the effect of the model IBD (Table 3). The parameter values of as-
pect and TC in this optimized multivariate model coincided with the 
parameter values of their best univariate models. We also tested the 
causal modelling criteria with two reduced models (equalled to the 
best univariate model of aspect and TC, respectively) to this best 
multivariate model, and both reduced models passed the criteria. 
When comparing the partial Mantel correlations of reduced models 
with the best multivariate model, we found the reduced models were 
both improved by including the other factor (the r value increased 
from 0.082 to 0.163 after including aspect, and from 0.098 to 0.163 
after including TC); namely, more variance in pairwise genetic dis-
tance could be explained by including aspect and TC at the same 
time. Based on the above results, we suggested that aspect and TC 
more predominantly influenced gene flow within the Qinling giant 
panda population than other six factors.

3.4 | Mixed-effect models

By evaluating the performances of a series of MLPE models, the 
geographic distance resistance surface did not explain the variance 
in genetic distance (R2

β
 < 0.01%), suggesting that the geographic dis-

tance is not the main force driving gene flow in the Qinling giant 
panda population. Two variables, the model IBD and slope, were 
excluded from the full model due to collinearity. The best model 
included two variables, aspect and topographic complexity (TC; 
AICc = −23446.40, wi = 0.73, Table 4), and thus, these two vari-
ables corresponded to the best-supported hypotheses under causal 
modelling criteria. While other models were different from the best 
model by more than three AICc units, we identified that models B, 
C and D were partially supported for the differences between them 
and the best model were within seven AICc units (Table 4). Based on 
the R2

β
 values of the top models, the performance of models in ex-

plaining the variance in genetic distance could be slightly improved 
when adding retained landscape variables into the reduced model. 
Model D including aspect, TC, roads, vegetation and elevation ex-
plained the highest proportion of the variance in genetic distance 
(Table 4). These results suggested that the topographic factors, such 
as slope aspect and topographic complexity, played an important 
role in shaping gene flow patterns in the population, while anthro-
pogenic disturbance such as roads had a smaller effect on gene flow.

F IGURE  1 Map of study area with locations of 178 giant panda individuals
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3.5 | Current density map and potential corridors

Areas of high current density are represented in red in Figure 3a, 
showing a netlike distribution with spatial heterogeneity across the 
study region. There is a distinct concentration of strong current flow 
in the central part of the study area, possibly due to more intense 
sampling efforts and closer distances between samples.

Habitat connectivity is essential for gene flow and the sustain-
ability of animal populations. Through the current density map, we 
could evaluate habitat connectivity and assess potential areas for 
corridor construction which would increase genetic exchange be-
tween populations in divided habitat patches. Previous mountain-
scale surveys on the giant panda have suggested that there are five 
habitat components including one or more patches in this study area, 

F IGURE  2 Spatial autocorrelograms of all giant pandas, all females and all males. Spatial autocorrelograms of genetic correlation 
coefficient (r) as a function of geographical distance, with the permuted 95% confidence intervals (dashed lines) indicating random spatial 
genetic structure and the bootstrapped 95% confidence error bars around r. a) All giant panda individuals (n = 179); b) females only (n = 102); 
c) males only (n = 59)
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named Taibaihe (TBH), Niuweihe (NWH), Xinglongling–Taibaishan 
(XT), Tianhuashan–Jinjiliang (TJ) and Pingheliang (PHL) from west 
to east. These habitat components are separated by major roads 
and human activities. Solely based on the current density map, we 
could identify multiple narrow high current density pathways as 
candidates for potential corridors to connect habitat components. 
However, frequent anthropogenic disturbance could hamper corri-
dor utilization by animals and diminish its efficiency in promoting 
gene flow. Thus, according to three quantitative criteria established 
in this study, we finally identified an optimal corridor for each pair of 
adjacent habitat components (Figure 3b), which can efficiently facili-
tate gene flow in the giant panda population from the area.

4  | DISCUSSION

4.1 | Lowest genetic diversity recorded of all giant 
panda populations to date

Here, we report the first comprehensive study to explore the popu-
lation and landscape genetic structure of the Qinling giant pandas, 
with a large noninvasive genetic sample set. We found the low-
est genetic diversity in the Qinling population among all panda 

populations, consistent with our hypotheses and the conclusions 
drawn by previous studies using similar molecular marker (Lu et al., 
2001; Zhang et al., 2007).

The relatively low genetic diversity of the Qinling population 
may be associated with its demographic history. The Qinling giant 
panda population has been inferred to have experienced a severe 
bottleneck in the Late Pleistocene (Pan, Gao, & Lu, 1988; Pan et al., 
2001; Zhao et al., 2013), with an 80% decline in effective population 
size being suggested by a recent genomic study (Zhao et al., 2013). 
Intense anthropogenic habitat alteration in the Holocene has trig-
gered further population decline and likely further loss of genetic 
diversity in the Qinling population. Therefore, we suggested that the 
Qinling population’s low genetic diversity has been driven by contin-
uous population decline and long-term isolation, also increasing its 
divergence from the Sichuan population.

4.2 | Spatial genetic pattern of Qinling giant pandas: 
IBB, IBD or IBR?

Previous ecological studies have suggested that the Qinling popu-
lation was a metapopulation composed by four to five subpopula-
tions isolated by farmlands, deforested areas, plantation forests and 
national roads (Loucks et al., 2003; State Forestry Administration 
2006). However, we did not find evidence for significant IBB effect 
in this population based on a Bayesian genetic clustering approach. 
Commercial logging used to be common in the Qinling Mountains 
which also boosted road construction and housing construction 
during the 1970–1990. During this period, suitable habitat for giant 
pandas must have declined, with several boundaries hampering dis-
persal being formed. However, as local and national authorities paid 
more attention to environmental and wildlife protection, a logging 
ban in natural forests since 2000 and the construction of tunnels 
under several sections of traditional road have mitigated against ad-
ditional disturbance to the Qinling habitat (Li et al., 2013; Swaisgood, 
Wang, & Wei, 2017) and obstructions to gene flow. The lack of evi-
dence for genetic structure within the region could be due to the 
relatively short timescale involved in habitat patch separation, with 
giant pandas still being able to use some of the less disturbed re-
gions as corridors to move between patches. It is worth noting that 

TABLE  2 Models are ranked with the best-supported model at the top

Landscape variable Parameter values RSIBD (A)r (A)p (B)r (B)p Supported

Aspect 90°; x = 10; Rmax = 100 0.12793 0.09897 0.026 −0.02896 0.739 YES

TC x = 4; Rmax = 100 0.11661 0.0911 0.0358 −0.02551 0.6962 YES

DEM 2800 m; Rmax = 1000; 
SD=200

0.10764 0.05781 0.1133 −0.04983 0.8769 NO

Vegetation Assigned based on a 
permutation

0.09329 0.05622 0.1324 −0.03707 0.7949 NO

Notes. Optimized parameter values, RS (relative support) value as compared to IBD, partial Mantel r and significance of support are shown. Optimized 
values include equation parameters for x (contrast) and Rmax (magnitude of the relationship). (A) GD~LV|IBD—partial Mantel test between genetic 
distance and landscape variable, partialling out the effect of IBD; (B) GD~IBD|LV—partial Mantel test between genetic distance and IBD distance, re-
moving the effect of the landscape variable. The first column of each test indicates the Mantel r-value and the second column the related p-value. 
Supported models are indicated in bold. DEM: digital elevation model; TC: topographical complexity.

TABLE  1 Best univariate models of landscape resistances based 
on partial Mantel correlation after partialling out the effect of the 
IBD model

Landscape variable Parameter values
Partial 
Mantel r p-value

Aspect 90°; x = 10; 
Rmax = 500

0.103 0.0229

TC x = 10; Rmax = 500 0.09204 0.0374

DEM 2800 m; Rmax = 1000; 
SD = 200

0.05781 0.1133

Vegetation Assigned based on a 
permutation

0.05622 0.1324

Notes. Models are ranked with the partial Mantel r-value. Optimized 
parameter values, partial Mantel r and significance of support are dis-
played. Supported models are indicated in bold. DEM: digital elevation 
model; TC: topographical complexity.
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the limited sampling of the two easternmost hypothetical subpopu-
lations affects these results, although the 178 individuals included 
comprise more than 50% of the estimated population size in the 
Qinling Mountains (345 individuals; Fourth National Survey of Giant 
Pandas).

We only detected significant genetic correlations between indi-
viduals in close distance classes, indicating that IBD does not ex-
plain spatial genetic structure of giant pandas in Qinling Mountain, 
a result confirmed by the Mantel test result (p = 0.44). One of the 
primary reasons for this observation might be natal dispersal pattern 
in giant pandas. In our analysis, male giant pandas represented closer 
genetic relationships than females in proximal distance. This finding 

is in accordance with a recent study in giant pandas (Hu et al., 2017). 
Some long-distance dispersal events have been recorded in Qinling 
(Pan et al., 2001; Zhang et al., 2007), and this kind of behaviour is 
expected to disrupt the IBD pattern.

Wild giant panda habitat includes complex environment compo-
nents. Landscape factors including extreme topographic and vegeta-
tion transitions are considered to affect giant panda movements and 
habitat selection (Hu, Schaller, Pan, & Zhu, 1985; Reid & Hu, 1991; 
Wei, Feng, Wang, & Hu, 2000; ;Zhang et al., 2011; Qi et al., 2012), but 
the impact of these factors on the spatial pattern of genetic variation 
has not been separately examined. The only landscape genetic study 
on giant pandas to date was on small and isolated populations in the 

TABLE  3 The Optimized parameter values, RS value as compared to IBD, partial Mantel r and significance of support of the best 
multivariate model are shown

Model Parameter values RSIBD (A)r (A)p (B)r (B)p (C)r (C)p (D)r (D)p

A+TC A: 90°; x = 10; 
Rmax = 500

0.16288 0.1324 0.0045 -0.03048 0.7482 A:0.09791 0.0286 A:0.03225 0.2599

TC: x = 10; Rmax = 500 TC:0.08123 0.0515 TC:-0.01118 0.5949

Notes. Optimized values include equation parameters for x (contrast) and Rmax (magnitude of the relationship). (A) GD~LV|IBD—partial Mantel test be-
tween genetic distance and the landscape variable, partialling out the effect of IBD; (B) GD~IBD|LV—partial Mantel test between genetic distance and 
IBD distance, removing the effect of the landscape variable, (C) GD~LM|—partial Mantel test between genetic distance and the landscape model after 
removing the effect of the reduced model; (D) G~|LM—partial Mantel test between genetic distance and the reduced model, partialling out the effect 
of the landscape model. The first column of each test indicates the Mantel r-value and the second column the related p-value. Model abbreviations: A: 
aspect and TC: topographic complexity.

TABLE  4 Mixed-effect models show the correlation between pairwise genetic distance and resistance distance of different landscape 
variables

Model Type of model Variables VIF R
2

β
AICc ∆AICc Weight (wi)

A Reduced Aspect 1.02 0.008 −23446.40 0.00 0.73

TC 1.03

B Reduced Aspect 1.02 0.008 −23443.30 3.04 0.16

TC 1.03

Road 2.39

C Reduced Aspect 1.02 0.009 −23440.30 6.13 0.03

TC 1.03

Road 2.39

Vegetation 1.22

D Reduced Aspect 1.02 0.010 −23440.10 6.30 0.03

TC 1.03

Road 2.39

Vegetation 1.22

Elevation 1.93

E Reduced Aspect 1.02 0.009 −23438.40 8.02 0.01

TC 1.03

Road 2.39

Elevation 1.93

Notes. To minimize colinearity among predictors, all variables with VIF values > 5 were removed. VIF: Variance Inflation Factor. The best-fitting model was 
selected based on the corrected Akaike information criterion (AICc, ∆AICc, wi). We used R2 statistics (R2

β
) to describe the amount of variation explained by 

the model. Models with the highest AICc support are in bold (∆AICc ≤ 2). Marginally supported models are also indicated (∆AICc ≤ 7). TC: topographical 
complexity.
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Daxiangling and Xiaoxiangling Mountains (Zhu, Zhang, Gu, & Wei, 
2011; Zhu et al., 2010). In the study, a large river and a road were found 
to be barrier impeding gene flow of giant pandas in the region. The 
authors also suggested that some landscape features partially influ-
enced gene flow based on least-cost path analysis. However, conclu-
sions on how specific landscape variables impacted gene flow were 
not possible.

We investigated eight key landscape features using a relatively 
large genetic data set, and ultimately, slope aspect proved to be 

strongly associated with genetic variation in the Qinling population, 
followed by topographic complexity. Qinling giant pandas appear 
to have a preference for the east-facing slopes. This preference has 
also been found in brown bears from the Carpathians Mountains, 
considered to be related to food availability in the breeding season 
(Cotovelea, 2014), and other small mammals (Castillo, Epps, Davis, 
& Cushman, 2014; Russo, Sole, Barbato, von Bramann, & Bruford, 
2016). Relatively flat (topologically simple) ground seems ideal 
for giant panda dispersal behaviour, while complex topography is 

F IGURE  3 Maps of the current density and potential corridors in the study area. a) The current map was generated by CIRCUITSCAPE 
V3.5, and displayed by histogram equalization. The areas with the highest current density representing the highest connectivity are shown 
in red while the lowest are shown in blue colour. b) The resistance surface map based on the best hypothesis, Aspect + TC, about the gene 
flow, with the information of roads and human disturbances also shown. The proposed best position for corridor between adjacent habitat 
components are highlighted with green, with Corridor C1, C2, C3, C4 connected TBH + NWH, NWH + XT, XT + TJ, TJ + PHL, respectively
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avoided. This is compatible with giant pandas’ low energy budget, 
given its diet and its need to conserve energy (Nie et al., 2015).

The south side of the Qinling Mountains provides suitable hab-
itats to sustain a high-density giant panda population. This habitat 
is located in central China and is in the East Asian Monsoon Region. 
The continuous ridge of the Qinling Mountains obstructs cold 
air from the north and traps warm and wet monsoon air from the 
Pacific Ocean in summer, thus providing suitable climatic conditions 
for giant pandas. At a finer scale, east-facing slopes not only have 
sufficient solar radiation in the morning, but also avoid overtranspi-
ration in the afternoon, which helps to keep a suitable microclimate 
for the development of bamboo. Previous field surveys have also 
shown that bamboo forest on east/south-facing slopes grow faster 
and accumulate biomass more quickly (Pan et al., 2001).

Topographic complexity is related to a series of habitat con-
ditions with variable solar radiation and soil moisture, possibly 
influencing plant growth and hindering animal movements, but has 
seldom been considered in previous ecological research on giant 
pandas. Here, we could infer that giant pandas use less complex 
land surfaces, different from conclusions for some other bear spe-
cies which have been suggested to prefer areas with complex to-
pographies (Apps, McLellan, Woods, & Proctor, 2004; Ziółkowska 
et al., 2016). Complex terrain is commonly associated with better 
availability of heterogeneous food resources, sheltering opportu-
nities and implies less human disturbance (Ziółkowska et al., 2016). 
However, as an exclusive bamboo-eater, the giant pandas’ require-
ments seem much simpler. Heterogeneous vegetation composition 
does not imply ampler food resources and may obstruct movement. 
Furthermore, microtopographic structure could result in more com-
plex shading effects, while less complex surfaces are expected to 
provide more abundant and even sunlight, more compatible with 
bamboo growth. To survive on their poor-nutritional bamboo diets, 
giant pandas possess a set of strategies to balance energy budgets. 
Avoiding the extra energy expenditure needed for moving over dif-
ficult terrain is compatible with the giant pandas’ energy-economy 
strategy, while their nutritional requirements are met at the same 
time. The habitat and movement preference of Qinling giant pandas 
corresponds to the species’ biological and ecological requirements. 
The difference in the preference for complex landscapes between 
the giant panda and some other bear species reflects the variation of 
environmental needs due to unique evolutionary processes. These 
findings highlight the species-specific empirical studies on this issue 
and could improve the efficiency of management and conservation 
planning, especially for endangered species.

Concluding the results of IBB, IBD and IBR tests, gene flow was 
significantly influenced by only two landscape factors over the geo-
graphic scale defined in this study. By evaluating different landscape 
genetic hypotheses, a relatively comprehensive understanding 
of the key factors shaping genetic structure and gene flow can be 
achieved. Multihypothesis approaches enable researchers to inter-
pret the relationship between spatial heterogeneity and population 
genetic variation at more precise spatial scales. This is crucial for the 
conservation of endangered animal populations, considering that 

strategies based on incorrect inferences could result in the waste 
of limited conservation resources and, most importantly, may miss 
the opportunity to retrieve critically endangered populations. In 
consequence, more and more landscape genetic studies employ 
this approach. However, the number of empirical studies that have 
fully adopted it remains few (but see Cushman & Landguth, 2010; 
Cushman et al., 2014; Yang, Cushman, Song, Yang, & Zhang, 2015; 
Ruiz-Gonzalez et al., 2015). Taking into consideration the clear ad-
vantage of this approach, we promote wider awareness and appli-
cation of multihypothesis approaches in landscape genetic research, 
especially on endangered species.

4.3 | Conservation implications

We did not detect any genetic substructure in the Qinling popula-
tion so far, which is important given that this giant panda population 
already has relatively low genetic diversity due to its past demo-
graphic history. However, roads and logging continue to fragment 
the Qinling Mountains, and are ultimately likely to impact on gene 
flow to some extent. If no action is taken, the legacy of previous 
actions and future infrastructure development could result in the 
demographic isolation among local patches, and impact on the long-
term survival of this unique giant panda population.

In this context, we identified several corridors to connect the 
key habitat components in order to promote gene flow within this 
unique giant panda population. Among five habitat components, XT 
sustains the largest local population, playing the role of demographic 
“source” in the region (Pan et al., 2001). However, the Yangtai road 
and national road G108 have hindered the exchange of individuals in 
XT with other habitat components, leading to the rise of XT popula-
tion and that may exceed theoretical carrying capacity (Gong, Yang, 
Yang, & Song, 2010). We identified several east–west banded zones, 
that are topographically less complex, as candidates for corridors. 
However, human disturbance including farming and settlements 
could hamper giant panda utilization for corridors, limiting the op-
tions for corridor selection. At last, we identified C2 and C3 as the 
optimal corridors connecting XT to its neighbouring habitat compo-
nents, NWH and TJ, respectively. These corridor positions are similar 
to some are in previous studies based on ecological habitat evalua-
tion data (Gong et al., 2010; Wang et al., 2014), but more localized. 
While most corridor studies focused on habitat patches in the middle 
of the Qinling Mountains where the majority of Qinling giant pan-
das live, the patches close to the edge have attracted less attention. 
However, during the latest mountain-scale survey, new records of 
giant panda activity were discovered in TBH located in the western 
edge of the region (State Forestry Administration 2015). As logging 
and housing become more restricted in the Qinling Mountains, giant 
pandas could be able to re-utilize the habitat patches with previ-
ously high level of human disturbance. Corridor C1, connecting the 
TBH and NWH, could assist more individuals in dispersing to newly 
available habitat while expanding the total area of suitable habitat. 
PHL is located in the easternmost part of the Qinling habitat, sus-
taining a small population consisting of only seven individuals (State 
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Forestry Administration 2015). Its isolated nature and intense an-
thropogenic influence put the PHL population at high risk of extinc-
tion. Increasing its connectivity with other populations is vital for 
its long-term survival. However, while a nature reserve has already 
been established between PHL and the adjoining habitat patches, it 
currently does not include the zones with the highest potential to 
facilitate giant panda dispersal, as identified in our study (corridor 
C4). Therefore, in future conservation planning, the nature reserve 
should be expanded or modified to cover these key linkage zones to 
ensure an effective connection between PHL and its neighbouring 
habitat patches. In addition, the reintroduction of captive individuals 
to this isolated population should be considered. Furthermore, it is 
important that, to retain the genetic uniqueness of the Qinling pop-
ulation, managers should carefully consider the genetic background 
of released individuals. Only with the establishment of key linkage 
zones, conservation measures and a reasonable reintroduction plan, 
will this small isolated population have a chance of rejuvenation and 
long-term survival.
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