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Abstract: This paper presents a novel diagnostic framework for distributed power systems that is
based on using generative adversarial networks for generating artificial knockoffs in the power grid.
The proposed framework makes use of the raw data measurements including voltage, frequency, and
phase-angle that are collected from each bus in the cyber-physical power systems. The collected mea-
surements are firstly fed into a feature selection module, where multiple state-of-the-art techniques
have been used to extract the most informative features from the initial set of available features. The
selected features are inputs to a knockoff generation module, where the generative adversarial net-
works are employed to generate the corresponding knockoffs of the selected features. The generated
knockoffs are then fed into a classification module, in which two different classification models are
used for the sake of fault diagnosis. Multiple experiments have been designed to investigate the effect
of noise, fault resistance value, and sampling rate on the performance of the proposed framework.
The effectiveness of the proposed framework is validated through a comprehensive study on the
IEEE 118-bus system.

Keywords: generative adversarial networks; feature selection; fault diagnosis; cyber-physical power
systems

1. Introduction

Complex cyber-physical power systems contain a numerous number of elements
such as generation units, bus bars, transmission lines, and loads, which are protected
by circuit breakers and protective relays. When a fault happens in an element of the
system, a large amount of alarms can potentially be generated by means of the protecting
devices to be sent to the supervisory control and data acquisition (SCADA) system [1].
However, it is often difficult to manage the received alarms by means of the SCADA
for the sake of fault diagnosis in cyber-physical power systems. Furthermore, the large
amount of data measurements collected by means of the sparse measuring devices such as
phasor measuring units (PMUs) in SCADA systems makes it even more challenging for the
successful implementation of diagnostic frameworks for cyber-physical power systems [2].
Therefore, it is of paramount importance to develop an efficient diagnostic method that
can cope with the large amount of data [3].

Data-driven methods have been widely used for fault diagnosis [4]. One of the
major challenges in the design of data-driven diagnostic frameworks goes back to the
extraction of the most informative features from the numerous number of collected features
by means of the SCADA system [5]. This issue, however, can be addressed by resorting
to feature selection techniques [6]. Feature selection could be refer to as the process of
selecting an informative and relevant subset of the original features [7]. These techniques
can generally be divided into three major categories including filters, wrappers, and
embedded techniques [8]. Filters makes use of the developed tools for measuring the
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mutual information, distances, dependencies, and consistencies in order to extract a set of
reliable features [9]. Wrappers, however, are generally constructed based on a classification
model and take the classification accuracy as a measure in extraction of a subset of features
that leads to the best classification accuracy [10]. In embedded techniques, the learning
and selection processes are combined and in contrast to the filter or wrapper techniques,
these two processes cannot be performed separately [11]. Other than feature selection,
developing a diagnostic system that is free of the type of the data distribution is also
important for the generalization purposes. To this end, generative adversarial networks
(GANs) have been extensively used in the design of data-driven diagnostic frameworks due
to their capability of generating the true data distribution from random distributions [12].

GANs are known for their capability in dealing with unbalanced classification by
generating realistic looking data samples. They have also found application in data aug-
mentation based on the artificial data which are very similar to the original data samples.
Thanks to their advantages, GANs have been widely used in many applications including
fault diagnosis [13]. For instance, an auxiliary classifier GAN (ACGAN) has been proposed
in [14] to construct an augmentation mechanism for the sake of fault diagnosis. A deep
GAN model has been proposed in [15] to deal with the imbalance data used for fault
diagnosis. In [16], the authors have used the infrared thermography and infrared image
processing in order to generate a useful set of features to evaluate the working condition of
angle grinders through a method called BCAoMID-F. The implementation of GANs for
self-supervised [17], semi-supervised [18], and unsupervised [12] fault diagnosis schemes
have also been extensively studied. In [19], the authors adapt a framework to generate
knockoffs, which are random variables that mimic the correlation structure within the
existing set of variables in a way that provides a mechanism for the accurate control of
the false discovery rate. Even though this technique shows encouraging results, however,
it only adapts to the Gaussian distributions. Thanks to the promising results of GANs,
the results of this work has been recently extended to a method called knockoffGAN
(kGAN), in which the knockoffs are generated without any assumption on the distribution
of variables [20]. It is also proposed that by resorting to statistical measures based on the
attained coefficients through the Lasso regression, one can employ the feature selection
task based on the generated knockoffs. However, a poorly chosen statistic can yield to
unreliable results. Therefore, this work aims to propose a diagnostic model based on the
knockoffs to benefit from their advantages, while ensures a reliable feature selection for the
sake of fault diagnosis.

This work puts forward a novel framework for fault diagnosis in cyber-physical power
systems. In contrast to the model-based techniques that rely on the explicit model of the
system [21], the proposed framework in this work is data-driven and benefits from the
generated knockoffs by means of the kGAN. We consider three different modules in the
proposed framework to deal with the large amount of data collected from different spots
in the network of the system. Specifically, it is proposed to collect voltage, frequency,
and phase-angle features from each bus in the system. After normalization, we make
use of a feature selection module in order to construct a subset of the most informative
features from the original set of features. In this regard, we make use of the well-known
techniques including infinite feature selection (InfFS) [22], mutual information feature
selection (MutInfFS) [23], minimum redundancy maximum relevance feature selection
(mRMR) [24], and relief feature selection (Relief) [25]. We then run the kGAN technique
in the next module of the proposed diagnostic framework, where the selected features
from the previous module are used as basis for the generation of knockoffs. The generated
knockoffs of the selected features are then fed into the next module, that is the classification
module, where two different classification models including k-nearest neighbour (kNN)
and support vector machine (SVM) are used to diagnose different types of faults. The main
contribution of this work relies on the design of a novel framework that involves multiple
modules including feature selection, kGAN, and classification. This is proposed to benefit
the most from the advantages of the generative adversarial networks in the extraction of
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knockoffs. The generated knockoffs are free of the distribution of data and can be generated
in a way that controls the false discovery rate of the selected variables. Compared with
the scenario, in which no knockoffs are generated from the selected features, the attained
results denote the superiority of the proposed framework for classification tasks. We
implement three different types of faults on the IEEE 118-bus system and investigate the
effect of noise, fault resistance value, and sampling rate on the performance of the proposed
framework through a very comprehensive analysis of the attained results.

The rest of this paper is organized as follows. We review the literature of GANs in
Section 2. The generation of knockoffs is presented in Section 3. Simulation results and
analysis of the attained results are represented in Section 4 and concluding remarks are
given in Section 5.

2. Literature Review

It is well-studied that GANs consist of two models called generator and discrimi-
nator, which are typically implemented by neural networks. The generator model aims
to learn the distribution of true examples in order to generate new data samples. The
discriminator model, however, aims to discriminate the generated data examples by means
of the generator from the true data examples [26]. GANs are constructed based on the
generative algorithms, which are a category of machine learning algorithms alongside the
discriminative algorithms. The generative algorithms make use of a fully probabilistic
model of the observed data and can be categorized into two classes including explicit
density model and implicit density model. The former model is based on the distribution
of data and tries to train the model either based on the true examples of the distribution
or by fitting the distribution parameters. Techniques based on the maximum likelihood
estimation, approximate inference [27], and Markov chain [28] are used in training of the
explicit models. The implicit models, however, do not rely on the direct estimation or fitting
of the distribution parameters. Without any explicit hypothesis, these models generate
data samples from a distribution to modify the existing model. The training is typically
based on the ancestral sampling [29].

In this regard, different representative variants of GANs have been recently developed
for different applications. For instance, InfoGAN [30] in contrast to the typical GAN
that makes use of a single unconstructed noise signal, decomposes the noise signal into
two parts and tries to derive a lower bound of the mutual information objective for an
efficient optimization. Some variants of the InfoGAN including causal InfoGAN [31] and
semi-supervised InfoGAN (ss-InfoGAN) [32] have been recently developed. GANs are
also extended to the case, in which some extra conditions are assigned to the generator
and discriminator models. This model is called conditional GAN (cGAN) [33] and can
generate data samples that are conditioned on the class labels [34,35]. For image-to-image
translation tasks, where the aim is to learn a mapping from an input image to an output
image, cycle-consistent GANs (CycleGAN) have been developed to deal with the issue of
unpaired data samples [36]. DualGAN [37] has the same structure as that of the CycleGAN;
however, its loss function is supported by the Wasserstein GAN (WGAN) [38]. In contrast
to the original GAN, in which the discriminator is used for a binary classification task, the
discriminator in WGAN is applied to a regression task in order to estimate the Wasserstein
distance. This idea, however, requires the discriminator to be K-Lipschitz constrained.
In [39], a method called Wasserstein-divergence (W-div) is proposed to relax the WGAN
Lipschitz constraints, where it was then used in WGAN-div to approximate the W-div
based on an optimization scheme. Same as the WGAN, loss sensitive GAN (LS-GAN) has
also Lipschitz constraints, where the given distribution is assumed to belong to a set of
Lipschitz densities with a compact support [40]. These variant models of GANs are trained
based on different training structures.

The original GAN is developed based on the multilayer perceptron (MLP). Specifically,
the generator and discriminator are MLP models, which can only be used for small-sized
datasets and have no good generalization capability to deal with complex images [41].
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Laplacian GAN (LAPGAN) [42] has been proposed for higher resolution images and makes
use of a cascade of convolutional neural networks (CNN) in a Laplacian framework. In the
framework of general GAN model, SinGAN [43] and InGAN [44] have also been proposed
to learn a generative model based on a single natural image. The next structure is deep
convolutional GAN (DCGAN), where in contrast to the original GAN that makes use
of the MLP models, are based on the deep convolutional neural networks (DCNNs) [45].
Progressive GAN (PGGAN) [46] is another category of GAN models, in which the progres-
sive neural networks are used in order to grow the generator and discriminator models
progressively. Self-attention GAN (SAGAN) [47] is also another developed structure that
utilizes the spectral normalization for generator and discriminator models so as to improve
the training dynamics. BigGAN [48] is a recently-developed structure which is similar to
the SAGAN, however, it is more scalable. Furthermore, StyleGAN [49] is known for its
high-quality generator model in generation of face images. Other structures based on the
autoencoders [50], encoders [51], multi-discriminator learning [52], multi-generator learn-
ing [53], and multi-GAN learning [54] have also been recently developed for GAN models.

3. Knockoff Generation

The general framework of the proposed method has been illustrated in Figure 1. As
it can be observed from this figure, the proposed framework contains multiple modules
including data acquisition, feature selection, kGAN, and decision making. We make
use of sparse data measuring devices in order to collect voltage, frequency, and phase-
angle measurements form each bus in the distributed power system. The collected data
measurements are then fed into a feature selection module, in which multiple state-of-
the-art techniques including InfFS, Relief, MutInfFS, and mRMR have been implemented
in order to extract the most informative features from the original set of features. The
extracted features are then fed into the kGAN module, where the selected features are used
as input and a corresponding set of random variables called knockoffs are outputs of the
module. The generated knockoffs are then fed into the decision making module, where the
kNN and SVM classification models have been used in order to diagnose different types
of faults.
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Figure 1. The general framework of the proposed diagnostic method.

Assume that the set of features is denoted by D and its dimension is d. Suppose that
the set of labels is denoted by C and D = {D1, . . . , Dd} and C are random variables. Then,
the concept of a null set can be defined as follows [55].

Definition 1. A variable Dj is null if and only if C is independent of Dj conditional on {Dj : i 6= j}.
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The set of all null variables is shown byK. In order to select the set of most informative
features while controlling the false discovery rate, suppose that the set of selected features
is denoted by X̂ ⊂ {1, . . . , d}. The false discovery rate can then be defined as follows:

FDR = E
[
|X̂ ∩ K|
|X̂ |

]
. (1)

Based on the given notations, the definition of the knockoffs can be given as follows [55].

Definition 2. A knockoff for the variable D is a random variable denoted by D̃ ∈ D that satisfies
the following constraints: (

D, D̃
) d
=
(
D, D̃

)
swapX (2)

D̃ ⊥ C|D (3)

where X ∈ {1, . . . , d} and (., .)swap(X) is used to show the vector that can be obtained by swapping

the ith component with the (i + d)th component and d
= denotes the equality on distribution.

In order to make use of the generated knockoffs for the sake of feature selection, it
is required to define a feature statistic Fj that only relies on D, D̃, and C. This statistic
is defined as Fj = f j

(
(D, D̃), C

)
for f j ∈ R. The f j function is required to satisfy the

following constraint:

Fj([D, D̃]swap(X), C) =
{ − f j([D, D̃], C), j /∈ X

f j([D, D̃], C), otherwise.
(4)

In order to utilize the above statistic, one way is to resort to the LASSO coefficients
in order to regress on the augmented set of knockoffs-feature. Denoting the LASSO
coefficients by w1, . . . , w2d, one can define the LASSO coefficient difference as follows:

Fj = |wj| − |wj+d|. (5)

Then, based on the given statistic and the definition of knockoffs, the following
theorem can be given for the sake of feature selection [55].

Theorem 1. Suppose that q ∈ [0, 1]. Given the statistics F1, . . . ,Fd, define:

τ = min

{
t > 0 :

1 + |{j : Fj ≤ −t}|
|j : Fj ≥ t| ≤ q

}
. (6)

Then, the selection of variables X̂ = {j : Fj ≥ τ} will lead to the control of false discovery
rate at level q.

In order to satisfy the given constraints in (2), a modified GAN model, called kGAN,
has been used to generate knockoffs without any assumption on the distribution of data.
The kGAN module has been illustrated in Figure 1.

As it can be observed from this figure, the kGAN module contains a generator net-
work, denoted by G, that is a function that satisfies G(., ., ξ) : D × [0, 1]c → D, where
its parameters are shown by ξ and takes a random realization of D and random noise
n ∼ U ([0, 1]c) as input and outputs the set of knockoffs D̃.

The discriminator network is designed so as to deal with the given constraint in (2). In
this regard, a discriminator network is defined to have a loss which is minimized only for
distributions that satisfy the condition given in Equation (2). To this end, the discriminator
is denoted by S , which is a function satisfying S(., ψ) : D ×D → [0, 1]d, and takes the
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swapped sample-knockoff pair (D, D̃)swap(X) and its output is a vector in [0, 1]d, where the
ith component of the output is denoted by S

(
(D, D̃)

)
swap(X) and denotes the probability

of i ∈ X. To this end, the loss of the discriminator can be given as follows:

LS = ∑
X∈{0,1}d

ED
[
ED̃
[

X. log(S(D, D̃))swap(X) + (1− X). log(1− S((D, D̃)swap(X)))
]]

, (7)

where ‘.’ denotes the dot product. In order to deal with the computational complexity of
this loss function, it is suggested to utilize the stochastic gradient descent algorithm for
minibatches of X that are uniformly sampled. Furthermore, a hint vector T is introduced,
which is a random variable to be passed into the discriminator. The introduction of the hint
vector involves the sampling of a multivariate Bernoulli random variable B that takes the
value of 1 with the probability of 0.9. Then, given Ti = Bi in case that Bi = 1 and Ti = 0.5
if Bi = 0, the discriminator will then aim to predict only values of X for which Bi = 0. To
this end, the final loss of the discriminator will be of the following form:

LS = ∑
X∈{0,1}d

ED
[
ED̃
[
ET [X� (1−B). log(S((D, D̃)swap(X), T ))+

(1− T )� (1−B). log(1− S((D, D̃)swap(X), T ), T )
]]

, (8)

where � is the element-wise product.
In order to make the discriminator algorithm more stable, a regularization term of the

form of WGAN, denoted by f is added to loss function (8). Therefore, the general loss of
the discriminator will be of the following form:

LF = E
[

f (D)− f (D̃)− η(‖ 5D̂ f (D̂) ‖2 − 1)2
]
, (9)

where D̂ = εD + (1− ε)D̃ with ε ∼ U [0, 1] and η is parameter to be tuned.
Finally, in order to generate knockoffs that are as independent as possible of the

original features, the mutual information neural estimation (MINE) [56] is used to minimize
the mutual information between the set of features and their corresponding knockoffs.
In this regard, the mutual information between each pair of the feature and knockoff is
estimated by means of d neural networks, denoted byN 1, . . . ,N d with the set of parameters
θ1, . . . , θd. By considering a trade-off parameter λ, the following loss of estimation is added
to the loss of the generator:

LP =
d

∑
j=1

(
n

∑
i=1

(N j
θ j(D

(i)
j , D̃(i)

j ))− log(
n

∑
i=1

exp(N j
θj
(Dk(i)

j , D̃(i)
j )))

)
, (10)

in which k is supposed to be a permutation of [n]2 and superscript (i) is used to demonstrate
the ith sample. Based on the discussion in this section, the general loss of the proposed
method is defined as follows:

min
G

(
max
S

(LS ) + λ max
P

(LP ) + µ max
f

(L f )

)
, (11)

where µ is a parameter to be tuned.

4. Simulation Results

In this section, we firstly introduce the IEEE 118-bus power system, and, then, we
discuss the types of faults and the generated datasets, and finally, we present the results of
the proposed diagnostic framework.

As mentioned earlier, we aim to diagnose different types of faults on the IEEE 118-bus
system.This system contains 118 buses, 91 loads, and 19 generation buses. In this work,
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we simulate three different types of faults on this system. These faults are called load
loss (LL), generator outage (G), and generator ground (GG). Together with the normal
operational state of the system, there will be four types of states to be diagnosed. As for the
simulation of the ‘LL’/‘G’ faults, we have disconnected the corresponding load/generation
unit from its corresponding bus for a short period of time. As for the ‘GG’ faults, we have
simulated a three-phase short-circuit fault between the generation units and ground. We
have simulated 31 ‘LL’ faults by disconnecting each single of them from the corresponding
bus. In the same way, 19 ‘G’ faults and 19 ‘GG’ faults are simulated. By adding the
normal operational state of the system to the above-mentioned simulated faults, there exist
70 classes of operational states to be diagnosed. For each class or operational state, we
have collected 500 samples from the sample that fault has been injected into either loads or
generators, to the sample that fault has been cleared. Furthermore, voltage, frequency, and
phase-angle features are collected from each bus of the system. In Figure 2, the voltage,
frequency, and phase angle measurements collected from the first bus of the system in
presence of an LL fault on bus #1 are illustrated. The fault has been injected at t = 1 second
and the simulation period is set to five seconds. As there are 118 buses in the system
and three types of features are collected from each of them, there exist a total number of
354 features to be used in construction of datasets.
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Figure 2. The collected voltage, frequency, and phase angle measurements following an LL fault on
bus #1 at t = 1 second of the simulation.

In order to study the effect of fault resistance (FR), signal to noise ratio (SNR), and
sampling rate (SR) on the performance of the proposed diagnostic framework, 12 different
datasets have been created. In this regard, two different SR values have been considered
which are 20 KHz to 10 KHz. The FR values are supposed to be 1 Ω and 10 Ω, and the SNR
values have been selected to be 50 dB, 40 dB, and 30 dB. By making a combination of the
FR, SNR, and SR, 12 datasets {A1, . . . ,A12} are generated.
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Following the given description in Section 1, we consider two different scenarios
and compare them with a baseline. Our baseline is the case, in which the raw data
measurements are directly and without any processing fed into the classification models.
Furthermore, in order to investigate the effectiveness of the proposed framework, we
compare it with a scenario, in which the raw data measurements are firstly fed into
the feature selection module, and, then, the selected features are directly fed into the
classification module [6]. This is the first scenario (‘S#1’). In the second scenario, which is
the proposed diagnostic framework in this study, we propose to generate the knockoffs
of the selected features by means of the kGAN module, and, then, set these knockoffs as
inputs to the classification models. Therefore, in the second scenario (‘S#2’), the raw data
measurements are firstly fed into the feature selection module, where the selected features
are further processed by the kGAN module and the generated knockoffs are fed into the
classification models. As for the feature selection module, we resort to four well-known
feature selection techniques including InfFS, MutInfFS, mRMR, and Relief. In the feature
selection module, in order to find the best number of features to be selected, we start with
two features and increase the number of features up to the value, for which no significant
performance improvement can be observed for each classification model. The performance
of each classification model has been reported based on the F-Measure.

We start with the kNN classification model, where the attained results by means of
this classifier are illustrated in Figure 3. It worth noting that each classification model is
validated through a 10-fold cross-validation manner. As there are 12 datasets and a 10-fold
cross-validation is performed, there are 120 F-Measure values for each experiment. In
Figure 3, we have reported the results for all datasets for the baseline and the aforemen-
tioned feature selection techniques w.r.t. scenarios ‘S#1’ and ‘S#2’. As it can be observed
from this figure, both scenarios have successfully improved the results compared with the
baseline case. However, the second scenario (our proposed method) outperforms the first
scenario [6] in all experiments, despite of the type of the feature selection technique. As
for the first scenario, the attained results denote that InfFS leads to the highest average
F-Measure value, which is then followed by mRMR, Relief, and MutInfFS. As for the second
scenario, InfFS, MutInfFS, and mRMR show almost the same performance in terms of the
average F-measure value, while Relief is the worst technique. Another worthwhile point
to be mentioned is that the attained results for the second scenario show lower variation
in the attained F-Measure values compared with the first scenario in the case of the InfFS,
Relief, and MutInfFS, showing its robustness in dealing with different datasets. We have
summarized the attained results of the kNN classification model in Table 1 w.r.t. each
dataset in order to check for the effect of noise, fault resistance, and sampling rate on the
performance of this classifier.
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Figure 3. The attained F-Measure values for the kNN classification model w.r.t. each feature
selection technique.
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Table 1. The attained F-Measure (FM) values by means of the kNN classification model w.r.t.
each dataset.

Dataset Baseline InfFS Relief MutInfFS mRMR

S#1 S#2 S#1 S#2 S#1 S#2 S#1 S#2

A1 0.7379 0.8527 0.8312 0.7718 0.7963 0.7479 0.8560 0.7758 0.8647
A2 0.6809 0.7847 0.8209 0.7386 0.7858 0.7111 0.8478 0.7468 0.8563
A3 0.6519 0.7149 0.7966 0.7169 0.6973 0.6962 0.7968 0.7279 0.7818
A4 0.7522 0.8828 0.8408 0.7928 0.8052 0.7695 0.8632 0.7956 0.8733
A5 0.7006 0.8020 0.8305 0.7587 0.7887 0.7329 0.8511 0.7599 0.8639
A6 0.6620 0.7418 0.7415 0.7388 0.7019 0.7113 0.7757 0.7432 0.7885
A7 0.6691 0.7754 0.8244 0.7217 0.8149 0.6571 0.8155 0.7658 0.8046
A8 0.5668 0.7274 0.8183 0.6705 0.8070 0.5905 0.8051 0.7157 0.7957
A9 0.4973 0.6535 0.7406 0.6371 0.7331 0.6180 0.7236 0.6828 0.7141
A10 0.6884 0.8125 0.8298 0.7544 0.8194 0.7515 0.8211 0.7910 0.8077
A11 0.5925 0.7317 0.8181 0.6981 0.8106 0.6880 0.8084 0.7391 0.7956
A12 0.5187 0.6799 0.7438 0.6691 0.7343 0.6485 0.7287 0.7090 0.7217

Avg. 0.6432 0.7633 0.8030 0.7224 0.7743 0.6935 0.8055 0.7460 0.8057

As it was mentioned earlier, in the first scenario, InfFS leads to the highest average
F-Measure that is 0.7633, which is then followed by mRMR (0.7460), Relief (0.7224), and
MutInfFS (0.6935). As for the second scenario, the best performance has been achieved
by means of the mRMR (0.8057), which is then followed by MutInfFS (0.8055), InfFS
(0.8030), and Relief (0.7743). In order to check the effect of FR on the performance of
the proposed technique, we resort to the results of datasets {A1, . . . ,A6} for which the
FR is 1 Ω, and compare them with those of datasets {A7, . . . ,A12}, for which the FR
is 10 Ω. For datasets with FR = 1 Ω, the average F-Measure for the second scenario is
0.8362, whereas it is 0.8331 for datasets with FR = 10 Ω. In the same vein, the average
F-Measure for the first scenario are 0.7888 and 0.7718, respectively. Therefore, the attained
results denote that the performance of the proposed method is not significantly affected
by the value of FR. In order to check for the effect of noise, we regroup datasets into
three groups of {A1,A4,A7,A10} with SNR = 50 dB, {A2,A5,A8,A11} with SNR = 40 dB,
and {A3,A6,A9,A12} with SNR = 30 dB. For the second scenario, the average F-Measure
values for the aforementioned three groups are 0.8291, 0.8190, and 0.7433, respectively. In
the case of the first scenario, the attained results are 0.7762, 0.7247, and 0.6931, respectively.
The attained results for both scenarios denote the superiority of the proposed method (the
second scenario) in dealing with noisy data measurements compared with the first scenario.
Finally, we aim to check for the effect of SR on the proposed method by regrouping the given
datasets into two groups {A1,A2,A3,A7,A8,A9}, for which the sampling rate is 10 KHz,
and {A4,A5,A6,A10,A11,A12}, for which the sampling rate is 20 KHz. The attained
F-Measure values for the first scenario are 0.7167 and 0.7459 w.r.t. the aforementioned
group of datasets, respectively. The average F-Measure values for the second scenario are
0.7958 and 0.7985, respectively. The attained results, on one hand, denote the superiority
of the second scenario in comparison with the first scenario in dealing with datasets with
different SR values. On the other hand, there is no significant changes for the second
scenario when the SR decreases from 20 KHz to 10 KHz, denoting its robustness against
the sampling rate issues.

We repeat the same experiments for the SVM classification model. The attained results
are represented in Figure 4. As it can be observed, the baseline shows much variation
in terms of F-Measure in dealing with different datasets. However, it almost shows the
same average F-Measure value in comparison with the results of the MutInfFS used in the
first scenario, but lower average F-Measure values compared with the second scenario.
By comparing the first and second scenarios, the attained results, on one hand, show the
superiority of the second scenario for each feature selection technique. On the other hand,
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the second scenario leads to lower variation in F-Measure values when InfFS, Relief, and
MutInfFS techniques are applied. The attained results for the SVM classification model are
summarized in Table 2.
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Figure 4. The attained F-measure values by means of the SVM classification model w.r.t. each dataset.

The collected results in Table 2 denote that mRMR leads to the best performance in
both scenarios, which is then followed by InfFS, Relief, and MutInfFS in the first scenario,
and InfFS, MutInfFS, and Relief in the second scenario. In order to investigate the effect
of FR value, we regroup datasets as before, where the FR value is 1 Ω for the first group
and 10 Ω for the second group. The average F-Measure value for the first group has
been obtained as 0.8365 for the first scenario, whereas it is 0.7840 for the second group
of datasets. In the same vein, the attained results for the second scenario are 0.8909 and
0.8627, respectively. The attained results of this experiment, on one hand, denote that the
second scenario outperforms the first scenario. On the other hand, they verify the more
robust performance of the second scenario compared with the first scenario against the
changes in the FR value. In order to check for the effect of noise on the performance of the
proposed scheme, same as what was done for the kNN classification model, we regroup
datasets into three groups w.r.t. SNR = 50 dB, SNR = 40 dB, and SNR = 30 dB. For the first
scenario, the average F-Measure values for each group of datasets can be computed as
0.8335, 0.8044, and 0.7928, respectively. As for the second scenario, the attained results are
0.9022, 0.8949, and 0.8331, respectively. As it can be observed from the attained average
values of F-Measure for both scenarios, the second scenario outperforms the first one in
dealing with noisy measurements. Finally, we regroup datasets into two groups based on
the SR values, where SR = 10 KHz for the first group and SR = 20 KHz for the second group.
The average F-Measure values for these two groups are 0.8048 and 0.8157, respectively,
for the first scenario, whereas the average values for the second scenario are 0.8756 and
0.8779, respectively. The attained results verify the superiority of the second scenario over
the first scenario.

Following the presented results for the kNN and SVM classification models, some gen-
eral remarks can be made. Generally speaking, SVM classification model has outperformed
the kNN by considering both scenarios plus the baseline, where the average F-Measure
for the SVM is 0.8304, whereas it is 0.7508 for the kNN. The results of of the second sce-
nario suggest that mRMR shows the best performance in dealing with the aforementioned
datasets, however, its combination with the SVM classification model leads to a better
combination for the sake of fault diagnosis in the IEEE 118-bus system. Furthermore, the
results of both classification models verified the superiority of the proposed technique in
comparison with the baseline and the first scenario.
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Table 2. The attained F-Measure (FM) values by means of the SVM classification model w.r.t.
each dataset.

Dataset Baseline InfFS Relief MutInfFS mRMR

S#1 S#2 S#1 S#2 S#1 S#2 S#1 S#2

A1 0.7970 0.9143 0.9156 0.8258 0.8936 0.7776 0.9159 0.8696 0.9413
A2 0.7407 0.8898 0.9060 0.8157 0.8877 0.7520 0.9061 0.8600 0.9344
A3 0.6799 0.8768 0.8414 0.7998 0.8084 0.7351 0.8480 0.8516 0.8840
A4 0.8265 0.8780 0.9091 0.8571 0.8973 0.8007 0.9195 0.8864 0.9407
A5 0.7749 0.8527 0.9003 0.8330 0.8901 0.7671 0.9090 0.8701 0.9361
A6 0.7211 0.8481 0.8418 0.8254 0.8219 0.7560 0.8456 0.8611 0.8867
A7 0.7341 0.8259 0.8886 0.7893 0.8694 0.7159 0.8697 0.8546 0.9156
A8 0.6706 0.7977 0.8839 0.7611 0.8640 0.6746 0.8867 0.8377 0.9050
A9 0.6187 0.7856 0.8170 0.7518 0.8000 0.6549 0.8019 0.8259 0.8513
A10 0.7697 0.8373 0.8934 0.8147 0.8766 0.7353 0.8742 0.8823 0.9157
A11 0.7143 0.8206 0.8865 0.7839 0.8668 0.6954 0.8656 0.8595 0.9085
A12 0.6611 0.8030 0.8221 0.7767 0.8054 0.6762 0.8000 0.8568 0.8543

Avg. 0.7257 0.8441 0.8755 0.8029 0.8569 0.7284 0.8685 0.8656 0.9061

The main advantage of the proposed diagnostic scheme is that it is data-driven, and,
therefore, there is no need to have knowledge about the explicit model of the system.
Further to this, we have proposed the use of kGAN module in order to generate a set
of informative features from the selected measurements. This module can generate this
set of features despite of the type of the distribution of data. Furthermore, the proposed
diagnostic scheme can be easily extended to involve semi-supervised and unsupervised
feature selection techniques in order to benefit from their advantages. The main drawback
of the proposed framework goes back to the fact that this technique is offline and cannot be
used for a real-time implementation.

5. Conclusions

This work is devoted to the design of a novel diagnostic framework for distributed
power systems. The proposed diagnostic framework involves three modules including
feature selection, kGAN, and decision making for the sake of fault diagnosis. It makes use
of the voltage, frequency, and phase angle measurements collected by means of sparse
measuring devices attached to each bus of the power system. The collected data measure-
ments are firstly fed into the feature selection module in order to find the most informative
features. The selected feature are then further processed by feeding them into the kGAN
module, where a technique based on the GANs has been used in order to generate the
corresponding set of knockoffs of the selected features. Generated knockoff are finally fed
into the decision making module, where two different classification models are utilized
to diagnose different types of faults. A very comprehensive comparative study has been
provided in order to investigate the performance of the proposed method in dealing with
noisy data measurements, datasets with high fault resistance values, and datasets with
different sampling rate values. The attained results verify the applicability, effectiveness,
and superiority of the proposed framework in comparison with a literature work. Verify-
ing the results of this work for other large-scale power systems by making use of other
state-of-the-art feature selection techniques and classification models could be investigated
in a future work.

Author Contributions: Conceptualization, H.H. and R.R.-F.; methodology, H.H. and R.R.-F.; software,
H.H.; validation, H.H.; formal analysis, H.H. and R.R.-F. and M.S. and V.P.; investigation, H.H. and
R.R.-F. and M.S. and V.P.; resources, R.R.-F.; data curation, H.H.; writing—original draft preparation,
H.H.; writing—review and editing, H.H. and R.R.-F. and and V.P.; visualization, H.H.; supervision,



Sensors 2021, 21, 5173 12 of 14

R.R.-F. and M.S.; project administration, R.R.-F. and M.S.; funding acquisition, R.R.-F. and M.S. and
V.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hassani, H.; Razavi-Far, R.; Saif, M. Fault location in smart grids through multicriteria analysis of group decision support systems.

IEEE Trans. Ind. Inform. 2020, 16, 7318–7327. [CrossRef]
2. Wang, Q.; Yu, Y.; Ahmed, H.O.A.; Darwish, M.; Nandi, A.K. Fault Detection and Classification in MMC-HVDC Systems Using

Learning Methods. Sensors 2020, 20, 4438. [CrossRef] [PubMed]
3. Hassani, H.; Razavi-Far, R.; Saif, M.; Capolino, G.A. Regression Models With Graph-Regularization Learning Algorithms for

Accurate Fault Location in Smart Grids. IEEE Syst. J. 2021, 15, 2012–2023. [CrossRef]
4. Razavi-Far, R.; Palade, V.; Zio, E. Optimal detection of new classes of faults by an invasive weed optimization method. In

Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 91–98.
5. Kari, T.; Gao, W.; Zhao, D.; Abiderexiti, K.; Mo, W.; Wang, Y.; Luan, L. Hybrid feature selection approach for power transformer

fault diagnosis based on support vector machine and genetic algorithm. IET Gener. Transm. Distrib. 2018, 12, 5672–5680.
[CrossRef]

6. Hassani, H.; Hallaji, E.; Razavi-Far, R.; Saif, M. Unsupervised concrete feature selection based on mutual information for
diagnosing faults and cyber-attacks in power systems. Eng. Appl. Artif. Intell. 2021, 100, 104150. [CrossRef]

7. Cui, Q.; El-Arroudi, K.; Weng, Y. A feature selection method for high impedance fault detection. IEEE Trans. Power Deliv. 2019,
34, 1203–1215. [CrossRef]

8. Gangavarapu, T.; Patil, N. A novel filter–wrapper hybrid greedy ensemble approach optimized using the genetic algorithm to
reduce the dimensionality of high-dimensional biomedical datasets. Appl. Soft Comput. 2019, 81, 105538. [CrossRef]

9. Cekik, R.; Uysal, A.K. A novel filter feature selection method using rough set for short text data. Expert Syst. Appl. 2020,
160, 113691. [CrossRef]

10. Nouri-Moghaddam, B.; Ghazanfari, M.; Fathian, M. A novel multi-objective forest optimization algorithm for wrapper feature
selection. Expert Syst. Appl. 2021, 175, 114737. [CrossRef]

11. Fu, Y.; Liu, X.; Sarkar, S.; Wu, T. Gaussian mixture model with feature selection: An embedded approach. Comput. Ind. Eng. 2021,
152, 107000. [CrossRef]

12. Liu, H.; Zhou, J.; Xu, Y.; Zheng, Y.; Peng, X.; Jiang, W. Unsupervised fault diagnosis of rolling bearings using a deep neural
network based on generative adversarial networks. Neurocomputing 2018, 315, 412–424. [CrossRef]

13. Farajzadeh-Zanjani, M.; Hallaji, E.; Razavi-Far, R.; Saif, M. Generative adversarial dimensionality reduction for diagnosing faults
and attacks in cyber-physical systems. Neurocomputing 2021, 440, 101–110. [CrossRef]

14. Shao, S.; Wang, P.; Yan, R. Generative adversarial networks for data augmentation in machine fault diagnosis. Comput. Ind. 2019,
106, 85–93. [CrossRef]

15. Zhang, W.; Li, X.; Jia, X.D.; Ma, H.; Luo, Z.; Li, X. Machinery fault diagnosis with imbalanced data using deep generative
adversarial networks. Measurement 2020, 152, 107377. [CrossRef]

16. Glowacz, A. Ventilation diagnosis of angle grinder using thermal imaging. Sensors 2021, 21, 2853. [CrossRef] [PubMed]
17. Zhang, W.; Chen, D.; Kong, Y. Self-Supervised Joint Learning Fault Diagnosis Method Based on Three-Channel Vibration Images.

Sensors 2021, 21, 4774. [CrossRef]
18. Farajzadeh-Zanjani, M.; Hallaji, E.; Razavi-Far, R.; Saif, M.; Parvania, M. Adversarial Semi-Supervised Learning for Diagnosing

Faults and Attacks in Power Grids. IEEE Trans. Smart Grid 2021, 12, 3468–3478. [CrossRef]
19. Barber, R.F.; Candès, E.J. Controlling the false discovery rate via knockoffs. Ann. Stat. 2015, 43, 2055–2085. [CrossRef]
20. Jordon, J.; Yoon, J.; van der Schaar, M. KnockoffGAN: Generating knockoffs for feature selection using generative adversarial

networks. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2018
21. Razavi-Far, R.; Davilu, H.; Palade, V.; Lucas, C. Model-based fault detection and isolation of a steam generator using neuro-fuzzy

networks. Neurocomputing 2009, 72, 2939–2951. [CrossRef]
22. Roffo, G.; Melzi, S.; Cristani, M. Infinite feature selection. In Proceedings of the IEEE International Conference on Computer

Vision, Santiago, Chile, 7–15 December 2015; pp. 4202–4210.

http://doi.org/10.1109/TII.2020.2977980
http://dx.doi.org/10.3390/s20164438
http://www.ncbi.nlm.nih.gov/pubmed/32784473
http://dx.doi.org/10.1109/JSYST.2020.3001932
http://dx.doi.org/10.1049/iet-gtd.2018.5482
http://dx.doi.org/10.1016/j.engappai.2020.104150
http://dx.doi.org/10.1109/TPWRD.2019.2901634
http://dx.doi.org/10.1016/j.asoc.2019.105538
http://dx.doi.org/10.1016/j.eswa.2020.113691
http://dx.doi.org/10.1016/j.eswa.2021.114737
http://dx.doi.org/10.1016/j.cie.2020.107000
http://dx.doi.org/10.1016/j.neucom.2018.07.034
http://dx.doi.org/10.1016/j.neucom.2021.01.076
http://dx.doi.org/10.1016/j.compind.2019.01.001
http://dx.doi.org/10.1016/j.measurement.2019.107377
http://dx.doi.org/10.3390/s21082853
http://www.ncbi.nlm.nih.gov/pubmed/33919618
http://dx.doi.org/10.3390/s21144774
http://dx.doi.org/10.1109/TSG.2021.3061395
http://dx.doi.org/10.1214/15-AOS1337
http://dx.doi.org/10.1016/j.neucom.2009.04.004


Sensors 2021, 21, 5173 13 of 14

23. Zaffalon, M.; Hutter, M. Robust feature selection using distributions of mutual information. In Proceedings of the 18th Interna-
tional Conference on Uncertainty in Artificial Intelligence (UAI-2002), Edmonton, AB, Canada, 1–4 August 2002; pp. 577–584.

24. Li, X.; Xie, S.; Zeng, D.; Wang, Y. Efficient l0-norm feature selection based on augmented and penalized minimization. Stat. Med.
2018, 37, 473–486. [CrossRef]

25. Kira, K.; Rendell, L.A. The Feature Selection Problem: Traditional Methods and a New Algorithm. In Proceedings of the AAAI-92,
San Jose, CA, USA, 12–16 July 1992; Volume 2, pp. 129–134.

26. Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A review on generative adversarial networks: Algorithms, theory, and applications. arXiv
2020, arXiv:2001.06937.

27. Rezende, D.J.; Mohamed, S.; Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In
Proceedings of the International Conference on Machine Learning; JMLR, Beijing, China, 21–26 June 2014; pp. 1278–1286.

28. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
[PubMed]

29. Bengio, Y.; Yao, L.; Alain, G.; Vincent, P. Generalized denoising auto-encoders as generative models. arXiv 2013, arXiv:1305.6663.
30. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable representation learning by

information maximizing generative adversarial nets. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, Barcelona, Spain, 5 December 2016; pp. 2180–2188.

31. Kurutach, T.; Tamar, A.; Yang, G.; Russell, S.; Abbeel, P. Learning plannable representations with causal infogan. arXiv 2018,
arXiv:1807.09341.

32. Spurr, A.; Aksan, E.; Hilliges, O. Guiding infogan with semi-supervision. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases; Springer: Skopje, Macedonia, 2017; pp. 119–134.

33. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
34. Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier gans. In Proceedings of the International

Conference on Machine Learning; JMLR, Sydney, Australia, 6–11 August 2017; pp. 2642–2651
35. Nguyen, A.; Clune, J.; Bengio, Y.; Dosovitskiy, A.; Yosinski, J. Plug & play generative networks: Conditional iterative generation

of images in latent space. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 4467–4477.

36. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.

37. Yi, Z.; Zhang, H.; Tan, P.; Gong, M. Dualgan: Unsupervised dual learning for image-to-image translation. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2849–2857.

38. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference
on Machine Learning; JMLR, Sydney, Australia, 6–11 August 2017; pp. 214–223.

39. Wu, J.; Huang, Z.; Thoma, J.; Acharya, D.; Van Gool, L. Wasserstein divergence for gans. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 653–668.

40. Qi, G.J. Loss-sensitive generative adversarial networks on lipschitz densities. Int. J. Comput. Vis. 2020, 128, 1118–1140. [CrossRef]
41. Wiatrak, M.; Albrecht, S.V.; Nystrom, A. Stabilizing generative adversarial networks: A survey. arXiv 2019, arXiv:1910.00927.
42. Denton, E.; Chintala, S.; Szlam, A.; Fergus, R. Deep generative image models using a laplacian pyramid of adversarial networks.

arXiv 2015, arXiv:1506.05751.
43. Shaham, T.R.; Dekel, T.; Michaeli, T. Singan: Learning a generative model from a single natural image. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 4570–4580.
44. Shocher, A.; Bagon, S.; Isola, P.; Irani, M. Ingan: Capturing and retargeting the “dna” of a natural image. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 4492–4501.
45. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.

arXiv 2015, arXiv:1511.06434.
46. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017,

arXiv:1710.10196.
47. Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the

International Conference on Machine Learning; JMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363.
48. Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018,

arXiv:1809.11096.
49. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.
50. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644.
51. Donahue, J.; Krähenbühl, P.; Darrell, T. Adversarial feature learning. arXiv 2016, arXiv:1605.09782.
52. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. It takes (only) two: Adversarial generator-encoder networks. In Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
53. Hoang, Q.; Nguyen, T.D.; Le, T.; Phung, D. Multi-generator generative adversarial nets. arXiv 2017, arXiv:1708.02556.
54. Liu, M.Y.; Tuzel, O. Coupled generative adversarial networks. Adv. Neural Inf. Process. Syst. 2016, 29, 469–477.

http://dx.doi.org/10.1002/sim.7526
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://dx.doi.org/10.1007/s11263-019-01265-2


Sensors 2021, 21, 5173 14 of 14

55. Candès, E.J.; Fan, Y.; Janson, L.; Lv, J. Panning for Gold: Model-Free Knockoffs for High-Dimensional Controlled Variable Selection;
Department of Statistics, Stanford University: Stanford, CA, USA, 2016.

56. Belghazi, M.I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, D. Mutual information neural estimation. In
Proceedings of the International Conference on Machine Learning; JMLR, Stockholm, Sweden, 10–15 July 2018; pp. 531–540.


	Introduction
	Literature Review
	Knockoff Generation
	Simulation Results
	Conclusions
	References

