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Ginkgo biloba is the most popular phytotherapic agent used worldwide for treatment
of several human disorders. However, the mechanisms involved in the protective
actions of Ginkgo biloba on cardiovascular diseases remain poorly elucidated. Taking
into account recent studies showing beneficial actions of cholinergic signaling in the
heart and the cholinergic hypothesis of Ginkgo biloba-mediated neuroprotection, we
aimed to investigate whether Ginkgo biloba extract (GBE) promotes cardioprotection
via activation of cholinergic signaling in a model of isoproterenol-induced cardiac
hypertrophy. Here, we show that GBE treatment (100 mg/kg/day for 8 days, v.o.)
reestablished the autonomic imbalance and baroreflex dysfunction caused by chronic
β-adrenergic receptor stimulation (β-AR, 4.5 mg/kg/day for 8 days, i.p.). Moreover,
GBE prevented the upregulation of muscarinic receptors (M2) and downregulation
of β1-AR in isoproterenol treated-hearts. Additionally, we demonstrated that GBE
prevents the impaired endothelial nitric oxide synthase activity in the heart. GBE
also prevented the pathological cardiac remodeling, electrocardiographic changes and
impaired left ventricular contractility that are typical of cardiac hypertrophy. To further
investigate the mechanisms involved in GBE cardioprotection in vivo, we performed
in vitro studies. By using neonatal cardiomyocyte culture we demonstrated that the
antihypertrophic action of GBE was fully abolished by muscarinic receptor antagonist
or NOS inhibition. Altogether, our data support the notion that antihypertrophic effect of
GBE occurs via activation of M2/NO pathway uncovering a new mechanism involved in
the cardioprotective action of Ginkgo biloba.

Keywords: Ginkgo biloba, cardiac hypertrophy, chronic β-adrenergic stimulation, cholinergic signaling,
endothelial nitric oxide synthase
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INTRODUCTION

Ginkgo biloba extract (GBE) has been recognized in the
traditional Chinese medicine for its various therapeutic
actions. GBE is composed of several components such as
bilobalide, ginkgolide A, ginkgolide B, and ginkgolide C,
which are responsible for its multiple pharmacological effects
(Yoshikawa et al., 1999). However, although G. biloba leaves are
widely prescribed as alternative herbal medicine for memory
improvement, as well as for dementia (Tan et al., 2015), the
precise mechanism by which G. biloba elicits neuroprotective
and cognitive-enhancing effects remains to be determined.
Notably, the cholinergic hypothesis, associated with augmented
yield of the neurotransmitter acetylcholine (ACh), has been
consistently reported as the primary mechanism of the beneficial
pharmacological properties of G. biloba (Nathan, 2000; Kehr
et al., 2012).

Although the benefits of GBE on neurological disorders are
well known (Nathan, 2000; Tan et al., 2015), GBE has also been
used for treatment of several cardiovascular diseases (Zhou et al.,
2004; Kuller et al., 2010). However, most of the studies have
attributed the cardioprotection of GBE to enhanced antioxidant
activity (Pietri et al., 1997; Liebgott et al., 2000; Wang et al.,
2016). Accordingly, augmented endogenous antioxidant enzymes
mediated by GBE treatment led to a protective effect against acute
myocardial infarction and injury caused by ischemia-reperfusion
(Trumbeckaite et al., 2007; Panda and Naik, 2008). Moreover,
the anti-inflammatory and antiapoptotic actions of GBE have
been also involved in the attenuation of doxorubicin-induced
cardiac injury (Liu et al., 2008). Altogether, these studies support
the notion that GBE might be a promising cardiac agent against
various pathological stimuli.

Despite the extensive body of evidence supporting the
beneficial cardiac actions of GBE, the mechanisms involved are
still unclear. Nitric oxide (NO) signaling has been consistently
reported as a unique modulator of cardiovascular system
under physiological and pathophysiological conditions (Barouch
et al., 2002; Umar and van der Laarse, 2009). Accordingly,
endothelial nitric oxide synthase (eNOS)-overexpressing mice
display attenuated isoproterenol-induced cardiac hypertrophy
(Ozaki et al., 2002), while eNOS knockout mice show a higher
incidence of early afterdepolarization events associated with
contractile dysfunction (Barouch et al., 2002; Wang et al.,
2008). Moreover, impaired eNOS activity has been found in
many forms of diseases such as hypertension (Chou et al.,
1998), cardiac hypertrophy (Ozaki et al., 2002; Champion et al.,
2004), myocardial infarction and ischemia-reperfusion injury
(du Toit et al., 2007; Nakata et al., 2008), and heart failure
(Couto et al., 2015). Notably, GBE has been also shown to
enhance eNOS activity and, consequently, NO bioavailability in
human endothelial cells (Koltermann et al., 2007). In line with
these findings, GBE causes vasodilation on different vascular
beds (Satoh and Nishida, 2004), being also involved in the
restoration of impaired endothelial-dependent vasodilation in
hypertensive rats (Kubota et al., 2006; Koltermann et al.,
2007). Recently, the cardioprotective actions of GBE against
adriamycin-induced acute cardiotoxicity have been reported

by regulation of inflammatory and NO signaling pathways
(El-Boghdady, 2013).

Thus, in spite of many clues indicating that GBE may
be therapeutically relevant by balancing NO production, its
involvement on the antihypertrophic effect of GBE is not yet
reported. Therefore, based on the above considerations, the
present study aimed to evaluate whether G. biloba promotes
cardioprotection in a model of isoproterenol-induced cardiac
hypertrophy and the mechanisms involved in these effects.

MATERIALS AND METHODS

Animals
Male Wistar rats (250–270 g) were obtained from the Animal
Care Facility of Federal University of Sergipe and maintained
under a controlled 12-h light/12-h dark cycle at room
temperature (23 ± 2◦C). All experimental procedures were
previously approved by the Ethics Committee for Animal
Research of the Federal University of Sergipe, Brazil (Protocol
#36/10).

Experimental Groups
Animals were randomly divided into four experimental groups
and the treatments were performed for 8 days: CTR, received
saline (i.p. daily); ISO, received isoproterenol (4.5 mg/kg/day,
i.p.); GBE, received G. biloba extract (100 mg/kg/day, v.o.) plus
saline (i.p.); ISO + GBE, received isoproterenol (4.5 mg/kg/day,
i.p.) plus G. biloba extract (100 mg/kg/day, v.o.). Isoproterenol
was used as a non-specific β-adrenergic receptor (β-AR) agonist
to induce cardiac hypertrophy, as previously described (Gavioli
et al., 2014). The GBE used in this study was a standardized
extract obtained from leaves, in which containing 25.5%
Ginkgo flavonoids, 24.14% quercetin, 0.86% kaempferol, 0.55%
isorhamnetin, and 6% terpenoids (ginkgolides and bilobalide).
The GBE was provided by Fármacos (Sergipe) from Ningbo
Traditional Chinese Pharmaceutical (China).

Hemodynamic Measurements
The animals were anesthetized with thiopental sodium
(50 mg/kg, i.p.) and a polyethylene catheter was implanted
into the femoral artery. The catheter was tunneled into the
back of the rats and exteriorized in the nape. After 24 h, the
catheter was connected to a pressure transducer (FE221, Bridge
Amp, ADInstruments, Bella Vista, NSW, Australia) coupled to a
pre-amplifier (Powerlab 8/35, ADInstruments). Blood pressure
and heart rate (HR) were recorded for 30 min and processed
using a dedicated software (LabChart 7 Pro, ADInstruments).

Autonomic Evaluation
Cardiac autonomic balance was evaluated by frequency
domain (Macedo et al., 2016). To perform this analysis, the
CardioSeries v2.4 software was used1. First, the beat-by-beat
series obtained from pulsate arterial pressure recordings and
HR were converted to data points every 100 ms using cubic

1http://sites.google.com/site/cardioseries
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spline interpolation (10 Hz). The interpolated series were divided
into half-overlapping sequential sets of 512 data points (51.2 s).
Before calculation of the spectral power density, the segments
were visually inspected and the non-stationary data were not
taken into consideration. The spectrum was calculated using the
Fast Fourier Transformation algorithm and Hanning window
was used to attenuate side effects. The spectrum is composed by
bands of low frequency (LF; 0.2–0.75 Hz) and high frequency
(HF; 0.75–3 Hz), being the results expressed as normalized
units (nu), by calculating the percentage of the LF and HF
variability with respect to the total power after subtracting the
power of the very LF component (VLF frequencies < 0.20 Hz),
namely LF/HF ratio. HF indicates the cardiac parasympathetic
activity, while LF is an index of cardiac sympathetic activity
and LF/HF ratio represents the sympatho-vagal balance to the
heart.

The baroreflex sensitivity (BRS) was measured in the time
domain by the sequence method (Bertinieri et al., 1985).
Sequences of at least four heart beats with increased SAP followed
by pulse interval lengthening or subsequent decrease of SAP
with pulse interval shortening with correlation greater than 0.85
were identified as baroreflex sequence. The slope of the linear
regression between SAP and pulse interval was considered as a
measure of BRS (mmHg/s).

Electrocardiography (ECG) Records
The rats were anesthetized and kept in the supine position
with spontaneous breathing. For surface ECGs recording, three
stainless steel electrodes were subcutaneously implanted and
ECG signals were amplified (HP7754A, HP7754B, Hewlett-
Packard, Chicago, IL, USA), digitalized (DI-710, Windaq Pro,
Dataq, Akron, OH, USA) and stored in a computer for off-
line processing. In all of the experimental groups, HR, corrected
QT interval (QTc), QRS complex duration, and intrinsicoid
deflection (ID) were measured in 10 consecutive beats. QT
interval was corrected by HR using Bazett’s equation.

Measurements of Left Ventricular
Developed Pressure (LVDP) and
Coronary Pressure
After 15 min of heparin administration (1,000 I.U., i.p.), the
heart was quickly removed and carefully mounted in an aortic
perfusion system (Langendorff technique) on a constant flow
(8 mL/min) (Milan Peristaltic Pump, Paraná, Brazil). Then, the
heart was perfused with Krebs solution (in mM: 118.0 NaCl,
4.7 KCl, 1.2 MgSO4, 25.0 NaHCO3, 1.8 CaCl2, 11.1 glucose,
1.2 KH2PO4; pH was adjusted to 7.4) that had been previously
filtered through a cellulose acetate membrane (0.45 µm),
oxygenated (95% O2 + 5% CO2) and kept at 37 ± 0.1◦C
(Haake F3, Berlin, Germany). The left intraventricular pressure
was measured using a water-filled balloon introduced into the
cavity of the left ventricle. This device was coupled to a pressure
transducer (HP 1290A, Hewlett-Packard, Chicago, IL, USA).
Signals were amplified (HP7754A, HP7754B), digitized (DI-710,
Windaq Pro, Dataq, Akron, OH, USA) and stored in a computer.
The system was calibrated using a mercury column. Coronary

pressure was measured at the tip of the aortic cannula and
monitored in a water column.

Western Blot Analyses
Western blots were performed as previously described (Mota
et al., 2015), with some modifications. Thirty to fifty microgram
of protein were resolved on SDS–PAGE, transferred to a
PVDF membrane, and incubated with the following primary
antibodies: anti-eNOS (1:1000, sc-654), anti-nNOS (1:1000,
sc-8309), M2 (1:1000, sc-9107) anti-peNOSser1177 (1:1000,
sc-12972), anti-pnNOSser852 (1:1000, sc-19826), anti-SERCA2
(1:2500, sc-376235), and anti-GAPDH (1:3000, sc-32233) from
Santa Cruz Biotechnology or β1-AR (1:1000, ab3442, Abcam).
All of them incubated at 4◦C overnight. After incubation
with appropriate secondary peroxidase-coupled antibodies
for 1 h, immunodetection was carried out using enhanced
chemiluminescence (Amersham Biosciences) followed by
densitometric analysis with software ImageJ. Protein levels were
expressed as a ratio of optical densities. GAPDH was used as a
control for any variations in protein loading.

Histopathology Analyses
After experimental procedures, rats were anesthetized and
euthanized by applying potassium chloride solution (KCl – 10%)
into the jugular vein. The hearts were fixed in formalin (10%),
embedded in paraffin and cut at 5 µm thickness followed by
staining with hematoxylin-eosin. Morphometric analysis was
performed using the software ImageJ. The mean nuclear area was
extracted from each histological slide.

Neonatal Cardiomyocytes Culture
Rat neonatal cardiomyocytes (3-days old) were cultured as
previously described (Rocha-Resende et al., 2012). Briefly,
cardiac cells were plated in dishes containing M199 medium
supplemented with 100 units/mL penicillin, 100 µg/mL
streptomycin, 10% fetal bovine serum, and 2 mM/L L-glutamine.
To prevent growth of fibroblasts, medium was supplemented
with 20 µg/mL cytosine-D-arabinofuranoside (ARA-c). After
48 h, neonatal cardiomyocytes were exposed to isoproterenol

TABLE 1 | Biometric parameters in all experimental groups.

CTR ISO GBE ISO + GBE

HW/BW (mg/g) 3.9 ± 0.01 5.3 ± 0.01∗∗∗ 3.9 ± 0.02 4.4 ± 0.01##

HW/TL (mg/cm) 273 ± 0.01 327 ± 0.01∗∗ 248 ± 0.01 276 ± 0.01#

Data are represented as means ± SEM, (n = 14). ∗∗p < 0.01 and ∗∗∗p < 0.001 vs.
CTR; #p < 0.05 and ##p < 0.01 vs. ISO, one-way ANOVA followed by Bonferroni’s
Test. Heart weight/body weight (HW/BW); Heart weight/tibia length (HW/TL).

TABLE 2 | In vivo hemodynamic measurements in all experimental groups.

CTR ISO GBE ISO + GBE

HR (BPM) 386 ± 16 325 ± 6.0∗ 387 ± 12 332 ± 14

MAP (mmHg) 109 ± 1.5 100 ± 0.4 108 ± 3.2 111 ± 1.9

Heart rate (HR); mean arterial pressure (MAP). Data are represented as
means ± SEM, (n = 5). ∗p < 0.05 vs. ISO, one-way ANOVA followed by
Bonferroni’s post-test.
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FIGURE 1 | Ginkgo biloba extract restores the impaired cardiovascular autonomic modulation and baroreflex sensitivity of hypertrophic hearts. (A)
low frequency band (LF), (B) high frequency band (HF), (C) LF/HF ratio, and (D) baroreceptor reflex sensitivity (BRS). Data are represented as means ± SEM, (n = 5).
∗p < 0.05 and ∗∗p < 0.01 vs. CTR, #p < 0.05 and ##p < 0.01 vs. ISO, one-way ANOVA followed by Bonferroni’s post-test.

(10 µM) and/or GBE (100 µg/mL). When appropriated, cells
were incubated with atropine (AT, 10 µM) or Nω-nitro-L-
arginine methyl ester hydrochloride (L-NAME, 10 µM) for 48 h.
Afterward, the cells were then used for immunofluorescence.

Immunofluorescence
Neonatal cardiomyocytes were fixed in a 4% paraformaldehyde
solution and permeabilized with 0.5% Triton-X100. After
blocking, cardiomyocytes plated onto glass coverslips were
incubated for 1 h at room temperature with Alexa Fluor

488-conjugated anti-phalloidin (1:100, A12379, Invitrogen).
Nuclear staining was obtained by incubating with 4,6-diamidino-
2-phenylindole (DAPI, 1:50). Surface area of cardiomyocytes was
measured in phalloidin stained cells. Images were acquired with
a Zeiss LSM 510 confocal system located at Center of Acquisition
and Processing of Images (CAPI–ICB, UFMG). All images were
representative of two independent experiments in which multiple
cells were evaluated.

Statistical Analyses
All data are expressed as mean ± SEM. Statistical comparisons
were performed using GraphPad Prism 5.1 (San Diego,
CA, USA). Normality and equality of variance were tested
by Shapiro–Wilk and Levene test, respectively. Significant
differences between groups were determined with one-way
ANOVA followed by the Bonferroni post hoc test. Differences
were considered to be statistically significant when p< 0.05.

RESULTS

Ginkgo biloba Extract Restores the
Autonomic Imbalance of
Isoproterenol-Treated Rats
First, we show that ISO-treated rats (4.5 mg/kg/day for 8 days)
developed prominent cardiac hypertrophy, indicated by an
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FIGURE 2 | Ginkgo biloba extract modulates cardiac muscarinic receptor (M2) and β-adrenergic receptors (β1-AR) in hypertrophied hearts. (A,B, top)
Representative western blot and quantitative analysis of M2 (A) and β1-AR (B) protein levels. Data are represented as means ± SEM, (n = 3–6). ∗p < 0.05,
∗∗p < 0.01, and ∗∗∗p < 0.001 vs. CTR, ##p < 0.01 vs. ISO, one-way ANOVA followed by Bonferroni’s post-test.

increase in heart weight to body weight or tibia length ratios
compared with untreated rats. Remarkably, concomitant GBE
treatment (100 mg/kg) prevented the cardiac hypertrophy
induced by chronic β-AR stimulation (Table 1). In vivo
evaluation of cardiovascular function demonstrated a decreased
HR in ISO-treated rats, which was not prevented after GBE
treatment. Despite a tendency toward lower mean arterial
pressure in ISO group, there was no significant change when
compared to untreated group (Table 2).

It is well known that chronic β-AR stimulation induces
profound alterations in autonomic nervous system (Shivkumar
and Ardell, 2016), therefore we next evaluated whether GBE
modulates the autonomic balance and BRS of hypertrophic
hearts. As expected, chronic β-AR treatment led to a greater
power in the LF band (Figure 1A) and smaller power in the
HF band (Figure 1B) when compared to control, an indication
of sympathovagal imbalance. Notably, GBE treatment fully
restored sympathovagal balance in ISO-treated rats (LF/HF ratio,
Figure 1C). Moreover, as shown in Figure 1D ISO-treated rats
displayed decreased spontaneous BRS, which was rescued by
GBE treatment. Altogether, our data indicate that GBE treatment
modulates the sympathovagal balance of ISO-treated rats,
suggesting the involvement of the cholinergic parasympathetic
drive in the restoration of autonomic balance mediated by GBE.

Ginkgo biloba Extract Prevents the
Upregulation of Cardiac Muscarinic
Receptor and Downregulation of β1-AR
Induced by Chronic β-AR Stimulation
To investigate whether GBE modulates expression levels of
muscarinic receptor (M2) and β1-AR in the heart, we next

performed the western-blot technique. As shown in the Figure 2,
protein levels of M2 were upregulated (Figure 2A), while
the expression of β1-AR was downregulated (Figure 2B)
in left ventricles from ISO-treated rats when compared to
control. On the other hand, GBE treatment alone led to a
decreased expression of M2 (Figure 2A), while the protein
levels of β1-AR was upregulated (Figure 2B). Importantly,
GBE treatment was able to prevent alterations of M2 and
β1-AR induced by ISO suggesting that under this condition
appropriated autonomic balance was restored. Once again,
this finding reinforces the idea that G. biloba-mediated
cardioprotective actions involve the activation of cholinergic
activity.

Ginkgo biloba Extract Restores eNOS
Protein Expression and Activity of
Hypertrophic Hearts
It is well known that augmented local cholinergic activity
leads to an increase in NO levels (Rocha-Resende et al.,
2012). Therefore, in order to better understand whether
the synthesis of NO is involved in cardioprotective actions
of GBE, we next evaluated protein expression and activity
of the constitutive NO synthesis (eNOS and nNOS) in
the heart. As shown in the Figure 3A, ISO-treated rats
presented an upregulation of eNOS, while its activity
was markedly reduced (Figure 3B). In contrast, GBE
treatment of ISO-treated rats fully restored eNOS levels
and activity when compared to control. Importantly,
neither nNOS expression nor activity was changed by
ISO or GBE treatment (Figures 3C,D). Altogether,
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FIGURE 3 | Ginkgo biloba extract restores endothelial nitric oxide synthase (eNOS) protein expression and activity of hypertrophic hearts. (A–D, top)
Representative western blot and quantitative analysis of eNOS (A), peNOSser1177(B), nNOS (C), and pnNOSser852 (D) protein levels. Data are represented as
means ± SEM, (n = 4–6). ∗p < 0.05 vs. CTR, #p < 0.05 vs. ISO, one-way ANOVA followed by Bonferroni’s post-test.

our data show that GBE treatment restores impaired
eNOS.

Ginkgo biloba Extract Prevents ISO
Induced Hypertrophic Remodeling
To confirm whether GBE treatment exhibits cardioprotection
through impeding typical hypertrophic remodeling induced by
chronic β-AR stimulation, morphometric analysis of nuclear
cross-sectional area was evaluated. As shown in the Figure 4,
left ventricular histological sections display increased nuclear
area in ISO-treated rats, which was restored to the control
condition with GBE treatment. GBE treatment alone had no
effect on nuclear size. Moreover, ISO group showed areas
that were characterized by intense spindle cell proliferation,
identified as fibroblasts replacing the cardiac parenchyma
(Figure 5). However, GBE treatment of ISO-treated rats exhibited
markedly less expressive hypercellular areas, suggesting a minor

replacement of cardiac parenchyma and therefore, a considerable
decrease in the degree of cardiac remodeling. GBE-treated
group demonstrated a typical cardiac parenchyma similar to
untreated group, suggesting that the administration of GBE did
not promote remarkable changes in the histological architecture
of the heart.

Ginkgo biloba Extract Prevents
Electrocardiographic Changes and
Restores the Impaired Left Ventricular
Contractility Induced by Chronic β-AR
Stimulation
Maladaptive cardiac remodeling is commonly associated with
myocardial electric remodeling, therefore we next assessed
whether GBE treatment prevents such electrical dysfunction
through surface ECG recordings. Figure 6A shows typical
ECG tracing in four experimental groups. It worthwhile note
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FIGURE 4 | Ginkgo biloba extract prevents the development of cardiac
hypertrophy induced by chronic β-adrenergic stimulation.
(A) Histological sections of the left ventricle stained with hematoxylin-eosin in
each group. The arrows highlight the cellular nucleus for each group.
(B) Quantitative analysis of mean nuclear area in all assessed groups. Data are
represented as means ± SEM, (n = 3). ∗∗p < 0.01 vs. CTR, ##p < 0.01 vs.
ISO, one-way ANOVA followed by Bonferroni’s post-test.

that depression of ST segment (negative T-wave) induced
by chronic β-AR stimulation was abolished in GBE-treated
rats. Moreover, rats that received ISO presented ECG changes
that are typical of hypertrophic hearts such as, marked
enlargement of QRS complex duration (Figure 6B), prolonged
QTc interval (Figure 6C), and increased ID (Figure 6D)
compared with control. Notably, concomitant treatment with
GBE fully abolished all ECG changes found in ISO-treated rats
(Figures 6A–C).

FIGURE 5 | Ginkgo biloba extract prevents pathological myocardial
remodeling induced by chronic β-adrenergic stimulation. Histological
sections of the left ventricle stained with hematoxylin-eosin in all of the groups
evaluated. The CTR and Ginkgo biloba extract (GBE) groups demonstrate the
cardiac striated muscle morphology. Areas of parenchymal replacement by
fibrocellular connective tissue are highlighted by arrows. The ISO group
demonstrates areas of parenchyma replacement by intense cardiac spindle
cell proliferation (fibroblasts). Note that the ISO + GBE group presented a
smaller area of parenchymal replacement by fibrocellular tissue (n = 3).

Impaired myocardial contractility is a hallmark of pathological
ventricular remodeling, therefore we also assessed whether
GBE prevents the loss of ventricular contractility through
Langendorff-isolated heart Figure 7A. As shown in the
Figure 7B, chronic β-AR stimulation markedly decreased the
LVDP when compared with control group, whereas GBE
treatment significantly ameliorated the contractile dysfunction
of hypertrophied hearts. GBE treatment alone did not affect
the LVDP. Furthermore, during heart perfusion, the coronary
perfusion pressure was simultaneously recorded in order to
evaluate the coronary vasomotor tone. Chronic β-AR stimulation
led to a higher coronary pressure when compared with control,
whereas GBE treatment fully abolished this effect (Figure 7C).
Interestingly, animals that only received GBE showed a reduced
coronary pressure compared to untreated rats.
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FIGURE 6 | Ginkgo biloba extract prevents typical electrocardiographic changes of cardiac hypertrophy. (A) Representative ECG recordings of four
experimental groups. Asterisk indicates ST segment depression with a negative T-wave. Bar graph shows that GBE prevented increases in the (B) QRS complex,
(C) QTc, and (D) intrinsicoid deflection (ID) interval. Data are represented as means ± SEM, (n = 14). ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 vs. CTR; #p < 0.05,
##p < 0.01, and ###p < 0.001 vs. ISO, one-way ANOVA followed by Bonferroni’s Test.

Abnormal Ca2+ handling is a common feature of impaired
cardiac contractility, therefore it was evaluated the sarcoplasmic
reticulum Ca2+ pump (SERCA2) expression in the heart.
SERCA2 protein levels were significantly decreased in ventricles
from ISO-treated rats compared to control (Figure 7D). In
contrast, GBE treatment of ISO-treated rats fully restored the
physiological levels of SERCA2.

Ginkgo biloba Extract Prevents
Cardiomyocyte Hypertrophy via M2/NO
Pathway
Taken together, our data suggest that the cardioprotective action
of GBE involves the activation of cholinergic signaling. Therefore,

to validate our findings, we next performed experiments on
primary cultures of neonatal rat ventricular myocytes, which
constitute a reliable in vitro model. Thus, in order to mimic the
pathological conditions elicited by sustained β-AR stimulation,
neonatal cardiomyocytes were treated with ISO and cellular
hypertrophy was evaluated by measurement of myocyte surface
area. As shown in the Figure 8, cardiomyocytes treated with ISO
showed increased cell surface area, whereas co-treatment with
GBE fully prevented this effect. Importantly, antihypertrophic
action of GBE was abolished by atropine, a muscarinic receptor
antagonist, or L-NAME, an inhibitor of NOS. Moreover, GBE
alone had no effect on cellular area. Altogether, these data show
that GBE antihypertrophic effect occurs via activation of M2/NO
pathway.
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FIGURE 7 | Ginkgo biloba extract restores the impaired ventricular contractility induced by chronic β-adrenergic stimulation. (A) Representative left
ventricular pressure recordings. Bar graph shows (B) left ventricular developed pressure measurements, (C) coronary perfusion pressure, (D) representative western
blot and quantitative analysis of SERCA2. Data are represented as means ± SEM, (n = 6). ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 vs. CTR; #p < 0.05 and
###p < 0.001 vs. ISO, one-way ANOVA followed by Bonferroni’s post-test.

DISCUSSION

The results of the present study demonstrate that GBE
counteracts the deleterious cardiac actions of sustained β-AR
activation by preventing autonomic imbalance, myocardial
remodeling, aberrant ECG waveforms, and ventricular
dysfunction. In addition, our findings unravel the activation of
M2/NO pathway as a new mechanism involved in the remarkable
antihypertrophic action of GBE.

Sympathovagal imbalance is observed during the development
of several cardiovascular diseases (Shivkumar and Ardell, 2016).
Accordingly, abnormal vagal activity is found during the early
stage of cardiac dysfunction, whereas enhanced cholinergic
activity has been associated with decreased pathological cardiac
remodeling and risk of developing life-threatening arrhythmia
(Li et al., 2004; Sabino et al., 2013). Therefore, pharmacological
compounds that improve the cholinergic activity appear as
a promising alternative therapy for cardiovascular disorders.
In line with this hypothesis, our in vivo data show that GBE

prevents the shift of cardiac autonomic balance toward a
sympathetic drive and impaired baroreflex sensibility, as
typically found in heart failure and hypertensive rats (Zucker
et al., 1995; Botelho-Ono et al., 2011). Moreover, taking into
account recent studies that have proposed the involvement
of neuronal and non-neuronal cholinergic machinery in
the protective effect against sustained β-AR stimulation
(Rocha-Resende et al., 2012; Gavioli et al., 2014; Roy et al.,
2016), in addition to the proposed cholinergic involvement
in the GBE-mediated neuroprotection (Nathan, 2000; Kehr
et al., 2012) we raised the hypothesis that GBE may promote
cardioprotection against sustained β-AR stimulation via
cholinergic pathway.

Stimulation of muscarinic receptors represents the primary
trigger for activation of downstream intracellular signaling.
Moreover, despite the well known five distinct muscarinic
receptor subtypes (M1–M5), M2 receptor is the most abundant
isoform in cardiomyocytes (Lara et al., 2010). Therefore, in
the present study we focused on the M2 receptor due to the
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FIGURE 8 | Ginkgo biloba extract suppresses cellular hypertrophy induced by isoproterenol via M2/NO pathway in rat neonatal cardiomyocytes.
(A) Representative immunofluorescence images from phalloidin/DAPI stained neonatal cardiomyocytes in control (CTR), Ginkgo biloba extract (GBE, 100 µg/mL),
isoproterenol (ISO, 10 µM), isoproterenol plus Ginkgo biloba extract (ISO + GBE), isoproterenol plus Ginkgo biloba extract and muscarinic receptor antagonist,
atropine (ISO + GBE + AT), isoproterenol plus Ginkgo biloba extract and nitric oxide synthase inhibitor, L-NAME (ISO + GBE + L-NAME) treated cells.
(B) Quantification of cardiomyocyte surface area from experiments shown in (A). Scale bar = 20 µm. Data are represented as means ± SEM, (n = 44–82 cells
analyzed). ∗p < 0.05 vs. CTR and #p < 0.05 vs. ISO, one-way ANOVA followed by Bonferroni’s post-test.

overwhelming expression in the heart. Here, we showed that
M2 receptor was upregulated by chronic β-AR administration.
This result correlated with previous in vivo and in vitro
findings obtained from ISO-stimulated cardiomyocytes (Rocha-
Resende et al., 2012; Gavioli et al., 2014). Importantly, GBE
treatment prevented this change, indicating attenuated β-AR
stimulation and therefore, the upregulation of M2 receptor was
no longer required. Moreover, downregulation of β-AR has been
consistently reported as a result of G protein-coupled receptor

kinases and β-arrestin activities (Noor et al., 2011). In the present
study, GBE treatment alone led to a downregulation of M2
and upregulation of β1-AR. In fact, our findings are strikingly
similar to data obtained in vivo with rats subjected to treatment
with pyridostigmine, a cholinesterase inhibitor (Gavioli et al.,
2014). Along with these lines, previous studies have reported
the anticholinesterase activity of GBE (Stein et al., 2015; Kim
et al., 2016). Although the exact mechanism by which GBE alters
cholinergic signaling is still unknown, it is plausible to assume
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that GBE acts, at least in part, through changes in cholinergic
signaling.

Nitric oxide release has been reported as the downstream
effector of cholinergic signaling in cardiomyocytes (Balligand
et al., 1993; Rocha-Resende et al., 2012). Moreover, several studies
have consistently demonstrated the beneficial actions of NO
in the cardiovascular system by regulating eNOS and nNOS
signaling pathways (Barouch et al., 2002; Ziolo et al., 2008;
Umar and van der Laarse, 2009). In vitro and in vivo studies
have shown that GBE enhances NO bioavailability (Sasaki et al.,
2002; Koltermann et al., 2007). Accordingly, activation of NO
signaling pathway by GBE treatment has been associated with
cardioprotection in a model of ischaemia-reperfusion injury
(Shen et al., 1998) and adriamycin-induced acute cardiotoxicity
(El-Boghdady, 2013). In accordance with previous studies, we
showed that despite increased eNOS expression in response
to chronic β-AR stimulation (Champion et al., 2004; Krenek
et al., 2009), its activity was markedly decreased, what would
lead to reduced NO bioavailability (Victorio et al., 2016).
The remarkable restoration of expression and impaired eNOS
activity induced by GBE treatment of isoproterenol rats indicates
eNOS-mediated NO as a negative modulator of chronic β-AR
stimulation (Ozaki et al., 2002). Although recognized as a
therapeutic target for several cardiovascular diseases (Zhang
et al., 2014), in the present study, we showed that nNOS
expression and activity remained unchanged upon chronic β-AR
stimulation. Thereby these data rule out a significant contribution
of nNOS-mediated NO in the antihypertrophic effect of GBE.
Altogether, our data is the first evidence on the involvement
of NO signaling pathway in the antihypertrophic effect of
GBE.

Our data also endorse previous studies that correlate
the diffuse myocardial damage characterized by fibroblast
replacement with aberrant electrical remodeling (Tomaselli and
Marbán, 1999; Chapman et al., 2001). Here, we show that
GBE treatment prevented the pathological remodeling and ECG
changes induced by chronic β-AR stimulation. Accordingly,
reduced myocardial fibrosis induced by ligation of left anterior
descending artery has been reported in GBE-treated rats. In
this model, GBE treatment decreased expression levels of
transforming growth factor-β1, and matrix metalloproteinase 2
and 9, therefore attenuating the extracellular matrix deposition
(Li et al., 2015). The late-phase of hypertrophic remodeling
is also associated with abnormalities in the Ca2+ handling,
in which contributes to ventricular dysfunction (Bers et al.,
2003; Lang et al., 2015). Altogether, our data indicate the
GBE attenuates the decrease of ventricular wall compliance
and increase of stiffness, thereby ameliorating the ventricular
dysfunction. In addition, decreased expression of the SERCA2
was found in ISO-treated rats. This finding is consistent
with reduced sarcoplasmic reticulum Ca2+ load, already
described during cardiac hypertrophy stage, thereby affecting
SR Ca2+ refilling and, consequently, ventricular contractility
(Bers et al., 2003; Gavioli et al., 2014). Therefore, restoration
of SERCA2 levels in GBE-treated rats represents an important
underlying mechanism involved in the ventricular dysfunction
amelioration.

β-adrenergic receptors are also expressed on the endothelial
and smooth muscle cells and, its actions seems to be dependent
of the vascular bed and isoforms (Flacco et al., 2013). In resistance
artery, chronic β-AR stimulation leads to impaired vascular tone
(Davel et al., 2006), increased expression of proinflammatory
cytokines and NF-κB activity (Davel et al., 2008), and decreased
NO bioavailability (Victorio et al., 2016). Accordingly, in the
present study, we demonstrated that chronic β-AR stimulation
caused a marked increase in the coronary resistance, which was
fully prevented by GBE treatment. Moreover, we showed the rats
treated with GBE displayed lower coronary perfusion pressure.
Supporting our findings, the vasodilator activity of GBE was
previously demonstrated in rat aorta rings through opening of
Ca2+-activated potassium channel, in which ultimately causes
endothelial cell hyperpolarization and NO release by eNOS
activity (Satoh and Nishida, 2004).

Although our data indicate that GBE treatment counteracts
the deleterious cardiac actions of sustained β-AR stimulation via
cholinergic pathway, we unequivocally validated our hypothesis
through in vitro experiments. Accordingly, we showed the
antihypertrophic action of GBE was fully abolished by either,
muscarinic receptor or NOS inhibition. Indeed, the downstream
cascade of muscarinic pathway involves the activation of NOS
and, consequently, NO release (Rocha-Resende et al., 2012).
Consistent with our data, previous study demonstrated that
similar dose of GBE (100 µg/mL) enhanced NO production
by increasing eNOS activity in endothelial cells (Koltermann
et al., 2007). Moreover, it is worthy of note that the in vitro
concentration used in the present study was determined in
accordance with pharmacokinetics studies in human that have
demonstrated this concentration is likely to be achieved in the
blood after daily intake of 80–240 mg, which represents the
regular dosage of GBE for effective therapy (Biber, 2003; Ude
et al., 2013). Altogether, our results bring new insights into
the mechanism involved in the antihypertrophic action of GBE,
which goes beyond its antioxidant activity.

CONCLUSION

In summary, our data show that the deleterious cardiac actions
of sustained β-AR activation were significantly attenuated
by GBE treatment. Furthermore, our findings indicate that
pharmacological actions of GBE treatment alone on sympathetic-
cholinergic receptors may be involved in the cardioprotective
effect. Accordingly, we show that the antihypertrophic action
of GBE occurs via activation of M2/NO pathway. Overall,
these findings uncover a new mechanism involved in the
cardioprotective action of GBE.
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