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Abstract

Background: Computed Tomography (CT) has become a widely used supplement to medico legal
autopsies at several forensic institutes. Amongst other things, it has proven to be very valuable in
visualising fractures of the cranium. Also CT scan data are being used to create head models for
biomechanical trauma analysis by Finite Element Analysis. If CT scan data are to be used for creating
individual head models for retrograde trauma analysis in the future we need to ascertain how well
cranial fractures are captured by CT scan. The purpose of this study was to compare the diagnostic
agreement between CT and autopsy regarding cranial fractures and especially the precision with

which cranial fractures are recorded.

Methods: The autopsy fracture diagnosis was compared to the diagnosis of two CT readings
(reconstructed with Multiplanar and Maximum Intensity Projection reconstructions) by registering
the fractures on schematic drawings. The extent of the fractures was quantified by merging 3-
dimensional datasets from both the autopsy as input by 3D digitizer tracing and CT scan.

Results: The results showed a good diagnostic agreement regarding fractures localised in the
posterior fossa, while the fracture diagnosis in the medial and anterior fossa was difficult at the first
CT scan reading. The fracture diagnosis improved during the second CT scan reading. Thus using
two different CT reconstructions improved diagnosis in the medial fossa and at the impact points
in the cranial vault. However, fracture diagnosis in the anterior and medial fossa and of hairline

fractures in general still remained difficult.

Conclusion: The study showed that the forensically important fracture systems to a large extent
were diagnosed on CT images using Multiplanar and Maximum Intensity Projection
reconstructions. Difficulties remained in the minute diagnosis of hairline fractures. These
inconsistencies need to be resolved in order to use CT scan data of victims for individual head

modelling and trauma analysis.

Background eral forensic institutes throughout the world [1-3].
Computed tomography (CT) scanning of bodies prior to  Indeed, there may be a number of advantages to perform-
medico legal autopsy has become a powerful tool in sev-  ing a CT scan before a medico legal autopsy. In forensic
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pathology as well as in clinical settings the investigation of
head trauma is based on a combined analysis of the
present external lesions, cranial fractures and intracranial
lesions. The scans of the head are suitable to visualize
lesions of especially bone, but also some soft tissue and
most cerebral pathologic changes or lesions [4]. Fractures,
intracranial haemorrhages and hematomas can be dem-
onstrated either 2- and 3-dimensionally, providing a gen-
eral overview of simple as well as complex lesions, e.g.,
gun-shot lesions or large fracture systems [3,5-8]. How-
ever, especially minor lesions of the soft tissue, bone or
intracranial content can be difficult to diagnose on CT
scan which has to be kept in mind when investigating
head trauma and the corresponding injury mechanisms.

Attempts have been made to use the acquired CT data for
detecting causal relationships either by illustrating and
interpreting lesions based on CT images [6,8] and other
tools [9], or by using the data to attempt biomechanical
analysis [10] to analyze lesions. Due to the nature of the
technique, CT scanning also allows for the collection of
spatial data of the cranium, which potentially could be
used in the development of new analytical tools in foren-
sic pathology and injury biomechanics [11,12]. Biome-
chanical models of the head are increasingly used in the
forensic sciences to analyze injury mechanisms [13-15].
CT scan data may be particularly useful for creating bio-
mechanical models [16,17] of body parts, e.g. the cra-
nium [18-21], because they may provide precise spatial,
digital data which represent the complex anatomic struc-
tures of the cranium of the single individual. The possibil-
ity of being able to develop either standard or individual
cranial models subject to retrograde trauma analysis could
open up for new prospects regarding medico legal case
work both in adults and children.

We have shown that it may be difficult to visualize non-
dislocated fractures of the cranium on CT scans performed
in a routine setting [22], especially when the fractures are
located in the cranial base. Forensically important infor-
mation about the whole fracture system and possible
impact points may then be lost in the cases in which these
fractures provide clues about the causative forces. If CT
scan data are to be used in future retrograde biomechani-
cal modelling, we need to not just examine the overall
diagnostic agreement between CT scanning versus
autopsy, but also to examine in more detail exactly how
fractures seen on CT scans match autopsy finds.

To this end we performed a detailed analysis of 14 cases
with limited cranial fractures by carefully recording the
fractures as diagnosed on CT scans post processed with
Multiplanar reconstruction (MPR) [23] and Maximum
Intensity Projection (MIP) [24], as well as by detailed
recording of the fractures at autopsy (drawing and pho-
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tos). We further tried to quantify the differences by tracing
the fractures as seen at autopsy using a 3-dimensional dig-
itizer and merging this 3-dimensional data set with a 3-
dimensional reconstruction of fractures diagnosed on CT
scan.

Methods

The study included fourteen cases (13 male, 1 female; age-
range: 19-82 years, mean 47 years) with neurocranial frac-
tures with a limited extension, caused by blunt violence.
Nearly all of the cases were accidents, while one was the
result of an assault with a baseball bat (see table 1). In one
case the manner of death was unknown.

The CT scan and the autopsy

Each body was scanned using an MSCT-scanner (Siemens
Somatom Plus 4 Volume Zoom) prior to the autopsy. The
scan was obtained in an axial plane using a slice collima-
tion of 4 x 1 mm, pitch 0.65, 120 KV, mAs ~150 and bone
algorithm (HG6O0s).

At the autopsy, the cranium and the fractures were photo-
graphed and registered on a schematic drawing. Also, the
fracture characteristics, extension and anatomic location
were registered. For comparative purposes the neurocra-
nium was divided into the following major anatomic
regions: the vault (squamous part of the frontal bone, the
parietal bones, and the squamous part of the temporal
bone) and the cranial base. The cranial base was further
subdivided into the posterior fossa (occipital bone), the
medial fossa (petrous part of the temporal bone, greater
wing of the sphenoid, sella turcica) and the anterior fossa
(orbital part of the frontal bone and the lesser wings of the
sphenoid).

The CT readings

Two CT readings were performed. The first diagnostic frac-
ture reading was performed by a forensic pathologist (CJ)
on the Siemens scanner workstation prior to the autopsy.
The axial images and a Multiplanar reconstruction (MPR)
of the sagittal and coronal image planes with reconstruc-
tion increment of 0.5 mm were used. The second diagnos-
tic reading of the same CT images was performed in

Table I: The different trauma mechanisms related to the case
numbers.

Trauma mechanism Case no.
Assault #2

Fall -- ground level #10

Fall -- 2-3 metres #8, #11, #12, #13
Fall - >4 metres #14

Fall -- unknown height #1, #9

Traffic -- hit #3, #5, #7

Traffic -- hit and fall #4, #6
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cooperation with a board certified radiologist (BLH) on
an Agfa Impax DS 3000 workstation in consideration of
autopsy findings. In addition to the MPR, a thick (5 mm)
MIP was performed, and in selected cases a curved MPR.
Due to technical difficulties case #13 did not undergo a
second evaluation. Discontinuity or dislocation of the
bone was defined as being a fracture. In some cases there
were suture diastases and to avoid interpreting these as
fractures the width of the suture was compared to the par-
allel sutures. Intracranial air or blood in the sinuses served
as an indicator for possible fractures, but if a discontinuity
of the bone was not visible the likely associated fracture
was not registered.

The comparison between the CT readings and the autopsy
results

In order to compare the extension and anatomic localisa-
tion of the fractures, the fracture diagnosis of the first and
second CT scan evaluation were registered on the sche-
matic drawings from the autopsy. It was also noted
whether the fractures were uni- or bilateral and, on the CT
scans, whether there was fluid in the sinuses or mastoids.
This clearly showed whether congruence between the
autopsy and the reconstructed CT images (MPR, MIP and
curved MPR) existed. The data were analyzed regarding
the recognition of an overall fracture system, providing
important information about the traumatology in foren-
sic casework, and whether the overall as well as the
minute fracture diagnosis was correct compared to the
autopsy results.

In order to further quantify location and congruence
between autopsy and CT scan we selected five cases, and
their 3-dimensional fracture registrations based on the
first reading of the CT scan data and on the autopsy were
merged. We did this by performing a 3-dimensional frac-
ture registration at the autopsy by tracing the fractures
using a digitiser (Patriot® Polhemus, US). The CT scan data
were transferred to Mimics®, a software programme which
allows single slice editing and segmentation, enabling us
to segment the fractures as seen on the CT images. The two
obtained data sets, from the autopsy and the CT scan,
were transferred to Design CAD 3D Max 15% a computer
aided design package, and merged (see figure 1a, b and
10).

The material

At the autopsy the majority of the cases (12/14) com-
prised linear cranial fractures. There was also a case with a
depressed fracture in the vertex and one case with a local
comminute fracture in the occiput. In half the cases sev-
eral separate fractures were present per case, e.g., a linear
fracture involving the posterior fossa and a separate frac-
ture involving the medial fossa. Also more than half (n =
9) of the fractures comprised a varying number of ramifi-
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a, b and c. The 3-dimensional data set from case #6
with the digitised fracture at the autopsy (a), the seg-
mented fracture from the CT image (b) and the
merged two data sets (c). The dimensions are in mm and
represent only some of the measurements. The 2-dimen-
sional representation of the 3-dimensional image causes dis-
tortion.

cations (n = 1-5), which at the autopsy were seen as undis-
located hairline fractures. Only a few of all the fractures
were dislocated (n = 4) and the fracture width varied from
4 mm - 1 mm. Suture diastases was involved in 5 cases and
involved the lambdoid, squamous and sphenofrontal
suture.

The Study was approved by the Ethics Committee for
Copenhagen and Frederiksberg, Denmark KF01-154/04.

Results

The anatomic localisation of the cranial fractures as
diagnosed at the autopsy

It was seen at the autopsy that the basal fossae and the
vault were affected in 34 instances (see table 2). The ante-
rior and medial fossae were affected bilaterally in half the
cases, while bilateral fractures in the posterior fossa only
occurred once. Fractures involving the anterior fossa bilat-
erally (cases #6, #7, #13) never crossed the midline, and
in two cases (cases #3, #12) only involved the orbital loft
of the frontal bone. The unilateral fractures in the anterior
fossa (cases #1, #2, #11) were, except from one (case #11),
continuations of fractures from the medial fossae (cases
#1, #2) and were located in the sphenoid. Fractures
involving the medial fossae (cases #1-7, #10-13) were sep-
arate fractures in two cases (cases #10, #13) but were
mostly continuations of fractures from the posterior fossa
(cases #5, #6, #11) or the theca (cases #1-4, #7). Four of
the bilateral fractures in the medial fossae traversed the
sella turcica (cases #3-5, #12).

Page 3 of 9

(page number not for citation purposes)



BMC Medical Imaging 2009, 9:18

http://www.biomedcentral.com/1471-2342/9/18

Table 2: Case based number of fractures in the anatomic entities of the neurocranium

Fractures Base Base Base Vault Total
Anterior fossa Medial fossa Posterior fossa

Unilateral 4 5 7 5 21

Bilateral 3 6 | 3 13

Total 7 Il 8 8 34

The anatomic localisation of the cranial fractures as
diagnosed at the CT readings

The anatomic localisation and extent of the fractures was
diagnosed completely during the first reading of the MPR
CT images in two of the fourteen cases (cases #8, #14) (see
figure 2). Case #8 comprised a simple linear fracture in the
occipital bone oriented anterior-posterior. The fracture in
case #14 was depressed, oriented anterior-posterior and

Figure 2

located in the vertex. In ten cases (#1-6, #9-12) there was
a partial fracture diagnosis based on the MPR CT images,
but the overall fracture system was recognized.

By performing the second reading of the MPR and MIP CT
images of 13 of the 14 cases (cases #1-12, #14) the frac-
tures of the cases #1, #3, #10 and #12 were diagnosed
completely. In one case (case #7) important information,

Registration of the case based fracture congruity between autopsy and CT. The fractures diagnosed at autopsy are
represented by all colours (red, light blue and blue). The light blue colour by itself represents the part of the fractures diag-
nosed during the first reading; the dark blue colour represents the additional part of the fractures diagnosed during the second
reading; the red colour represents the part of the fractures which were not diagnosed at all at the CT readings.
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regarding contre-coup fractures, was missed on the CT-
scan since fractures of the eye loft in the anterior fossae
were not diagnosed.

The quantification of the fracture extent based on the
autopsy findings and the CT scan readings

Table 3 shows the quantification of the fractures extent as
measured by digitiser at the autopsy compared to the
measurements performed on the CT scans after the first
reading. The table shows that up to 50% of the full extent
of the fractures was missed in one case (case 1). The
missed fractures were hairline fractures. In cases #9, #6
and #11 the Y-, T- and H-shaped hairline fracture of the
impact point was missed. In cases #11, #6 and #1 the hair-
line fractures located in the medial fossa, both in the
petrous bone and the sphenoid, were not diagnosed. Case
#14 represented the only depressed fracture in the mate-
rial and in that case the diagnosis was correct.

The analysis of CT scan based fracture diagnosis by using
different reconstructions

The missed fractures on the MPR CT images were charac-
terised by being undislocated hairline fractures or ramifi-
cations of the wider fractures. Not surprisingly most of the
missed fractures were located in the basal medial and
anterior fossae (see table 4). This is exemplified in the
cases #2, #4-7 and #13 (see figure 2), of which cases #7
and #13 are with severe incongruity in fracture diagnosis.
Using thick MIP reconstructed CT images at the second
evaluation did not facilitate the diagnosis of fractures in
the minor wings of the sphenoid nor in the pars orbitalis
of the frontal bone. The greatest advantage of using thick
MIP reconstructed CT images was achieved in the medial
fossa (see figure 3) and in the vault when visualising ram-
ifications related to impact points. In the medial fossa the
usage of thick MIP improved the diagnostic frequency of
fractures in the petrous part of the temporal bone (see fig-
ure 4) and the greater wings of the sphenoid by approxi-
mately 50%. The main fractures in the basal posterior
fossa and the vault, except from five ramifications (cases
#5, #6, #9-11), were diagnosed in the first evaluation. The
ramifications were associated to impact points and were
therefore important in the forensic casework. During the
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second evaluation, the usage of curved MPR on the CT
images made the diagnosis of two of the ramifications
possible (case #5 and #11) while the remaining ramifica-
tions were diagnosed by using thick MIP (case #6, #9 and
#10).

The analysis of secondary signs of fracture

In several cases there were indications of fracture on the
CT images with fluid in the mastoid cells (case #10, #4,
#1, #12, #13), which at the autopsy always was associated
with fracture in the same petrous bone. In four of these
cases there was also fluid in the sphenoid sinus on the CT
images (case #4, #12, #13) and/or the ethmoid sinus (case
#4, #1, #12). In two cases fracture of the sinus walls was
diagnosed on the CT image. In only one of these cases an
associated fracture in the anterior fossa was not diagnosed
at the autopsy (case #4).

Discussion

Our study showed that the forensically important fracture
systems to a large extent were diagnosed on CT images
using MPR and MIP reconstructions. In this technical
study we focused only on minor fracture systems which
limited the number of included cases and restricted the
usage of statistical methods including the evaluation of
diagnostic sensitivity/specificity. The autopsy findings
were known during the second CT scan reading which
made a problem based reading with the radiologist possi-
ble identifying and targeting difficult diagnostic areas.
Future larger blinded diagnostic studies could evaluate the
congruence between autopsy and CT scan images further.
Also the usage of new generation CT scanners with the
technical ability to produce isotropic data would probably
improve the diagnostic accuracy [25,26].

The CT scan based recognition of fractures located in the
basal cranial fossa and also the cranial vault is important
both in the clinical setting regarding treatment efficiency
[27-29] and in medico legal material to be able to analyze
injury mechanisms. However, in clinical settings the diag-
nosis of hairline fractures is mostly not essential as long as
there are no clinical symptoms or complications [30]. The
medico legal material in this study reflected the trauma

Table 3: Comparison of the digitised fracture length to the fracture length as measured on CT images of the first reading

Case no. Digitiser CT (cm) Digitiser - CT subtraction sum (cm) Anatomic localisation of miss
#9 134 83 5.1 Occipital bone T-shaped hairline fracture
#11 22.2 17.5 4.7 Petrous bone, minor wing of the sphenoid (~| cm each)
and H-shaped fracture in the occiput
#6 20.3 18.1 22 Parietal bone (0.6 cm) and petrous bone (1.6 cm)
#l 22.1 10.3 11.8 Petrous bone ~3 c¢cm and the great sphenoid wing (~8.8 cm)
#14 6.7 (length) 5.8 (length) 0.9 (length) Depression fracture of the parietal bone
2.4 (width) 1.7 (width) 0.7 (width)

The fracture of the eye loft in case no. 6 was not digitised
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Table 4: Number of fractures in each bone as diagnosed by autopsy versus CT-scan

Region Anterior fossa Medial fossa Posterior  Vault Total
fossa

Bone Frontal Sphenoid  Temporal Sphenoid Sphenoid Occipital Frontal Parietal Temporal

Pars Minor Petrous Greater Sella Pars

orbitalis wings wings turcica squamosa
Autopsy 7 5 15 15 4 8 | 12 9 76
IstCT 3 0 6 5 2 8 | 9 8 42
reading
20 CT 32 0 I I 3 8 | 12 9 58
reading

20One case with two fractures of the eye loft did not undergo the second evaluation

severity with a fracture involvement of the medial basal
fossa in 80% of the cases, which in this study was an area
in which fracture diagnosis was difficult. Often both the
pars petrosa of the temporal bone and the sphenoid bone
were affected simultaneously either unilaterally or bilater-
ally and there were also a few cases with transphenoidal
fractures resulting in involvement of both fossa, which in
clinical studies is interpreted as the result of severe head
injury [31-35]. Unger et al. [28] found in a clinical study
that fractures of the cranial base predominantly were
located in the sphenoid bone and to some extent in the
temporal bone. In this study most fractures were identi-
fied in the greater wings of the sphenoid involving the
orbital surface while fractures of the cerebral and tempo-
ral surfaces were less common. This finding might be
related to the difficulties exemplified in this study in visu-
alising these fractures on CT images. In our study none of
the isolated fractures of the minor wing were diagnosed,
which is in concordance with the study of Unger et al [28]
in which only a few fractures of the minor wings of the
sphenoid were diagnosed.

Figure 3

MPR (right) and MIP (left) coronal images of frac-
tures in the left temporal bone and right great wing
of the sphenoid. The MIP provides a very good overview of
the fractures extension. The fractures in the temporal bone
are indicated by black arrows and the fractures in the great
wing of the sphenoid are indicated by white arrows.

With the combination of MIP, MPR and in some instances
curved MPR the identification of fractures at possible
impact points was deemed acceptable. It is known that
widths of linear fractures at impact sites can be narrower
than at locations further away from impact in the same
case [18]. The recognition of a possible characteristic frac-
ture corresponding to the impact point in the cranium
and the correlation to possible scalp lesions and instru-
ments is important for the casework, both from a biome-
chanical [18] and a forensic viewpoint.

The results implied difficulties regarding diagnosis of frac-
tures involving the anterior fossa. In all our cases the frac-
tures were confined to either side of the eye loft without
midline crossing and were interpreted as being the result
of an impact to the back of the head, i.e. contre-coup frac-
tures of the eye loft [36-39]. In most clinical studies frac-
tures of the eye loft are associated with trauma to the facial
or frontal region [40-43] producing transverse and longi-
tudinal fractures [44,45] and we are not aware of clinical
studies which mention these characteristic fractures after
occipital impact. In a forensic routine setting both fracture
of the anterior fossa and lesions of the cerebral temporal
and frontal lobes in conjunction with occipital impact
would be regarded as contre-coup lesions and thereby
indicative of this specific injury mechanism. Further stud-
ies are needed to elucidate how often cerebral lesions and/
or fractures of the eye loft occur in impacts to the back of
the head.

The difficulties regarding diagnosis of fractures involving
the anterior and medial fossa is also known in the clinical
setting [27]. Schuknecht et al [23] stress the use of correct
protocols when attempting to diagnose fractures of the
bones in the medial and anterior fossa (thin collimation
(0.75-1 mm) and 2D MPR with contiguous 2 mm slices in
the axial and coronal plane) and especially high resolu-
tion (0.5-0.75 mm) for evaluation of the pars petrosa of
the temporal bone. Philipp et al [46] found that thin MPR
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Figure 4

MPR (right) and MIP (left) sagittal images of frac-
tures in the occipital bone and petrous part of the
temporal bone. The MIP provides an overview of the frac-
tures extension and the hairline fracture in the petrous
(short white arrow) and occipital bone (long white arrow).

obtained from thin collimation (2 x 0.5 mm) was supe-
rior in subtle fracture detection compared to collimation
of 4 x 1 mm in midline facial fractures.

Other 3-dimensional reconstructions aside from MIP [24]
were not used in this study since the diagnostic improve-
ment by using these studies for visualizing non-dislocated
and hairline fractures was not considered to be substantial
compared to the 2-dimensional MPR images conf.
[40,47,48]. However recent studies have shown a diag-
nostic improvement for particularly pathological changes
in the temporal bones by using Volume Rendering recon-
structions [49]. The use of high-resolution MPR's based
on 0.625 mm collimations in a problem-based manner
has also been found to improve the diagnostic frequency
[50].

In this study we also wanted to try to more precisely meas-
ure the differences in determining fracture extent based on
either CT scanning (MPR) and by direct inspection at
autopsy. We were able to do this in five cases, and to our
knowledge this represents the first such attempt at direct
quantification. Fracture length discrepancies were thus
measureable for hairline fractures. We feel that such pre-
cise quantification is necessary if CT data is to be used in
future forensic, biomechanical injury modelling and
Finite Element Analysis of minor fracture systems. One
perspective of these techniques is the ability to perform
retrograde injury modelling based on the specific case at
hand, thereby complementing the general model based
approach (see Raul et al. for an overview)[13]. While
finite element models in forensics and accident analysis
already have been applied to injury simulation
[15,51,52], the retrograde analyses will depend much on
the correct capture of the full fracture extent and impact
area. Capturing less than half of the full fracture extent
will necessarily result in a lower calculated impact force,
and not capturing the fracture pattern correctly may also
result in a wrong interpretation of the causative injury.

http://www.biomedcentral.com/1471-2342/9/18

Clearly there is a need to extend the quantification to a
larger sample and other cranial fracture patterns. Further
studies of standard models and simulations are also nec-
essary to accumulate data on head injury biomechanics
and validate the head models [51].

An indication for a fracture being present involving the
basal cranial fossae can be the identification of intra cra-
nial air [53,54], fluid in the sinuses [55] or opacification
of the mastoid cells [50]. This was also the case in our
material and these pathological changes led to fracture
diagnosis in most of these cases. Connor et al. [50] found
that the specific use of high-resolution MPR's upon diag-
nosis of basal cranial fractures or indications hereof
(opacified mastoid cells, etc.) on 5 mm axial images led to
a higher diagnostic frequency. In our material there was
also one case with fluid level in the sphenoid and ethmoid
sinuses in conjunction with an occipital impact. There was
no associated fracture of the anterior fossa. Fractures of
the sinus walls are difficult to diagnose during an autopsy
and in these cases CT images are of great advantage. Our
material was too small to explore whether fractures of the
sinus walls could be associated with impacts in the
occiput and how often they occur without associated frac-
ture of the anterior or medial fossa diagnosed during the
autopsy. Geserick et al. [38] found in a prospective study
that the orbital medial wall, roof and basal wall contained
contre-coup fractures relating to occipital impacts. Also
other authors have found fractures of the orbital roof in
similar cases [36,37]. It remains to be established how
often fluid in the mastoids or the sinus is associated to
fractures and whether this finding in the sinus alone is as
relevant as contre-coup fractures in the eye loft for possi-
bly differentiating between a blow to the head or impact
to the moving head (e.g. fall) [36].

Collaboration with a radiologist (BHB) increased the
diagnostic frequency of the cranial fractures. During the
second reading the difference between a clinical and
forensic approach towards diagnosis of cranial fractures
was clearly demonstrated. This emphasized the fact that
forensic radiology should be an interdisciplinary specialty
which will be dependent on input and knowledge from
both specialties to evolve further [1,56].

Conclusion

Our study showed that the forensically important fracture
systems to a large extent were diagnosed on CT images
using MPR and MIP. The usage of the various reconstruc-
tions and the collaboration with a radiologist was benefi-
cial and necessary in this type of cases with non-dislocated
fractures and hairline fractures. Difficulties remained in
the minute diagnosis of hairline fractures located espe-
cially in the anterior or medial fossa. This was exemplified
by merging the digitised autopsy data with the data from
the CT scan. Using MIP reconstruction, and in selected
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cases curved MPR, especially focusing on the fossae and at
the impact points in the vault or occipital bone, lead to an
increase in the diagnostic frequency, which in turn lead to
an improvement of the diagnostic possibilities regarding
forensically important information, e.g., possible causa-
tive events, agents and force directions. However the
inconsistencies regarding the diagnosis of especially frac-
tured eye lofts (contre-coup) was problematic and in the
cases in which a differentiation between a fall on the back
of the head or a blow is necessary the autopsy still seems
to be the primary choice. Although the usage of different
reconstructions improved the fracture visualisation, the
agreement between the autopsy results and the CT images
should be improved if CT scans of fractured neurocrani-
ums are to be used for future retrograde biomechanical
modelling and in order to be able to give a biomechanical
approximation of the injury mechanism and involved
forces.
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