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Abstract
With the mechanistic understanding of immune checkpoints and success in checkpoint blockade using antibodies
for the treatment of certain cancers, immunotherapy has become one of the hottest areas in cancer research, with
promise of long-lasting therapeutic effect. Currently, however, only a proportion of cancers have a good response
to checkpoint inhibition immunotherapy. Better understanding of the cancer response and resistance mechanisms
is essential to fully explore the potential of immunotherapy to cure the majority of cancers. Bladder cancer, one
of the most common and aggressive malignant diseases, has been successfully treated both at early and advanced
stages by different immunotherapeutic approaches, bacillus Calmette–Guérin (BCG) intravesical instillation and
anti-PD-1/PD-L1 immune checkpoint blockade, respectively. Therefore, it provides a good model to investigate
cancer immune response mechanisms and to improve the efficiency of immunotherapy. Here, we review bladder
cancer immunotherapy with equal weight on BCG and anti-PD-1/PD-L1 therapies and demonstrate why and how
bladder cancer can be used as a model to study the predictors and mechanisms of cancer immune response and
shine light on further development of immunotherapy approaches and response predictive biomarkers to improve
immunotherapy of bladder cancer and other malignancies. We review the success of BCG and anti-PD-1/PD-L1
treatment of bladder cancer, the underlying mechanisms and the therapeutic response predictors, including the
limits to our knowledge. We then highlight briefly the adaptation of immunotherapy approaches and predictors
developed in other cancers for bladder cancer therapy. Finally, we explore the potential of using bladder cancer
as a model to investigate cancer immune response mechanisms and new therapeutic approaches, which may be
translated into immunotherapy of other human cancers.
© 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

In 1891, Coley treated sarcoma patients with strepto-
coccal organisms to prevent tumour progression [1].
The concept of cancer immunotherapy began. To avoid
lethal infection, Coley later implemented heat-killed
microorganisms, which subsequently became known
as Coley’s toxins [2]. Based on this concept of infec-
tion induced immune response to enhance immune
recognition of tumour-associated antigens, a live,
attenuated strain of Mycobacterium bovis, bacillus

Calmette–Guérin (BCG), used for vaccination against
tuberculosis, was tested as cancer therapy [3]. In 1976,
the clinical benefit of BCG intravesical instillation for
bladder cancer was reported [4], which encouraged
further clinical trials and established BCG intravesical
instillation as the gold-standard adjuvant treatment for
non-muscle invasive bladder cancer (NMIBC) [5].

Towards the end of last century, other immunother-
apeutic approaches were also developed for cancer
treatment, but with high toxicity and low specificity
[6]. In the 1990s, the immune checkpoint key proteins,
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Figure 1. Milestones in cancer immunotherapy development. LAK, lymphokine-activated killer cells; CIK, cytokine-induced killer cells.

CTLA4, PD-1 and PD-L1, were identified, which led
to the success of cancer immunotherapy by immune
checkpoint blockade (ICB). Together with the develop-
ment of the chimeric antigen receptor T-cell (CAR-T)
technology [7], in the last 10 years, immunothera-
pies demonstrate many breakthrough achievements,
making immunotherapy a promising approach to
cure certain cancers. Figure 1 summarises the his-
tory of immunotherapy development with milestones.
However, many cancers are still not responsive to
immunotherapy. A better understanding of the cancer
response and inhibition mechanisms is essential to fully
explore the potential of immunotherapy to cure cancers.
Bladder cancer, which can be successfully treated by
immunotherapy both for early- and later-stage disease,
provides a good model to investigate cancer immune
response and improve efficacy.

Bladder cancer is the sixth most common cancer
with 70% of cases presenting as non-muscle inva-
sive lesions (NMIBC) [8]. Around 25–75% high-risk
NMIBCs progress to muscle invasive cancer (MIBC)
and further metastatic cancer, with poor prognosis.
Due to the unique function of the bladder, urine
storage, intravesical instillation of drugs is used to
treat NMIBC, with BCG intravesical instillation the
most successful approach, and the current standard
clinical treatment. The mechanisms of BCG-induced
tumour-specific immunity have been extensively inves-
tigated, although many unclear issues remain [5]. Only
25% advanced/metastatic bladder cancers respond
to anti-PD-1/PD-L1 ICB [9], thus further improve-
ment is required. As previous reviews have focused
on either BCG or anti-PD-1/PD-L1 immunothera-
pies, rarely both, here we review bladder cancer BCG
and anti-PD1/PD-L1 immunotherapies together to
explore our knowledge and the potential to improve

immunotherapy. We demonstrate that bladder cancer
is a good model to study cancer immune response
mechanisms and predictors, which may help to improve
immunotherapy of other cancers.

The success of BCG intravesical instillations
for early-stage NMIBC

Based on the observation that people with active tuber-
culosis develop cancer less frequently than the general
population [10], the potential therapeutic effect of BCG
against cancer was tested initially in 1936 for stomach
cancer [11]. Because of the unique function of the blad-
der, BCG intravesical instillation was applied in treating
NMIBC patients in 1976 resulting in efficacy [4]. Later
several larger scale clinical trials with BCG instillation
were reported at the beginning of 1980s, comparing out-
comes with surgery alone [12–14] and with intravesical
chemotherapy [12,15].

Lamm et al reported in 1980 that BCG intravesical
therapy following transurethral resection of bladder
tumours (TURBT) better prevents tumour recurrence
compared to patients receiving TURBT only (3/18
versus 8/19) [13]. Similar findings were reported in
later publications [12,14]. In addition to preventing
recurrence after TURBT, the therapeutic efficacy of
BCG instillations also achieved 70% complete remis-
sion rate in bladder cancer patients, who were not
suitable for cystectomy or with incompletely resected
tumour lesions [14,16]. In 1982, Brosman demon-
strated that BCG treatment was more effective in
preventing recurrence compared to thiotepa intraves-
ical chemotherapy (0% versus 40% recurrence rate,
respectively with 2-year follow-up) [15]. The efficacy
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of BCG over chemotherapy was further supported
by a study evaluating 176 patients randomised into
intravesical BCG and chemotherapy groups, showing
BCG treatment with 13% (9/67), doxorubicin treatment
43% (23/53) and thiotepa 36% (20/56) recurrence rates
[17]. Another 5-year follow-up study of 262 patients,
also demonstrated that intravesical BCG significantly
prevented recurrence compared to doxorubicin (63%
versus 87% recurrence rate) [18]. In 1990, the FDA
approved intravesical instillation of BCG for NMIBC
treatment, which was considered as a breakthrough
cancer therapy [5,18,19].

Following FDA approval, many additional clinical tri-
als have been conducted to investigate the long-term
clinical benefits of BCG intravesical instillation. A sig-
nificant difference in time to first recurrence between
BCG and chemotherapy was confirmed after follow-up
periods of greater than 8 years [20,21]. However, there
were no significant differences in disease progression
and long-term end points [3,18–22], although marginal
differences for distant metastases (p = 0.046), overall
survival (OS; p = 0.023), and disease-specific survival
(p = 0.026) comparing BCG and epirubicin chemother-
apy were reported in a randomised phase III clinical
trial with 837 patients [21]. These studies also helped to
optimise the dosage and schemes of BCG instillations
[23–25].

Mechanisms of the response of NMIBC to BCG
immunotherapy

While BCG has been FDA approved for nearly three
decades and many mechanistic studies have been carried
out, the mechanisms of BCG-induced immunotherapeu-
tic effect are still not fully understood due to the mul-
tiple biological aspects involved, including the innate
and adaptive immune systems. There are review arti-
cles focusing on bladder cancer BCG therapeutic mech-
anisms [5,26,27]. Here we summarise key immune
response factors that are involved.

Innate immune response
The innate immune cells, including dendritic cells
(DCs), neutrophils, monocytes, macrophages, NKs
and other innate lymphocytes, are the front line of host
defence and recruit immune cells through the pro-
duction of cytokines and chemokines. BCG induces
infiltration of neutrophils and mononuclear cells into
the bladder wall [28]. NKs, T and B cells are also
recruited [5,27]. The in vitro interaction of bladder can-
cer cells and BCG or its cell wall skeleton stimulates the
maturation of DCs, the major antigen-presenting cells
(APCs) [29,30]. The addition of BCG-infected DCs
into co-cultured bladder cancer and white blood cells
facilitates the immune inhibition of cancer cells [31]. In
a study with limited patients, low levels of post-BCG
treatment urine DCs was associated with recurrence

[32]. However, pre-treatment tumour infiltration DCs
were not significantly (p = 0.117) associated with recur-
rence and were inversely associated (p = 0.002) with
BCG maintenance efficacy [33]. Further studies are
required.

In a mouse model study, depletion of neutrophils
abolished the therapeutic effect of BCG by diminishing
monocyte and CD4+ T cell infiltration in the bladder
[34]. However, it is yet to be verified if neutrophils are
essential in BCG-induced immunity in human bladder
cancer [5]. In a mouse model, depletion of NK cells also
reduced efficacy of BCG immunotherapy [35]. The role
of NK cells in BCG-induced cytotoxicity is supported
by additional reports [36–38]. However, in some in vitro
and in vivo BCG studies, bladder cancer cell cytolysis or
treatment efficacy in mice were not significantly affected
by modulating NK cell activity [39,40].

Although macrophages are detected in the bladder
wall and urine of patients after BCG instilla-
tion [27,41,42], the role of macrophages in BCG
immunotherapy is not clear. While BCG stimulates
macrophages to produce cytotoxicity against certain
bladder cancer cell lines, in patients, high pre-BCG
treatment tumour infiltrating macrophages are asso-
ciated with cancer recurrence, potentially through the
macrophage-induced immunosuppression [27,33,43].

Adaptive immune response
The human adaptive/acquired immune response system
consists of two types of responses: the cell-mediated
immune response, which is carried out by T lympho-
cytes, and the humoral immune response, which depends
on B lymphocytes and B cell-generated antibodies. Both
preclinical and clinical studies suggest that BCG induces
a strong adaptive host immune response to maximally
inhibit cancer cell growth [5,44]. Essentially, BCG may
work as a vaccine to stimulate host immune defences
against tumour-associated antigens.

BCG antigens are presented by DCs and urothelial
cells via MHC class II [45,46], leading to a TH1 cell
immune response with the production of IL-2, IL-12,
IFN-γ, TNF, and TNF-β, which is associated with suc-
cessful BCG immunotherapy [47,48]. If a TH2 cell
response is induced instead of TH1, patient response
to BCG treatment is generally poor [47]. The TH1 cell
cytokine environment, in particular IFN-γ [49] facili-
tates cytotoxic CD8+ T lymphocyte activation through
MHC class I antigen presentation, and consequently
anti-tumour activity. The necessity of T cells for BCG
immunotherapy is supported by mouse models with T
cell depletion or in T cell absent athymic nude mice [50].
In human bladder cancer, tumour-infiltrating CD4+ T
cells are increased in tumour samples in patients suc-
cessfully treated with BCG [51]. Mice vaccinated with
BCG prior to BCG instillation have increased local acute
inflammatory responses and infiltrating T cell recruit-
ment after the first BCG instillation compared to unvac-
cinated mice [52] and the inflammatory response was
significantly reduced by T cell depletion, suggesting the
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presence of BCG-specific T cells enhances the BCG
induced inflammatory response [52]. However, the anti-
gen(s) that activate T cells have not been identified,
although tumour-specific immunity has been induced by
BCG in mice [53].

BCG intravesical instillation can also stimulate
systemic immune responses. Following BCG ther-
apy, lymphoproliferation and mycobacteria-specific
humoral responses and serum levels of cytokines and
chemokines, such as IFN-γ, IL-1, IL-2, IL-8, TNF,
CCL2 and CCL5 increased [5,54]. The purified protein
derivative (PPD) skin test, indicative of a previous expo-
sure to BCG or tuberculosis, frequently changes from
negative to positive after BCG intravesical instillation
[5,54,55]. Although it is still debatable, a positive PPD
skin test both prior and post-BCG induction has been
associated with better outcome compared with those
with negative PPD skin test in some studies [55–57]
and PPD test prior to BCG instillation has recently been
reported to improve the therapeutic outcomes [58].

The success of immunotherapy with PD-1/PDL-1
inhibitors of advanced-stage bladder cancer

Currently, there are five anti-PD-1/PD-L1 ICB
immunotherapeutic drugs approved by the FDA for the
treatment of bladder and other urothelial carcinomas
(UCs), including three anti-PD-L1 and two anti-PD-1
antibodies [59] (Table 1).

Anti-PD-L1 immunotherapies
The first anti-PD-1/PD-L1 antibody drug tested for blad-
der/urothelial cancer immunotherapy is atezolizumab,
which was reported in 2014 by Powles [60]. Ate-
zolizumab showed in post-chemotherapy metastatic
cancer good efficacy, which was associated with
tumour infiltration immune cell (TIC) PD-L1 expres-
sion (p = 0.026) but not tumour cell PD-L1 expression
(p = 0.93) and favourable toxicity profile. Consequently,
a multicentre phase II trial of atezolizumab (IMvigor
210) demonstrated a better (15% overall objective
response rate [ORR]) than an historical chemother-
apy control (10% ORR) [61]. Patients with continued
atezolizumab beyond radiographic progression also
benefited from the treatment [62]. IMvigor 210 also
demonstrated that cisplatin-ineligible patients benefited
from first-line atezolizumab treatment (see supplemen-
tary material, Table S1). ORR and OS were significantly
associated with tumour mutation load (TML) but not
much with PD-L1 expression [63]. Consequently, the
FDA approved atezolizumab as both a second-line and
first-line (cisplatin-ineligible patients) treatments of
locally advanced/metastatic UC. In 2018, a phase III
trial showed that atezolizumab has a longer response
duration and less side-effects than chemotherapy
[64](see supplementary material, Table S1).

Following the success of atezolizumab, Powles
and colleagues tested another anti-PD-L1 drug,

durvalumab, in advanced bladder cancer. Two pub-
lications [65,66] reported the results from the phase
I/II multicentre trial, which led to FDA accelerated
approval of durvalumab as second-line therapy for
locally advanced/metastatic UC [66](see supplementary
material, Table S1). The third anti-PD-L1 antibody
approved by the FDA for locally advanced/metastatic
bladder cancer (second-line therapy) is avelumab. The
safety and dosage of avelumab was initially investi-
gated in a single-centre phase Ia solid tumour trial
not limited to UC [67]. The therapeutic efficacy was
later demonstrated in large cohorts of post-platinum
chemotherapy locally advanced/metastatic UCs [68,69]
(see supplementary material, Table S1).

Anti-PD-1 immunotherapies
Results from two multicentre clinical trials
of nivolumab, phase I/II CheckMate 032 and phase
II CheckMate 275, on locally advanced/metastatic UC
have been reported for the efficacy and safety [70,71]
(see supplementary material, Table S1). While Check-
Mate 032 did not show significant association of PD-L1
expression with therapeutic response [70], CheckMate
275 did [71]. In February 2017, the FDA granted
nivolumab accelerated approval for second-line therapy
of post-platinum locally advanced/metastatic UC.

The efficacy and safety profile of pembrolizumab
in treating post-platinum locally advanced/metastatic
UC was firstly investigated in a phase Ib clinical trial
KEYNOTE-012 [72]. The efficacy of pembrolizumab
for advanced UC was then demonstrated in a phase
III trial KEYNOTE-045, with significantly higher
ORR than chemotherapy both in the overall patient
population (p = 0.001) and in combined PD-L1 pos-
itive score ≥10% patients (p = 0.0034). The OS of
the pembrolizumab-treated group was also signifi-
cantly longer than the chemotherapy group, overall
(p = 0.0004) or in the high PD-L1 expression popula-
tion (p = 0.005) [73]. The benefit of pembrolizumab
as first-line treatment for cisplatin-ineligible locally
advanced /metastatic UC has also been demonstrated in
a phase II study, where PD-L1 expression was corre-
lated with response [74] (see supplementary material,
Table S1). The FDA has approved pembrolizumab
separately as second-line therapy for post-platinum
and first-line treatment for cisplatin ineligible patients
with locally advanced/metastatic UC. Recently, the
benefit of using pembrolizumab for prior radical cystec-
tomy neoadjuvant therapy has been reported [75] (see
supplementary material, Table S1).

Mechanisms of the response to anti-PD1/PD-L1
immunotherapy

The mechanisms of the immunotherapeutic effects
of anti-PD-1/PD-L1 immune checkpoint inhibitors are
much simpler and clearer than BCG immunotherapy.
PD-1 (CD279) is a transmembrane protein expressed
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Table 1. FDA approvals of anti-PD-1/PD-L1 immunotherapeutic drugs in bladder and other cancers
Atezolizumab Durvalumab Avelumab Nivolumab Pembrolizumab

May 2016, pre-treated AMUC
(bladder cancer)

May 2017, pre-treated
advanced/metastatic
(bladder cancer)

Mar 2017, metastatic
Merkel cell
carcinoma

December 2014, advanced
melanoma

September 2014, advanced
melanoma

October 2016, metastatic
NSCLC cancer

February 2018,
unresectable Stage III
NSCLC cancer

May 2017, AMUC
(bladder cancer)

May 2015, lung cancer October 2015,
advanced/metastatic NSCLC
cancer

April 2017, first line treatment
advanced/metastatic
(bladder cancer)

November 2015, metastatic
renal cell carcinoma

August 2016, recurrent/
metastatic head and neck
squamous carcinoma

May 2016, Hodgkin lymphoma October 2016, first line
treatment of metastatic
NSCLC

November 2016, head and
neck cancer

March 2017, classical Hodgkin
lymphoma

February 2017, pre-treated
AMUC (bladder cancer)

May 2017, AMUC (bladder
cancer)

August 2017, metastatic
colorectal cancer with MSI
or MMR deficiency

May 2017, any solid cancer
with MSI or MMR
deficiency

September 2017, pre-treated
hepatocellular carcinoma

September 2017, pre-treated
advanced/metastatic
gastric, gastroesophageal
cancer

August 2018, pre-treated
SCLC

June 2018, pre-treated
advanced/metastatic
cervical cancer

June 2018, pre-treated PMBCL

Information obtained through https://www.drugs.com/history/ [Accessed 20 November 2018]. Only the first FDA approval for a non-bladder cancer was included in the
table.
AMUC, advanced/metastatic urothelial carcinoma; MMR, mismatch repair; MSI, microsatellite instability; NSCLC, non-small cell lung cancer; PMBCL, primary
mediastinal large B-cell lymphoma.

on activated T cells, which is necessary for the ter-
mination of immune response. It interacts with its
ligand PD-L1 (B7-H1/CD274), which is constitutively
expressed at low levels on APCs and a wide vari-
ety of non-hematopoietic cells [76]. Cells use the
PD-L1/PD-1 interaction to suppress T-cell receptor
(TCR)-mediated cytotoxic function and inhibit prolif-
eration of CD8+ T cells, to avoid autoimmunity and
resolve inflammation [76]. Tumour cells also use this
immune suppression mechanism to escape immune
surveillance by upregulating PD-L1 expression or
stimulating PD-L1 expression in tumour microenvi-
ronment (TME) cells [76]. For details please read the
review article by Boussiotis [76]. The anti-PD-1 and
anti-PD-L1 inhibitors are antibodies which specifically
bind to PD-1 on T cell and PD-L1 on cancer or TME
cells respectively to prevent the interaction of PD-1
and PD-L1, consequently reactivate the anti-tumour
immune response of cytotoxic T-cells [9] (Figure 2).

Based on the above mechanism, the outcome of
anti-PD-1/PD-L1 immunotherapy should be predicted
by tumour neoantigen level, the level of tumour infil-
trating lymphocytes (TILs) and cancer/TME PD-L1
expression. While there are positive correlations of these
factors to anti-PD-1/PD-L1 immunotherapy sensitivity
in many studies, the associations are not always strong or
significant [9,77–79]. The response of PD1/PD-L1 neg-
ative tumours to checkpoint inhibitors was unexpected.
Dynamic expression of PD-L1 and multifactorial deter-
mination of immunotherapy responses are the potential

explanations [9,80–84]. Some of the known resis-
tance mechanisms are summarised in the biomarker
section below and further mechanistic investigations are
required.

Biomarkers to predict the response of immune
therapies

The response of immunotherapies, even targeting spe-
cific immune response molecules such as in the case
of anti-PD-1/PD-L1 ICB, is determined by multiple
factors, including cancer cell immunogenicity, TME
and the strength of local/systematic immune activity
[80–85]. Therefore, we review the relevant literature of
immunotherapy response predictors in consideration of
these aspects. One of the unique features of bladder can-
cer is the relative convenience of sampling for biomarker
analysis, particularly the urine sample for cancer and
TME materials. Primary tumour growth can also be eas-
ily monitored by cystoscopy, hence cystoscopy and cyto-
logical assessment are currently used to determine BCG
treatment response.

BCG immunotherapy response prediction
biomarkers
Although intravesical BCG immunotherapy has been
used for bladder cancer treatment for over 40 years,
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Figure 2. The schematic presentation of the mechanisms underlying how anti-PD1/PDL-1 antibodies work for immunotherapy. (A) The
PD-1–PD-L1 interaction inhibits T cell activation. (B) PD-1 antibody blocks PD-1 on the T cell, which allows the cytotoxic T cell to remain
activate and to infiltrate tumours to kill cancerous cells. (C) Anti-PD-L1 blocks the PD-L1 immune checkpoint protein on immune cells,
such as APCs and on tumour cells, preventing the inactivation of cytotoxic T cells.

biomarkers to predict the therapeutic response has
not been extensively investigated as in ICD response.
Certain cancer clinicopathological features were con-
vincingly established as predictive factors, including
recurrent tumours, multiplicity BCG treatment recur-
rence and high tumour grade and stage [47,85–88].
However, these are general factors for poor cancer
prognosis instead of predictive biomarkers. Urine cell
genomic alterations detected by fluorescence in situ
hybridisation during BCG treatment, although with
low sensitivity [89], increased several fold cancer
recurrence and progression risk [85,89–92]. Next gen-
eration sequencing (NGS) is infrequently applied for
BCG response prediction studies. We only found three
tissue-based and one urine cell-based genomic NGS
studies, each with limited cases, for BCG response pre-
dictors, with only one recurrence-associated mutation
in ARID1A identified [93–96]. DNA damage repair
gene alterations and TML were not correlated with

BCG immunotherapy response [95]. No cancer tran-
scriptome study has been reported and the correlation
of DNA methylation of myopodin (SYNPO2), PAX6,
MSH6, RB1, THBS1, PYCARD, TP73, ESR1, GATA5,
PMF-1, CDKN2B and MUS81a (MUS81) with can-
cer recurrence, progression and/or survival under BCG
treatment were detected through candidate gene analysis
[97–100]. Further NGS studies of tumour immuno-
genicity are required. It is not surprising that cancers
expressing high levels of antigen-presenting molecules
and chemokines respond better to BCG immunother-
apy [101,102] and the increase of PD-L1 positivity in
cancer cells and TICs after BCG induction has been
associated with poor outcome [103–105], explaining
the high BCG treatment recurrence/resistance risk of
NMIBC with carcinoma in situ [85], which has the high
frequency (45%) of PD-L1 expression [104].

TME and anti-tumour immunity predictors for BCG
treatment response have been much better investigated
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than the cancer cells. Increased TILs and CD4+/CD8+
ratio on BCG induction, have been linked to good thera-
peutic response [28,51] and pre-BCG treatment tumour
infiltrating macrophages are associated with poor treat-
ment response [33,43]. Changes in DCs and NK cells
[85] and urine leukocytes [106] on BCG induction have
also been suggested as potential predictors of BCG
therapeutic response. The induction of a TH1 immune
response after BCG instillation, particular from a TH2
baseline, is strongly associated with a good response
[47,48,107,108]. Several studies have suggested the
BCG response prediction value of urinary cytokines,
such as IL-2, IL-6, IL-8, IL-10, IL-12, IL-18, IFN-γ,
TNF-α and TRAIL [47,85,109,110] and a nine-cytokine
urinary nomogram (CyPRIT) has been shown with
85.5% accuracy in predicting recurrence [111]. PD-L1
expression in TICs was also increased after BCG induc-
tion [103,105], a potential treatment failure predictive
biomarker. A positive PPD skin test both prior and
post BCG instillation has been associated with BCG
immunotherapy outcome, but requires further investi-
gation [55–57]. The systemic inflammatory response
markers neutrophil-to-lymphocyte ratio and circulating
C-reactive protein have also been correlated to cancer
recurrence and progression [112]. Importantly, the cur-
rent data suggest that pre-treatment features have limited
predictive accuracy for BCG immunotherapy sensitiv-
ity/resistance and change of cancer cell and immune
response status after BCG induction may be more accu-
rate predictors of BCG response, a principle may be
applicable to predict anti-PD-1/PD-L1 immunotherapy
response.

Anti-PD-1/PD-L1 immunotherapy response
prediction biomarkers
Predicting which patient will benefit from the expensive
ICB immunotherapy is critical. Although the mecha-
nism of anti-PD-1/PD-L1 immunotherapy is simple,
patient response is determined by multiple factors
[81,82,84]. Extensive research has been carried out
with dozens of review articles on anti-PD-1/PD-L1
immunotherapy biomarkers in the last 2 years. The
current most reliable positive predictor is the FDA
approved anti-PD-1/PD-L1 immunotherapy sensitivity
predictor, microsatellite instability, caused by mis-
match repair gene deficiency [9]. Additionally, high
TML and neo-antigen [113–115], high clonality of
tumour neoantigen [116], high patient HLA-1 genotype
heterozygosity and HLA-B44 supertype [117], high
immuno-predictive score (IMPRES) [118], high lev-
els of TICs and immune score [115,119,120], PD-L1
expression in cancer and TME cells [120–123], clonal
TCRs [119,124] and T cell expansion and activation
[114,119,124], elevated IFN-γ and tumour expression
of IFN-γ induced genes [114], high relative blood
eosinophil and lymphocyte counts and low lactate
dehydrogenase (LDH) levels [125], increase in circu-
lating classical monocyte [126], early ctDNA reduction
[127,128], high diversity of gut microbiota and certain

species, such as Ruminococcaceae, Bifidobacteria,
Dorea formicogenerans, Collinsella aerofaciens and
Enterococcus faecium [129–133], have all been cor-
related to good therapeutic response, although some
of them, in particular those associated with tumour
burden and stage are mainly prognostic but not pre-
dictive markers [81,82,84]. High tumour burden/stage
[125,134–136], evasion to immune recognition due to
absence of tumour neoantigens and loss-of-function
mutations in the IFN response pathway and antigen pre-
sentation machinery (including loss of putative tumour
neoantigens, loss of HLA haplotypes, somatic mutations
in HLA or JAK1/JAK2 and B2M genes) [114,137–140],
upregulation of alternative immune checkpoints, such
as CTLA4, IDO, LAG3, TIM-3, TIGIT and VISA
[9,121,141–143], the innate anti-PD-1 resistance
gene signatures (IPRES) [114], low-IMPRES [118],
activation of PI3K signalling (by PTEN loss) [144],
low heterozygosity of HLA-1 genotype and presence of
HLA-B62 supertype [117], tumour immune dysfunction
and exclusion [145], the presence of tumour-associated
macrophages [146], immune suppressive cytokines
released by cancer or TME cells, such as TGF-b
and CD73 [115,120,147], high blood Angiopoietin-2
level [148] and gut microbiota such as Bacteriodales
[131] have all been associated with therapeutic resis-
tance, while many more resistance mechanisms have
been proposed in pre-clinical studies [80–82,84].
These potential anti-PD-1/PD-L1 immunotherapy
responsive indicators in cancer, TME and systematic
anti-tumour immunity categories are listed in supple-
mentary material, Table S2. However, none of these
factors can reliably predict individual ICB response and
immunograms have been proposed recently to consider
multiple cancer, TME and immune activity factors
to predict anti-PD-1/PD-L1 immunotherapy outcome
[83,149,150], which theoretically should increase pre-
diction accuracy, however clinical feasibility is yet to be
tested.

For bladder cancer, although the Ventana PD-L1
assays have been FDA approved as biomarkers for
atezolizumab (https://www.fda.gov/Drugs/Information
OnDrugs/ApprovedDrugs/ucm501878.htm) and dur-
valumab (https://www.fda.gov/Drugs/InformationOn
Drugs/ApprovedDrugs/ucm555930) treatments, there is
some degree of ambiguity in data from clinical studies
for the correlation of PD-L1 expression to therapeutic
response and it has limited negative predictive value
[60,61,63–66,69–71,73–75]. TML, which is generally
high in bladder cancer [151,152], has been correlated
to bladder cancer anti-PD-1/PD-L1 immunotherapy
responses [61,73,75], although with an exception of
a study with limited samples [79]. TCGA subtype
has been correlated to therapeutic response, but with
conflicting messages from different studies [61,71,153].
High levels of IFN- -induced gene expression and
high density of infiltrating CD8+ T cells have also
been associated with good ICB therapeutic outcome
[61,71,115,154]; and a TGFβ signalling signature in
fibroblasts, epithelial–mesenchymal transition and
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stroma related gene expression predicted therapeutic
resistance [115,155]. Peripheral blood factors have
been explored and high TCR clonality was associated
with poor outcome [79] and early ctDNA reduction
predicted good survival [127] (see supplementary
material, Table S2). Recently, a multifactorial model
including pre-treatment clinical, tumour, and circulating
features, has been developed, which increased accuracy
in predicting anti-PD-L1 therapy response [124]. We
expect that including dynamic changes in this prediction
model would further increase its efficiency. Although
PD-L1 expression on CTCs has been reported [156],
its potential as a therapeutic response predictor has not
been established. Urine sample analysis, an advantage
of bladder cancer for dynamic immune response eval-
uation, has not been explored for response predictive
biomarkers.

Previous research on ICB response predictive
biomarkers are mainly focused on pre-treatment
conditions, which can only predict the likelihood
of therapeutic response and outcome with limited
accuracy [80–82,84]. The immune response is deter-
mined by the dynamic interaction of cancer cells,
TME and anti-tumour immunity [137,157–160].
Recent studies in ICB response predictive biomark-
ers by analysing on-treatment changes have shown
good therapeutic response predictive values, fre-
quently better than the static pre-treatment status
[80,81,115,117,127,158–162]. However, analysing the
dynamic changes of cancer cells, TME and anti-tumour
immunity requires frequent tissue sampling, which is
difficult for many cancers and suffers from intratu-
mour heterogeneity [163]. Liquid biopsy [164–168],
using cancer (circulating and urine tumour cells, can-
cer cell extracellular vesicles, cell free nucleic acid
and proteins) and immune system (immune cells and
cytokines/chemokines) factors in body fluid, such
as blood and urine samples, have great potential to be
developed into efficient biomarkers for frequent analysis
to predict/monitor immunotherapy efficacy [159,160].
Many circulating factors have been reported as poten-
tial predictors for anti-PD-1/PD-L1 immunotherapy
response [79,125–128,148,169–188] (see supple-
mentary material, Table S2). We expect that further
exploration in liquid biopsy ICB response predic-
tive/monitoring biomarkers, including urine where
bladder cancer has the unique opportunity, will greatly
enhance the practice of precision immunotherapy.

Adaptation of immunotherapy approaches
developed in other cancers for bladder cancer
therapy and potential future development

Both BCG and ICB therapies were initially developed
as therapies for other cancers but were later adapted
to treat bladder cancers. Indeed, initial BCG cancer
treatment was carried out in other tumour types, includ-
ing stomach cancer, acute lymphoblastic leukaemia

and melanoma [11,189–191]. However, BCG local
immunotherapy is currently only used for NMIBC as
standard of care. Formulations emulating Coley’s toxin
and other bacterial products with an immune stimulation
role may also be used for bladder cancer immunother-
apy. In China, as BCG has only been approved for
bladder cancer therapy recently, a strain of Pseu-
domonas aeruginosa, P. aeruginosa-mannose-sensitive
hemagglutinin has been developed and commonly used
for intravesical instillation immunotherapy of NMIBCs
[192]. Only two recurrences have been recorded in
our preliminary data from 27 patients treated with
this intravesical instillation after TURBT each with
minimum 1 year follow-up (unpublished data).

The concept of ICB as immunotherapy was also
adapted to bladder cancer from studies in other can-
cers [193,194]. However, of the five anti-PD-1/PD-L1
antibody drugs approved for cancer immunotherapy,
two of them, atezolizumab and durvalumab, were
first approved for the treatment of bladder cancer
[59] (Table 1). Many ICB therapeutic response pre-
diction biomarkers have also been developed in other
cancers and subsequently applied to bladder cancer
anti-PD-1/PD-L1 therapy as mentioned early (see sup-
plementary material, Table S2), such as TML, initially
identified in melanoma, lung, and colon cancer studies
[61,195–198].

Based on the above observations, bladder cancer is
immunogenic from early development to any stage dur-
ing cancer progression that it can be treated at any clin-
ical stage by some form of immunotherapy. In addition
to BCG and ICB immunotherapies, other immunother-
apy methods successfully used now or in the future
in other cancers would be effective and should be
assessed for bladder cancer treatment. For example,
the FDA approved virus cancer vaccine, lmlygic (tal-
imogene laherparepvec/T-VEC) for melanoma treat-
ment [199] may have better therapeutic efficacy than
BCG instillation for NMIBC immunotherapy, as it has
both oncolytic and immune stimulation effects. Another
example is the FDA approved sipuleucel-T for prostate
cancer immunotherapy, where the design approach was
used to develop the lapuleucel-T vaccine for bladder
cancer immunotherapy, using HER2 instead of PSMA
for specific targeting [200].

Using bladder cancer as a model to investigate
cancer immune response mechanisms and to
translate them into immunotherapy of other
human cancers

The successes of immunotherapy in a proportion
of bladder cancer cases at each disease stage makes
bladder cancer a good model to investigate the mecha-
nisms of cancer immune genesis/response and develop
novel immunotherapies and associated prediction
markers. Bladder cancer has many features suitable
for cancer immunotherapy development, including
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the genetic and molecular nature of disease develop-
ment; and the bladder’s unique function and anatomy,
enabling well controlled local therapy application
and cellular and molecular therapeutic response mon-
itoring. All these help to test novel forms of cancer
immunotherapies, which will benefit the development
and application of immunotherapy in other cancers.

Cancer immune surveillance is activated by cancer
neoantigens, reflected by TML, and other immuno-
genic factors. Bladder cancer has a high mutation rate
[151,152] and large cohorts of bladder cancer cases from
early stage disease NMIBC to advanced stage MIBC
have been sequenced for cancer TML [95,201–206].
A considerable proportion of bladder cancer cases also
host mismatch repair and DNA damage response defi-
ciencies [95,207]. A proportion of bladder cancers are
positive for human papillomavirus, a strong immune
response stimulator [208]. All these features facilitate
the investigation of neoantigen generation mechanisms
in ICB immunotherapy response. The extensive mecha-
nistic studies and long-period clinical response data of
BCG immunotherapy are also rich resources to under-
stand cancer immunity and develop immunotherapies.

Given the unique anatomy and function of the bladder,
new cancer immune boosting therapeutic approaches
may be easier to test in bladder cancer than other malig-
nant diseases by intravesical instillation to evaluate and
monitor efficacy, as well as mechanistic investigation to
fully understand response and resistance mechanisms.
Cancer and immune cells, cytokines, and other molecu-
lar factors in the urine can be easily collected and anal-
ysed to facilitate the development of accurate predictive
biomarkers, not only for bladder cancer, but also to trans-
late into other cancers.

There are two strategies for cancer immunotherapy,
boosting the general immune response and removing the
immune suppressor effect, such as by ICB. Both of them,
in the forms of BCG and anti-PD-1/PD-L1 immunother-
apies, are standard therapeutic methods benefiting a pro-
portion of bladder cancer patients. This makes blad-
der cancer a good model to test new immunotherapy
approaches aiming to either boost general anti-tumour
immunity or block cancer immune evasion, as well as
the combination. Most importantly, bladder cancer pro-
vides a good model to test the combined therapy in early
stage disease as BCG is already the gold standard treat-
ment of early stage NMIBC. There are clinical trials of
combined immunotherapies in bladder cancer [209,210]
and we expect promising results to come and the associ-
ated opportunity for immunotherapy mechanism stud-
ies. These successes will undoubtedly shine light on
immunotherapies of other human cancers.

Due to regulations, currently clinical trials are con-
ducted on untreatable advanced cancers to evaluate
firstly the safety (phase I) and then efficacy (phase II and
III) of a new therapy. Certain immunotherapies, in par-
ticular immune boosting therapies, as demonstrated by
BCG intravesical instillation in NMIBC, may be more
effective in early rather than late stage cancer, when
multiple immunotherapeutic resistant mechanisms have

been developed. The high PD-L1 positive rate in early
stage melanoma [211] and lung cancer [212–215] sug-
gests that these cancers may have high neo-antigens at
early disease stage. The combined immune boosting and
ICB immunotherapies may be more effective for these
cancers when applied at an early cancer stage.

In conclusion, both BCG immune stimulation at early
disease stage and anti-PD-1/PD-L1 ICB at late disease
stage are effective immunotherapies for bladder can-
cer, due to its molecular/biological characteristics and
unique anatomical structure and location. These spe-
cific features of bladder cancer make it easy for local
and systematic immunotherapy applications and easy
to sample, in particular urine, for mechanistic stud-
ies and biomarker development. Therefore bladder can-
cer is a unique model for immunotherapy research to
develop/test new immunotherapeutic approaches and
predictive biomarkers. Using bladder cancer as a model,
we expect to accelerate immunotherapy in cancer treat-
ment, not only at late, but also early stage diseases.
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