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ABSTRACT

As multicellular organisms evolved a family of cytoskeletal proteins, the keratins (types | and II)
expressed in epithelial cells diversified in more than 20 genes in vertebrates. There is no question
that keratin filaments confer mechanical stiffness to cells. However, such a number of genes can
hardly be explained by evolutionary advantages in mechanical features. The use of transgenic
mouse models has revealed unexpected functional relationships between keratin intermediate
filaments and intracellular signaling. Accordingly, loss of keratins or mutations in keratins that cause
or predispose to human diseases, result in increased sensitivity to apoptosis, regulation of innate
immunity, permeabilization of tight junctions, and mistargeting of apical proteins in different
epithelia. Precise mechanistic explanations for these phenomena are still lacking. However,
immobilization of membrane or cytoplasmic proteins, including chaperones, on intermediate
filaments (“scaffolding”) appear as common molecular mechanisms and may explain the need for
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so many different keratin genes in vertebrates.

Epithelial barriers, cytoplasmic intermediate
filaments and innate immunity co-evolved with
multicellularity in metazoans

Epithelial barriers represent the earliest tissues organized
in metazoans."” The early development of cell-cell con-
tacts sealing the paracellular route and polarized distribu-
tion of membrane proteins’ and cytoskeleton® are
characteristic of epithelia and common to all metazoan.
From a functional standpoint, epithelial barriers provided
early metazoans with the evolutionary advantage of
defining an internal milieu, different from external sea or
fresh water, and digestive cavity (e.g. in Cnidarians)
enabling them to catch and digest bigger prey.*

Along with the increased complexity of the multicellu-
lar organisms, various molecular mechanisms and cellu-
lar structures co-evolved in metazoans. In this review, we
will address the role of cytoplasmic intermediate fila-
ments (IF),” and specifically keratins (K), which diverged
from an ancestral lamin at the origin of metazoan line-
ages.® We will focus on the poorly recognized relation-
ship between keratins and atypical PKC (aPKC), a

component of the PARtition defective (Par) proteins or
Par complex, which is essential for the acquisition of
apico-basal polarity in epithelia,” first discovered in C. ele-
gans.® We will review evidence indicating a more general
role of keratins in protection from chemically-induced
apoptosis, and regulation of other signaling pathways.
Finally, larger, more complex, multicellular organisms
also faced the challenge of attacks by single-celled organ-
isms and viruses. Accordingly, innate immunity path-
ways evolved along with multicellularity” as a defense. A
growing body of evidence suggest that keratin IF, and
innate immunity interact in vertebrate epithelial barriers.
Some of these interactions, which are possibly based on
ancient evolutionary advantages for barrier function, are
involved in pathophysiological mechanisms in human
disease.

Keratins, mechanical is not mechanistic

Cytoplasmic IF are represented by keratins (type I and
II) in epithelia. So far, 28 keratin genes (Krt) have
been identified in the human genome, not counting
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the hair keratins. Keratin proteins (K) are obligate het-
erodimers of type I (13 genes) and type II (15 genes).
All keratins display a central rod domain, involved in
dimerization, and globular head and tail domains.’
Filament formation requires, minimally, the expres-
sion of one type I and one type II keratin genes. Usu-
ally, more than two keratin genes are transcribed. In
the adult, the hepatocytes are the archetypal example
where only one type I (K8) and one type II (K18) are
expressed.'®'! Table 1 schematically summarizes the
expression of type I and II keratins in tissues men-
tioned in this review. For a comprehensive description
of keratin expression patterns see.'"'?

As it is the case for other IF proteins, keratins are
subjected to several post-translational modifications
including phosphorylation, glycosylation, acetylation
and sumoylation. These modifications control assem-
bly / disassembly of the filaments, function, and sub-
cellular distribution (reviewed in."?).

There are many differences in the biology of IF as
compared with better-known microtubules and actin.
IF are not polarized and there are no molecular motors
using IF as substrates. Importantly, there are no IF in
common model organisms such as yeast and flies,
which yielded an early wealth of knowledge in the
tubulin and actin fields. In addition, the insolubility of
IF makes co-immunoprecipitation very difficult. Fur-
thermore, with the exception of withaferin A,"* drugs
specifically affecting IF are lacking. Efforts to find drugs
that correct the effects of keratin mutations by high-
throughput screens are currently under way '° and
may yield novel pharmacological tools for keratin IF.

Because of the difficulties indicated above, knock-
out mouse models and knockdown of keratins in tis-
sue culture cell lines have been the major molecular
approaches available for functional studies of IF. Even
those approaches are not straightforward. Knockout

Table 1. Keratin expression in tissues described in this review.

Epithelium Cell type Type |l Type Il References
Simple  Hepatocytes K18 K8 12
Intestine crypt K18 K19 K8 K7 131
K20 K23
Intestine villus K18 K19 K20 K8 o
Pancreatic ducts K18 K19 K4 K8 K7 132
Stratified  Epidermis basal K14 K15 K17 K5 K6 M
Epidermis suprabasal / K16 K10 K6 K1 K2* ”
spinous
Mammary gland duct K14 K17 K5 K7 K8 m
K18 K19

Note. *Epidermis spinous/granular

models are often embryonic lethal, such as the K8
knockout mouse in the C57B1/6 background (94%
penetrance, '°) or the pan-keratin II knockout
mouse.'” In other cases, keratin deficient mice showed
very subtle phenotypes, possibly because of the keratin
redundancy, for example, the K7 knockout.'®

The mechanical function of keratin IF is text-
book knowledge. It is self-evident in the epidermis,
as well as in the mechanical characteristics of iso-
lated keratin IF in vitro."” Epidermolysis bullosa
simplex (EBS) is the paradigm of a mechanical dis-
order caused by mutations in K5, K14,° and in a
few cases plectin, a keratin linker protein.*' Shear
stress on the epidermis causes blistering in these
patients. Some features of the K14 mutations phe-
notype, however, seem to suggest that there are
possible non-mechanical mechanisms involved. The
RI125P K14 mutation elicits JNK signaling.*
Mutant K14 increases TNFa secretion and sensitiv-
ity.>> Those observations were recently highlighted
by findings of increased caspase 8 both in lesional
and non-lesional areas in EBS patients®* which sug-
gests the mutations have additional consequences
beyond a simple break of cells. Moreover, evidence
from the Magin lab supports the notion that
expression of the R125P K14 alone makes cells
mechanically weaker than cells lacking keratins
altogether.””> Furthermore, data from Marceau lab
suggest that in internal epithelia, keratins 8/18 con-
tribute to cell stiffness via cortical actin, by activa-
tion of the ROCK signaling pathway.”® This
suggests that even mechanical properties may be
partially explained by a signaling function. Finally,
to help maintain the barrier together, keratins
attach to desmosomes, which represent a critically
important intercellular junction, and provide adhe-
sive force to keep epithelial cells together. This will
be reviewed in a separate section.

Conversely, extensive analysis of various keratin
knockout models has shown that IF play non-
mechanical functions, providing epithelial cells with
protection against stress not related to deformation
due to external forces (e.g., chemical stress). In the fol-
lowing sections we will review some of the consequen-
ces of loss, mutation, or overexpression of keratins in
epithelial barriers. They comprise highly interlinked
effects on apoptosis or survival, innate immunity,
intracellular signaling, and apico-basal polarity.



Keratins protect liver, placenta, and skin
epithelia from apoptosis

The first piece of evidence linking keratins with pro-
tection of epithelia from apoptosis came from the K8
knockout mouse. The high mid-gestational mortality
in these animals is due to apoptosis in the liver and
the placenta, more specifically, in the giant trophoblast
cell layer. More importantly, the defect could be res-
cued by TNFa-deficient mothers or TNFR2-null off-
spring.””*® In fact, K8 or K18 deficient cells were
found to be two orders of magnitude more sensitive to
TNFa-induced apoptosis.>” K18 provides resistance to
Fas-mediated liver failure, but not through common
apoptotic mechanisms.”” These early surprising find-
ings were reproduced in other systems as well. K17
null mice showed apoptosis in hair matrix cells,”
which is also TNFa-dependent.”' Lack of one allele of
K14 also results in hypersensitivity to TNFa, keratino-
cyte apoptosis, and Naegeli-Franceschetti-Jadassohn
syndrome.”” In summary, it is important to highlight
that in all these cases the stress is TNFa (that is
“chemical stress”), not mechanical.

It seems appropriate to emphasize that the effect of
keratin deficiency on apoptosis is different in the
intestinal epithelium, as compared to the liver or the
skin. No increases in the rate of apoptosis or necrosis
were observed in K8 null small intestine enterocytes.>
Moreover, a paradoxical resistance to apoptosis, which
seems to be dependent on microbiota, was found in
colonocytes in the same animal model,”* suggesting
tissue-specificity for this function of IF.

Not only keratin knockout, but also mutations
result in changes in susceptibility to apoptosis. Over-
expression of K18 R89C mutant predisposes hepato-
cytes to Fas- but not TNF-mediated apoptosis.’
Conversely, in epidermis, expression of K10/14 chime-
ras increase predisposition to skin cancer by suppres-
sion of apoptosis.*®

The role of keratins in the protection of epithelial
cells from apoptosis has translational significance.
Exonic mutations in K8 and 18 predispose to liver
chemical injury. Patients with severe amoxicillin-clav-
ulanate, isoniazid or nitrofurantoin drug induced liver
injury showed specific keratin mutations,”” acute liver
failure,”® and primary biliary cirrhosis.”® It is not sur-
prising that keratin mutations predispose to injury in
the liver: Unlike in other epithelia, there is no keratin
redundancy in hepatocytes cells.
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Molecular mechanisms involved in IF-mediated
epithelial protection

Mechanistic studies of the roles of keratin IF in epithelial
cell survival are far from complete. The broadly accepted
interpretation of the available evidence is that IF, which
represent abundant insoluble structures, provide a solid
surface to bind and immobilize proteins which would
be otherwise soluble in the cytosol. This phenomenon is
generally referred to as “scaffolding.” IF scaffolding
sequesters several proteins away from the locations
where they should fulfill their functions such as the cyto-
sol, the inner surface of the plasma membrane, or the
vicinity of specific receptors. It is generally assumed that
proteins attached to the IF scaffold are not functional.
However, in the case of Hsp70 chaperones (discussed
below), we have found that scaffolding modifies or even
enhances function. For the anti-apoptotic function of
keratin IF, several proapoptotic proteins were found
attached to the IF scaffold and released upon specific
signaling. In the absence of IF, such as in K deficient
mouse models, the same proteins would be readily avail-
able in the cytosol. IF scaffolding was shown for
TRADD,* c-Flip,41 DEDD,* caspases,43 and Pirh2, a
RING-H2-type ubiquitin E3 ligase.** Other, as yet not
fully understood mechanisms include a switch to a
FasR-mediated apoptosis and possible disruption of
lipid rafts.*>

Although no specific evidence currently supports pos-
sible synergy among these mechanisms, in theory, they
are not mutually excluding. The molecular details of pro-
tein binding to keratins are also unclear. Direct interac-
tions with keratin domains have been shown for proteins
such as TRADD to the K18 and 14 head domain.** On
the other hand, many keratin binding proteins have been
discovered, including chaperones,***’ plectin (epiplakin
1), a cytoskeletal linker,”® and desmosomal proteins '
among others, which greatly increase the number of
potential binding sites to indirectly attach proteins to the
keratin IF. Accordingly, the protein-protein interactions
involved in the IF scaffold are complex and far from fully
understood.

Keratins in protein chaperoning

Early studies found several chaperones associated to
the IF scaffold: Hsp70 isoforms ** are tightly attached
to keratin IF.>* Likewise some members of the Hsp40
family bind stably to the C-terminal region of K18.*°
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Small cochaperones, such as Bagl also bind to the IF
scaffold under pro-inflammatory upregulation.”® Fil-
ensin IF bind a-crystallin.>* Hsp74 is directly attached
to K1 in the urinary bladder epithelium,” and Hsp27
interacts with keratin tetramers.”®

Because the IF scaffold is generally thought to be a sink
that prevents proteins from carrying their normal func-
tion (e.g. TRADD, mentioned above), the first question
that comes to mind is whether or not keratin-bound
chaperones are functional. When purified keratin IF con-
taining Hsp70 and Hsp40 are used in a standard lucifer-
ase refolding assay to measure Hsp70 chaperoning
activity, they can refold chemically denatured luciferase
at a similar rate as soluble (cytosolic) Hsp70.”>>*

By subcellular fractionation, it was determined that
Hsp70/40 chaperones exist in both soluble (cytosolic)
and IF-bound forms. The latter represents approxi-
mately 10% of the total cellular chaperone in epithelial
cells in culture.”® This apparently modest fraction epito-
mizes an emerging question about the quantitative sig-
nificance of the IF scaffold. For any of the proteins
attached to the IF scaffold, is immobilization on IF suffi-
cient to affect overall cellular function? Multiple inde-
pendent pieces of evidence seem to be required to
answer this question. There is at least one example of an
Hsp70/40 substrate (“client”) which fulfills multiple cri-
teria leading to the conclusion that IF-associated
chaperoning can exclusively refold some proteins which
the cytosolic counterpart does not process. PKCs
(including “atypical” aPKC) are refolded (rescued) by
Hsp70 chaperones which bind a conserved site on PKC
partially overlapping the turn motif”’ (reviewed in>®).
The steady-state levels of aPKC are deeply decreased in
K8 deficient enterocytes that is in cells where loss of IF is
complete (no redundant type II keratin) and increased
in K8 transgenic overexpressers.”” Likewise, the half-life
of aPKC is decreased nearly 7-fold in cultured epithelial
cells under K8 knock-down. In that case, there are no
transcriptional or translational changes in the expression
of the pro‘[ein.5 2 In vitro, after subcellular fractionation,
cytosolic extracts lacking IF, which maintain full lucifer-
ase refolding capacity, failed to refold aPKC. Conversely,
keratin IF also active in luciferase refolding were capable
of aPKC refolding when supplemented with PDK1, the
kinase that stabilizes aPKC active conformation.”® In
summary, the keratin scaffold with its associated pro-
teins is necessary and sufficient to carry out aPKC
refolding.

The presence of chaperones on the IF scaffold may
have three possible functions. First, they are involved

60-62 and, accord-

in chaperoning keratins themselves
ingly, also associated with misfolded keratin aggre-
gates, such as Mallory-Denk bodies in alcoholic and
non-alcoholic steatohepatitis.63 Second, IF attached
chaperones may bind misfolded, inactive proteins,
thus enhancing the binding capacity of the IF scaffold
to peptides that would not bind directly to keratins.
Examples of tight binding of not fully folded proteins
to keratin IF have been reported.®* However, the role
of chaperones and the functional effects of this type of
scaffolding sink remain unclear: In each case the fate
of proteins attached to the IF scaffold needs to be
established. The third type of function includes active
chaperoning of specific proteins, epitomized by aPKC.
It is uncertain how many other proteins may require
specific folding at the IF scaffold. Data on steady-state
protein levels of a group of kinases, including Akt,
which are known to be clients of Hsp70/40, showed
changes under K8 knockdown. Therefore, there is an
indication that other kinases, in addition to aPKC,
may be dependent on IF.**> Accordingly, it is possible
that a keratin/Hsp70-40 complex may regulate other
signaling pathways through kinase stability.

Keratins in signaling

The effects of keratin expression on signaling pathways
are among the most intriguing features of IF. Quite possi-
bly, it is one of the central functions of IF in the regulation
of epithelial barriers. Yet, it is one that remains very
poorly understood. Examples of profound signaling
changes induced by keratin deficiency or mutations
abound and are summarized in Table 2.

Some of the signaling pathways affected by keratin loss
or mutations are also involved in the development and
maintenance of tight junctions (TJ). That is the case of
aPKC in the PAR “polarity complex.”®> " Likewise,
ERK1/2 controls expression of TJ proteins,” and junc-
tion formation.®>”° Furthermore, JNK has been shown to
be part of a pathway that modulates trans-epithelial resis-
tance 7' and ZO-1 assembly.”” Loss of K76 results in
increased skin permeability via loss of claudin 1.”> Finally,
IF-dependent changes in intracellular signaling are con-
sistent with increases in epithelial Dextran 3000 perme-
ability ** in the intestine. In brief, changes in signaling
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Table 2. Examples of effects of changes in keratin expression or keratin mutations on signaling pathways.

Affected keratin(s) Effects Ref.
K19 knockdown Enhanced Akt signaling (decreased PTEN) 133
K19 knockdown Destabilization of HER2 / decreased ERK 134
K5 and 14 mutations Epidermolysis bullosa simplex (EBS) rescued by 133
ERK inhibition
K17 overexpression Activates Akt signaling in Ewing sarcoma 136
K17 overexpression Activation of transcriptional regulator AIRE 106137
K17 knockdown Decreased pTyr-23 annexin A2 138
K14 knockdown (and decreased partner K5) Decreased pAkt and enhanced Notch1 139
K14 overexpression Increased JNK-MAPK signals 2
K8/K18 or K8/K19 overexpression Raf-1 is released from 14-3-3 by stress 8
K8 null hepatocytes Fas-activated apoptosis mediated by DEDD 140
K8 null hepatocytes Inactive p38 MAPK, p44/42 MAPK and JNK1/2 are “
released from IF upon activation during
apoptosis
K8 knockdown Increased PI3K/Akt activation 12
K8 knockdown Protein kinase C, cell adhesion and migration 4
K8 null mouse and K8 knockdown Post-translational downregulation of aPKC via 352
Hsp/Hsc70
K18 knockdown MacroD1 (LRP16) retention in the cytoplasm 143
K17 knockout Increased TNFR — NF-kB activity through TRADD 3
Global type | or Il keratin knockout: rescue by Increased PKCa activity, desmosome 2
expression of K6/K17 or K5/K14 destabilization
Global type Il keratin knockout GLUT1 - 3 mislocalization, AMPK and mTOR ns
activation
Global type Il keratin knockout Increased EGFR and PKCo-dependent Erk1/2 "2
signaling »

Global type Il keratin knockout

Rack1-keratin interactions modulate PKC-a
signaling

Note. Bolded protein names indicate evidence for binding to keratin IF (scaffolding). Knockdown refers to RNAi manipulation in cell lines. Overexpression indicates

vector-mediated transcription in cell lines.

pathways represent poorly studied links between keratin
IF and epithelial barrier function.

The mechanistic details of how keratin defects or
mutations modulate cellular signaling are still unclear
and will need additional investigation. A few hypotheses,
such as those that follow, may have to be tested for each
specific signaling effect of keratin.

14-3-3 proteins bind phospho-peptides to sequester
kinases or their substrates (reviewed by 7%). 14-3-
3¢, ¢ and o have been shown to bind keratin IF.”>7®
14-3-3 proteins bind keratins through their phosphor-
ylated sites.”” However, 14-3-3 are dimers with two
aligned phosphorylated domain binding sites on the
sides of a central channel. Accordingly, 14-3-3 dimers
can scaffold two different proteins,79 or, in this case
bring another phosphoprotein to the IF scaffold. An
example of this mechanism is the attachment of the
Raf-1 kinase to the IF scaffold, mediated by 14-3-3.
Under oxidative stress, Raf-1 phosphorylates keratin
and is released from the scaffold.*’

Mechanotransduction. Keratinocytes are under fre-
quent and potentially strong mechanical stress.
Mechanotransduction involves calcium influx as well
as phosphorylation of epidermal growth factor

receptor, and ERK1/2.*'(reviewed by *%). In lung-
derived cells, more subtle shear stress induces changes
in IF that depend on aPKC activation.** Accordingly,
defects in mechanical properties of these cells due to
keratin deficiency may induce signaling changes. The
role of mechanical stress and mechanotransduction is
more difficult to conceptualize in cells subjected to
comparatively very minimal mechanical stress, such
as hepatocytes or epithelial cells in culture. Nonethe-
less, studies of how changes in mechanical properties
of the keratin-deficient cells may result in further
downstream changes in PKC, Akt, ERK, or JNK-
MAPK signaling seem to be warranted. At this time,
effects of mechanotransduction on other signaling
effects cannot be ruled out for most of the consequen-
ces of keratin deficiency reviewed here.

Chaperoning. In a previous section we already dis-
cussed how keratin-associated chaperones maintain
steady-state levels of aPKC. Whether or not similar
keratin-dependent mechanisms are involved in main-
taining the normal folding of other kinases, or prevent-
ing their degradation, remains a testable hypothesis.

In summary, there is extensive experimental evidence
supporting the notion that a group of pro-survival and
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stress-response signaling pathways require normal kera-
tin IF. Possible mechanistic explanations for this require-
ment are multiple and additional data will be necessary
to identify how and to what extent keratins affect specific
kinase (or phosphatase) activities. In the next sections we
will discuss the role of keratin IF in specific signaling
pathways involved in desmosome assembly and innate
immunity response.

Keratins and intercellular bonds in epithelial
barriers: Is desmosome function dependent on if
expression?

Keratin IF are anchored to the cell surface at desmo-
somes mediating attachment to the neighboring cells
through desmocollin and desmoglein.”’ Keratin IF
also connect to hemidesmosomes, which attach epi-
thelial cells to the extracellular matrix at the basal
membrane through integrin 84.** There is no question
that desmosomes and hemidesmosomes are important
for epithelial barrier integrity. For example, in the skin
and mucosae, autoantibodies against desmosome
(desmogleins in pemphigous) and hemidesmosome
(in pemphigoid) surface proteins, are associated with
autoimmune blistering disease.*® Mutations in desmo-
somal proteins result in arrhythmogenic cardiomyop-
athies and in skin syndromes (reviewed by®’). The
“Ogna type” epidermolysis bullosa simplex is caused
by a missense mutation in plectin, which links keratin
IF to the hemidesmosome plaque.®’

Because of the tight association of IF to desmosomes
and hemidesmosomes, it seems natural to ask whether
or not filamentous keratins are necessary for the assem-
bly and function of these junctions. Published evidence
suggest mixed answers to this question.

K8-null embryonic cells*®® and K18-null hepato-
cytes® lacking IF still, display desmosomal plaques
with normal ultrastructure, except, of course, for the
absence of filaments. This is consistent with the cur-
rent model of desmosomal assembly, which involves
e-cadherin induced recruitment of desmoplakin and
desmogleins, localized activation of PKCa followed by
IF attachment at a late phase (reviewed by84). Con-
versely, keratin null keratinocytes display scattered
plectin and hemidesmosome components, along with
faster cell migration,”® suggesting that keratin binding
is necessary for hemidesmosome plaques to coalesce.
This view of desmosome formation independent of IF,
however, was recently challenged by evidence showing

that specific deletion of K1/K10 (skin “differentiated”
suprabasal keratins) results in smaller desmosomes
with decreased amounts of desmoplakin and desmo-
collin, but normal plakoglobin.”® This intriguing
dependence of desmosome structure on specific kera-
tin types, was recently clarified by data from Magin
lab using global type I or type II keratin cluster knock-
out mouse keratinocytes, rescued by lentiviral-medi-
ated expression of either K14 or K17. The resulting
keratinocytes express all the keratins of the non-tar-
geted cluster, and are rescued by lentiviral-mediated
expression of one keratin of the knockout cluster.
Cells expressing K14/K5 pairs displayed normal des-
mosomes. On the other hand, cells expressing K17/K6
pairs showed fragmented, less-stable desmosomes.
Interestingly, the difference does not seem to be
related to mechanical anchoring of the desmosome
plaque to the filaments, but rather to the ability of K5/
K14 IF to maintain PKCa away from the plasma
membrane, possibly in an inactive conformation.’
This is, therefore, another instance where the signaling
function of the filaments is mechanistically prevalent
over mechanical interactions.

Keratins in innate immunity and inflammation

Like for other signaling events, there is a growing body
of publications reporting multiple roles of keratin IF
in the regulation of innate immunity and epithelial
inflammatory response. While these functions are typ-
ically associated with cells of myeloid lineage, epithe-
lial barriers respond to infection or chemical stress by
activating primitive innate immunity, primarily but
not exclusively, via the NF-kB pathway. The results of
this response include partial opening of T] with loss
of barrier function, secretion of anti-bacterial pro-
teins, and recruitment of macrophages and other
immune cells via cytokines (reviewed by **). Keratin-
deficient cells and keratin mutations predisposing to
inflammation reveal that IF play an important role in
the regulation of the epithelial innate immunity
responses in the skin and the intestinal epithelial bar-
riers. Some examples are summarized in Table 3.

The paradigm of anti-inflammatory effects of
keratins is the K8 knockout mouse. In the C57B1/6
background it is embryonic lethal,'® but partially
viable, i.e. submendelian proportions of pups are
born in the FVB/N background.” In these animals,
IF are fully abrogated in hepatocytes and the villus
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Table 3. Examples of effects of keratin loss or keratin mutations on inflammatory mechanisms.

Affected keratin(s)

Effects Ref.

K16 knockout

R156H K10 overexpression

K17 knockout

K5 knockout

K8 knockout

K8 / 18 mutations

K8 / 18 knockdown

K10 expression in basal layer of epidermis

Regulates innate immunity in response to epithelial barrier opening
Activation of p38, secretion of TNFo and RANTES 109
Polarizes immune response, Th2 cytokine profile

Transcriptional upregulation of pro-inflammatory cytokines IL-6 and IL-18
Th2 chronic intestinal inflammation

Intestinal cell barrier function

Activates NF-kB in cancer cells

Decreased NF-kB activity

99

145
108
96
98
142
100

epithelium in the small intestine, but present in the
crypts because of expression of redundant K7.**%
Omary and coworkers demonstrated that colitis in
the K8-null model displays increased Th2 cytokines
(IL-4, IL-5 and IL-13), as well as infiltration of
CD4 positive cells in the submucosa. The pheno-
type amounts to a chronic Th2 colitis induced by a
defect in the epithelium and not in immune cells,
which lack keratins.”® It is still unclear how intesti-
nal epithelia recruit and activate CD4 positive cells.
In these animals, no changes in paracellular perme-
ability were detected in the distal large intestine by
Omary and However,
3000 Da Dextran permeability was found in the
small intestine,”* suggesting a possible dependence
of barrier disruption on the level of the gut. Unfor-
tunately, detailed studies of intestinal permeability
at various levels are missing. However, intestinal

coworkers.”” increased

cells that express K8 or 18 bearing mutations iden-
tified in patients with Inflammatory Bowel Disease
(IBD), showed an impaired barrier function, sug-
gesting an epithelial cell-autonomous mechanism
by which TJ permeability is dependent on IF.”®
Therefore, increased barrier permeability is a possi-
ble mechanism linking deficient keratin expression
(or disease associated keratin mutations) and
inflammation. Recent evidence from the skin seems
to further support this possibility. Genes for K16
or 6, responsible for pachyonychia congenita,
appear to display a close coregulation with genes
that participate in the regulation of barrier function
and innate immunity.””

In terms of transcriptional mechanisms, the K17
null mouse skin shows increased NF-kB activation in
response to TNFa. While this can be interpreted as
another example of keratin-dependent hyper-sensitiv-
ity to TNFaq, it shows an indirect control of innate
immunity response by specific keratins. K10 expres-
sion in the basal layer of the skin is another example
of inhibition of NF-kB, possibly through inhibition of

IKKB and IKKy expression.'” We have recently
shown that expression of constitutively active aPKC
inhibits NF-kB activity in an epithelial cell line while
activating it in a mesenchymal cell line.'"”" Further-
more, aPKC is downregulated in IBD colon epithe-
lia.'” Bearing in mind that K8 null mice
postranslationally downregulate aPKC,>” it is possible
that keratin-associated Hsp70 chaperoning also indi-
rectly controls innate immunity activity in epithelia
through aPKC. Conversely, it is well-known that
inflammation increases keratin expression in pan-
creas, intestine,(”‘r”lm’104
which normally do not express keratins.

Changes in cytokine expression are also associated
with loss of keratin expression or disease-associated
keratin mutations.

In skin tumor cells, CXC gene expression levels are
106

and even ectopically, in cells
105

controlled by K17 expression.

In normal keratinocytes, K1 deficiency renders
the cells mechanically weaker, but also increases
expression of IL-18."°” Tt is important to note that
changes in the transcriptome occur in keratinocytes
upon keratin deficiency. More importantly, these
changes are specific for different keratins. K1 defi-
ciency mimics the gene expression signature of
atopic eczema and psoriasis.'”” K5 deficiency dis-
plays a different transcriptome signature,'”” which
results in IL-6 and IL-18 expression.'®® Finally, the
R156H K10 mutation, causal of a severe form of
epidermolytic hyperkeratosis, results in increased
expression of TNFa and RANTES, and reduced
expression of IL-18."%"

While the precise mechanistic relationship between
keratin expression (or mutations) and inflammation is
still missing, these examples suggest that signaling
mechanisms must be involved, and that various kera-
tins may exert their anti-inflammatory effects at the
transcriptional level via different pathways. In all
known cases, however, there is a common pattern of
anti-inflammatory activity of keratins. One may
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Figure 1. Polarity of IF in simple epithelia. A, B Frozen sections of formaldehyde-fixed liver (A) and small intestine epithelium (B) stained

with anti-K8 antibody (red) and DAPI (light blue). Bar, 20 pem.

speculate that this is among the evolutionary advan-
tages behind the great redundancy in keratin genes in
vertebrates.

Keratins in epithelial polarity

The textbook image of keratin IF normally repre-
sents their subcellular distribution in keratinocytes
(epidermis). In those cells the filaments fill the
cytoplasm and extend from the nucleus to the
plasma membrane. A similar non-polarized distri-
bution is found in hepatocytes (Fig. 1A). In most
other single-layered (“simple”) epithelia and in epi-
thelial cell lines such as MDCK and Caco-2, how-
ever, keratin IF are highly concentrated under the
apical domain, showing thin extensions to the lat-
eral domain to connect with desmosomes (reviewed
in''°). A small basal patch of keratins connects to
hemidesmosomes''"!!? (Fig. 1B). The mechanism
responsible for the subapical concentration of kera-
tin IF remains elusive.

The question is whether the asymmetric distribution
of keratins plays any role in apico-basal epithelial
polarity. Published evidence shows that the formation
and early polarization of epithelia in the embryo are
not affected by lack of keratins.*»'"? This suggests that
IF are not involved in the early acquisition of apico-
basal polarity. Mistargeting of several polarized mem-
brane proteins, however, was observed in K8 null intes-
tinal epithelia.>>*”. Those results indicate the need of
keratins for the maintenance of a normal polarized
phenotype. Bearing in mind multiple scaffolding func-
tions of keratin IF and the effects on signaling pathways
described in the previous sections, understanding the

molecular mechanisms that underlie the polarity
defects is a challenge.

In principle, any of the scaffolding functions of
keratin IF described before are expected to be
asymmetrically concentrated under the apical
domain, and, to some extent at the basal pole
(Fig. 1B). As an example, scaffolding of Hsp70
chaperones is strictly dependent on K8 (and IF)
expression in villus enterocytes. While there is a
diffuse cytoplasmic Hsp70 signal, the chaperone
becomes highly concentrated under the apical
membrane (Fig. 2, arrow) (additional data in 2,
Likewise, it can be speculated that scaffolding of
membrane molecules, perhaps through their cyto-
plasmic domains may control their traffic to the
apical domain. Apically-bound membrane traffic
vesicles need to cross through the dense layer of
apical IF. Annexin II is essential for apical mem-
brane traffic''* and has been found to interact with
keratin IF in the context of lipid rafts.'"> Another
keratin-binding protein is Albatross, which in turn
also binds Par3, a component of the polarity com-
plex. Loss of keratins delocalizes Albatross and per-
mits the invasion of basolateral proteins to the
apical domain.'"

A critically important apical protein, the cystic
fibrosis conductance regulator (CFTR) was found
to bind K18. Furthermore, the surface expression
of CFTR is diminished in K18 null mouse gallblad-

der and duodenum''”

and in K8 null intestinal epi-
thelia.’®> This suggests that membrane traffic can be
positively regulated by keratins. Conversely, the
glucose transporters GLUT1 and —3 are mislocal-

ized away from the apical domain of keratin-null
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Figure 2. Polarized scaffolding of Hsp/Hsc70 in simple epithelia. Frozen sections of villus enterocytes from K8-null or heterozygous litter-
mates were immunostained for K8 (red channel) or Hsp/Hsc70 (green channel). The arrow points at the apical concentration of the
chaperone which is strictly dependent on the expression of keratin IF. Modified from.>? Bar, 20 um.

> which deprives the cells of

embryonic epithelia,"’
energy and activates AMPK, thus decreasing pro-
tein synthesis through mTOR inhibition. It is of
note that the LKB1/AMPK pathway has been
shown to control bile canaliculus (apical) formation
in hepatocytes ''® as well. As mentioned before,
another signaling mechanism, atypical PKC, is
downregulated in K8 null epithelia, thus providing
a possible explanation for both increased perme-
ability of T] and protein mistargeting. Furthermore,
aPKC is also known to control surface localization
of various glucose transporters in non-epithelial
cells, including GLUT1.1**12° While this function
has not been demonstrated in epithelial cells, it
remains a possible explanation for the results of
Magin and coworkers in embryonic epithelia.'"?
Additionally, somewhat indirect mechanisms may
also explain changes in apical polarity in keratin null
phenotypes. Expression of plastin 1 (fimbrin), a kera-
tin-binding protein, is necessary to maintain the

structure of the apical terminal web, which comprises
the highly-concentrated apical keratin IF."*!

The distribution of apical microtubules is severely
affected by the K8-null mutation, possibly through mis-
localization of gamma-tubulin ring complexes.'”* In
addition, activation of pro-inflammatory signaling may
also play a role. In fact, apical mistargeting in K8-null
colonocytes is partially reverted by treatment with antibi-
otics, which decreases the inflammatory response.”
Although no data is currently available in the intestinal
epithelium regarding innate immunity signaling in K8
null mice, in breast cancer cells in 3D cultures, inhibition
of NF-kB by small molecules or shRNA induces apico-
basal polarization.123 Finally, the role of inflammation in
the integrity of TJ has been reviewed elsewhere.'** At
least one polarity protein, Scribble, is delocalized under
pro-inflammatory signals.'*® Accordingly, a relationship
between innate immunity pathways and epithelial apico-
basal polarity in the context of keratin deficient cells is
worth further studies.
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Challenges ahead to elucidate mechanistic
aspects of IF function

The major challenge of IF research is that multiple
functions, mechanical and non-mechanical, are
affected simultaneously. Establishing a simple linear
cause-effect relationship is, therefore, very difficult.
The network of functions regulated by IF, in addition,
may vary in different cell types. Loss of keratin expres-
sion or expression of keratin mutants associated with
human disease results in increased sensitivity to apo-
ptosis (in liver, placenta, and skin), changes in key sig-
naling pathways, pro-inflammatory phenotype and
partial loss of apico-basal polarity (intestine). Ques-
tions that remain unanswered, such as the examples
that follow, are related to molecular mechanisms,
cross-talk among them, and tissue specificity. How do
IF protect epithelial cells from chemical stress, dimin-
ish innate immunity responses, and favor appropriate
segregation of apical membrane proteins? The gaps of
knowledge in this field are precisely at the interface
between keratin molecules and interacting proteins
involved in a substantial number of molecular mecha-
nisms perturbed by loss of keratin function. Why do
IF protect hepatocytes but not villus enterocytes from
apoptosis? In both cases the loss of IF in the K8 null
model is complete. There is no question that keratin
IF contribute to the mechanical “stiffness” of epithelial
cells,” but it is difficult to conceive that a hepatocyte
may have harsher mechanical stresses than a small
intestine villus enterocyte. That is especially true con-
sidering the fiber-rich diet of a rodent. Conversely, in
the skin, at least one mutation (E477D K5p) does not
impair mechanical characteristics of keratinocytes and
yet causes EBS.”

The most obvious alternative to effects of cellular
mechanical weakness is the scaffolding of several
molecules which control intracellular signaling.
From an evolutionary standpoint, this option
makes sense to explain the formidable redundancy
in type I and type II keratin genes developed dur-
ing the evolution of chordates. Only one type I and
one type II keratin gene would suffice to assemble
filaments, as, for example, in early chordates.'*®
However, many different keratin head and tail
domains would be necessary to accommodate tis-
sue-specific scaffolding in vertebrates.

Binding to keratin IF, however, is not an all or none
phenomenon. Quantitative evaluation of scaffolding,

(i.e., how much of the protein is bound to filaments
and how much is free) is still needed in many cases.
Likewise, quantification of the effects of scaffolding
(i.e. how much protein bound to filaments is necessary
to result in a certain change in a cell function) will be
necessary to determine the impact of immobilization
of cellular components on IF. This is especially impor-
tant because keratin loss of function seems to affect
multiple mechanisms. Accordingly it will be necessary
to assess the relative importance of each one. While
the current trend is to analyze effects at the cellular or
animal level, there is a need for subcellular quantita-
tive analysis as well, for example, separating keratin IF
from the cytosol to measure function of the same mol-
ecules on the filament surface as opposed to the non-
filamentous environment.'?’ Ultimately, the interac-
tion domains in keratins and each keratin binding
protein will need to be determined. Molecular analysis
at that level will confirm the conclusions from knock-
out models. In addition, it is conceivable that some
interactions may be indirect. We can speculate that
there is potential therapeutic significance in under-
standing mechanistically the interactions between ker-
atins and signaling molecules. These interactions are
expected to be specific to epithelia. In the same line of
thought, because carcinomas still express keratins, it is
likely that some of the keratin functions may still con-
stitute a therapeutic target in cancer. For example,
knockout of K14 in breast cancer cells abrogates inva-
siveness.'*® Understanding how K14 controls a differ-
entiation program may help prevent metastasis. The
implications for human health of understanding how
keratins protect epithelia, therefore, may go beyond
the numerous diseases caused or predisposed by kera-
tin mutations.'*>'*
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