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ABSTRACT The bacterium Klebsiella aerogenes is an opportunistic pathogen that of-
ten infects hospitalized patients and those who are immunocompromised. K. aero-
genes in some cases can become resistant to antibiotic treatment. Being a potential
therapeutic, Metamorpho is a T4-like myophage targeting K. aerogenes.

K lebsiella aerogenes is an opportunistic pathogen that is generally associated with
urinary tract infections, abdominal infections, septicemia, and pneumonia, with

a majority of infections associated with this pathogen being hospital acquired (1).
There is a high incidence of resistance to b-lactam antibiotics in K. aerogenes (1).
Phage Metamorpho is able to lyse and kill K. aerogenes, and its annotated genome is
described here.

Metamorpho was isolated from wastewater collected from the wastewater plant in
Madisonville, Texas, using K. aerogenes strain ATCC 13048 with the soft-agar overlay
method (2). The phage was propagated at 37°C on LB agar seeded with the host bacte-
rial strain. The phage morphology was visualized via transmission electron microscopy
(TEM) of virions stained with 2% (wt/vol) uranyl acetate (3) at the Texas A&M
Microscopy and Imaging Center. Phage DNA was extracted using the Promega Wizard
DNA extraction system following the steps described previously (4) and prepared for
sequencing using the Illumina Nextera kit with 300-bp inserts. The prepared DNA was
subjected to sequencing with a MiSeq system using 300-cycle v2 chemistry. The
sequences returned were checked for quality by FastQC (www.bioinformatics.babraham
.ac.uk/projects/fastqc). The library index containing this phage generated 686,406
sequencing reads, and ;5% of the total reads were assembled into SPAdes v3.5.0 (3)
into a contig corresponding to this phage with 10� coverage. The genome was closed
using PCR, with the primers 59-GCTATTCTATCCCAACGGTCAG-39 and 59-GAATAGGAT
CAACCGAGTTACCG-39, and Sanger sequencing of the PCR product. Structural annota-
tion was conducted with GLIMMER v3 (5) and MetaGeneAnnotator v1.0 (6) for identifica-
tion of putative genes. ARAGORN v2.36 (7) was used to identify tRNA genes. Protein
functions were predicted by InterProScan v5.33 (8), BLAST v2.9.0 (9) with the NCBI non-
redundant and Swiss-Prot databases (10), TMHMM v2.0 (11), LipoP (12), and HHpred (13)
with default settings. The whole-genome sequence was compared to those of other
phages via progressiveMauve v2.4 (14). All of the tools used for analysis were run on the
Center for Phage Technology (CPT) Galaxy and Apollo interfaces (15–17) with default set-
tings (https://cpt.tamu.edu/galaxy-pub).

The complete genome length of phage Metamorpho is 171,475 bp. It has a lower
GC content (38.5%) than its host (54.1%) (18). A total of 287 protein-coding genes and
15 tRNAs were predicted, for a coding density of 94.0%. Metamorpho is most closely
related to other T4-like Klebsiella phages; the most notable are JD18 (GenBank acces-
sion number KT239446), Mineola (MH333064), and KP1 (MG751100). Metamorpho is
also related to the canonical Escherichia coli phage T4, with 75.7% DNA sequence simi-
larity to T4 by BLASTn analysis and 177 proteins shared with T4 by BLASTp (E ,1025).
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Not surprisingly, Metamorpho showed T4-like myophage TEM morphology (image not
shown). Metamorpho was predicted by PhageTerm (19) to package its DNA by headful
packaging, and the genome was reopened at the rII locus to retain synteny with other
T4-like phages. Metamorpho gp163 is a homolog of T4 protein e.6, which is conserved
in a number of T4-like phages. Analysis of gp163 with HHpred indicated a high-quality
alignment (99.9%) with E. coli phage shock protein PspA (4WHE_A), which is associated
with the cellular stress response (20).

Data availability. The genome sequence of phage Metamorpho was deposited
under GenBank accession number MT701588 and BioSample accession number
SAMN14609635. The BioProject accession number is PRJNA222858, and the SRA
accession number is SRR11558337.
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