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Abstract

Aberrant methylation of specific CpG sites at the promoter is widely responsible for genesis and development of various
cancer types. Even though the microarray-based methylome analyzing techniques have contributed to the elucidation of
the methylation change at the genome-wide level, the identification of key methylation markers or top regulatory networks
appearing common in highly incident cancers through comparison analysis is still limited. In this study, we in silico
performed the genome-wide methylation analysis on each 10 sets of normal and cancer pairs of five tissues: breast, colon,
liver, lung, and stomach. The methylation array covers 27,578 CpG sites, corresponding to 14,495 genes, and significantly
hypermethylated or hypomethylated genes in the cancer were collected (FDR adjusted p-value ,0.05; methylation
difference .0.3). Analysis of the dataset confirmed the methylation of previously known methylation markers and further
identified novel methylation markers, such as GPX2, CLDN15, and KL. Cluster analysis using the methylome dataset resulted
in a diagram with a bipartite mode distinguishing cancer cells from normal cells regardless of tissue types. The analysis
further revealed that breast cancer was closest with lung cancer, whereas it was farthest from colon cancer. Pathway
analysis identified that either the ‘‘cancer’’ related network or the ‘‘cancer’’ related bio-function appeared as the highest
confidence in all the five cancers, whereas each cancer type represents its tissue-specific gene sets. Our results contribute
toward understanding the essential abnormal epigenetic pathways involved in carcinogenesis. Further, the novel
methylation markers could be applied to establish markers for cancer prognosis.
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Introduction

Carcinogenesis is a complicated cellular process starting from

genesis of a few cancer cells and developing into malignancy

through cellular proliferation [1,2]. Depending on the specific

tissue and cancer stage, different sets of genes act on the cancerous

cells in different modes [3]. For example, BRCA1 is a well-known

tumor suppressor gene implicated in the predisposition of early-

onset breast and ovarian cancer [4]. On the contrary, loss of RB is

well documented in many human tumor types [5].

In the course of cancer development, tumor suppressors as well

as proto-oncogenes undergo genetic and epigenetic changes [6–9].

Promoter methylation is an epigenetic regulation, and its

abnormal changes in cancer-related genes have been known to

have pivotal roles during carcinogenesis. So far, numerous genes

have been identified as epigenetic markers that can predict

occurrence of specific cancers [10–13]. BRCA1 is a tumor

suppressor, and it is hypermethylated in a limited number of

cancer types [14,15]. Meanwhile, another tumor suppressor,

PTEN, is hypermethylated in a wide range of tumor types [16–

18]. The methylation change of tumor-related genes may appear

at a specific stage or sub-tissue. For example, methylation of

RASSF1 was observed with gradual increase in association with

increasing tumor size and advancement of the stage of breast

cancer [19]. In another study, ADAM33 was shown to be silenced

by the promoter methylation with hypermethylation in invasive

lobular carcinoma compared to invasive ductal carcinoma [20].

These facts imply that specific set of genes are differentially

methylated depending on the specific cancer type. Studies chasing

methylation change have been extensively carried out in each type

of cancer tissue. However, comprehensive approaches wherein the

methylation profiles are compared to thus reveal the commonal-

ities in various cancers or cancer-specific epigenetic pathways have

been limited. Accumulation of methylation markers in cancer

prompts us to establish a systemic approach that is able to predict

cancer-related genes and pathways with abnormal methylation.

Current high throughput techniques have enabled us to identify

genes that show differential methylation in cancer tissues, and

genome-wide methylome data are available in public databases

such as the Gene Expression Omnibus (GEO) [21]. In this study,

by utilizing the GEO methylome databases, we have aimed to

elucidate the molecular pathway in which genes are highly

dysregulated by promoter methylation and to compare them in the

five major cancers: breast, colon, liver, lung, and stomach. To do

this, we first analyzed in silico the Illumina methylation bead chip

data from five cancers. After collecting data for ten pairs of normal
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and cancer tissues from each cancer type we compared the

interrelationship of the five cancers based on methylomic change.

Further, the Ingenuity pathway analysis was carried out to

elucidate the top pathway that is eligible to be distorted by

methylation.

Materials and Methods

Cell culture
MCF10A (normal breast), MCF7 (breast cancer), and HEK293

were purchased from the American Type Culture Collection

(ATCC; Manassas, VA). HEL 299 (normal lung) and A549 (lung

cancer), and AGS (stomach cancer), THLE-3 (normal liver) and

Hep3B (liver cancer), CCD-18Co (normal colon) and HT-29

(colon cancer) were purchased from the Korean Culture Type

Collection (KCTC; Korea). MCF10A was grown in MEBM

supplemented with MEGM Single Quots and cholera toxin

(Lonza, Basel, Switzerland). HEK293, Hep3B, THLE-3, and

CCD-18Co were grown in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (FBS).

MCF7, A549, AGS, and HT-29 were cultured in RPMI-1640

supplemented with 10% FBS.

Figure 1. Cluster and heat map analysis with genes of altered methylation for five cancers. A. Cluster analysis was carried out using a
methylation index (b-value) taken from Illumina Human Methylation 27 Bead Chip database registered at the GEO. Hierarchical clustering with the
correlation distance was shown for 50 tumor tissues from the breast, colon, liver, lung, and stomach cancer. B. Hierarchical cluster analysis was
conducted for 90 genes that were related with ‘‘cancer’’ from the five cancer types. The bottom panel is a heat map analysis wherein the rows and
columns represent genes and cancer cell lines, respectively.
doi:10.1371/journal.pone.0097818.g001
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Microarray database analysis for genome-wide
methylation and expression assay

The Illumina Infinium Methylation Chip data for breast, colon,

liver, lung, and stomach cancer were obtained from the GEO

database (http://www.ncbi.nlm.nih.gov/geo/). Microarray data

for ten sets of normal tissue and its matching cancer tissue for each

cancer type (fifty sets in total) were collected. The accession

numbers of the adopted databases are indicated in Table S1. The

Illumina Infinium Methylation Assay detects genome-wide meth-

ylation covering 27,578 CpG sites in 14,495 genes. A methylation

index (b) was outputted for each site, which is a continuous

variable ranging between 0 (no methylation) and 1 (100%

methylation), representing the ratio of the intensity of the

methylated-probe signal to the total locus signal intensity. These

Figure 2. Highest confidence network of genes displaying altered methylation levels in breast cancer. In the network, hypermethylated
genes in cancer are colored in red, whereas the hypomethylated genes are shown in green. The intensity of the color reflects the magnitude of
methylation change. According to IPA, the network is relevant to ‘‘cellular movement, cellular development, and cancer.’’ The highest confidence
network for the other four cancers is added in Fig. S2. Each interaction is supported by at least one literature reference, with solid lines representing
direct interactions, and dashed lines representing indirect interactions.
doi:10.1371/journal.pone.0097818.g002

Epigenetically Aberrant Regulatory Networks in Cancer

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e97818

http://www.ncbi.nlm.nih.gov/geo/


values were then used to calculate a ratio of relative methylation

between normal and tumor tissue, with higher values correspond-

ing to greater levels of methylation in tumor tissue relative to

normal tissue.

In silico expression analysis for selected genes was carried out on

the Oncomine database platform (https://www.oncomine.org).

To do this, datasets from the corresponding cancer type were

collected for each gene, and expression was examined with a

threshold satisfying p,0.01.

Pathway analysis
To identify pathways displaying methylation-specific altered

expression patterns with potential roles in the five cancer types,

functional categorization and pathway constructions were con-

ducted using the Ingenuity Pathway Analysis (IPA) software tool

produced by Ingenuity Systems as previously described [22]. A

repertoire of genes from each cancer type, which was selected as

differentially methylated genes was submitted to the IPA. The p-

value for individual network was obtained by comparing the

likelihood of obtaining the same number of transcripts or greater

in a random gene set as are actually present in the input file (i.e.,

the set of genes differentially expressed in the normal tissue and

cancer tissue), using Fischer’s exact test based on the hypergeo-

metric distribution. The highest confidence functional network

was designated as the top network.

Real-time RT-PCR
Isolation of Total RNA from cell culture and reverse

transcription were conducted as described previously [22].

Expression levels of selected genes were measured by real-time

quantitative RT-PCR analysis. At least triplicate reactions were

performed for each sample using a Kapa SYBR Fast qPCR Kit

(Kapa Biosystems, Woburn, MA) with gene-specific primers

(Table S2) on an ABI 7300 instrument (Applied Biosystems).

RNA quantity was normalized to GAPDH content, and gene

expression was quantified according to the 22DCt method.

Statistical analysis
A hierarchical clustering dendrogram was generated by Gene

Cluster 3.0 (http://bonsai.hgc.jp/,mdehoon/software/cluster/

software.htm) to determine the relationship between the ge-

nome-wide methylation trend and cancer sample. In the analysis

of microarray database, batch effects resulting from the use of

different arrays at different tissues and time points were removed

using ComBat [23]. Observations with adjusted p-values equal to

or greater than 0.05 were removed and thus precluded from

further analysis. Following adjustment, the remaining genes were

defined as differentially methylated if [b (cancer) – b (normal)] .

0.3. A student’s t-test was used to detect differences in the mean

levels of methylation for selected genes, as well as for the

expression level between the control and cancer cells. Statistical

analyses were conducted using SPSS for Windows, release 17.0

(SPSS Inc., Chicago, IL). A p,0.05 was considered to be

statistically significant.

Results

In silico methylome analysis identifies tissue-specific
methylation profile in breast, colon, liver, lung, and
stomach cancer

To identify and compare essential pathways that are deregu-

lated by abnormal methylation of CpGs at the promoter in the

major five cancers, breast, colon, liver, lung, and stomach, a

repertoire of genome-wide methylation databases was first

Figure 3. Pathways most strongly associated with the significantly altered genes in the five cancers. Top functional categories are given
for breast cancer. The Ingenuity software assigns a p-value based on the likelihood of obtaining the observed number of category or pathway-related
molecules in a given data set by chance alone. The threshold line denotes the p = 0.05 level. The line graph represents the ratio of affected genes to
the total number of genes in a pathway. The top functional category for the other four cancers is added in Fig. S3.
doi:10.1371/journal.pone.0097818.g003
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collected from the GEO database (http://www.ncbi.nlm.nih.gov/

geo/) that harbors the Illumina methylation array data covering

14,495 genes and 27,578 CpG sites. Datasets for ten pairs of

cancer tissues and the corresponding normal tissues were collected

for each cancer type except for breast cancer, in which case the

data consisted of only one normal tissue sample and ten cancer

tissue samples due to the lack of normal/cancer pairs.

To get insight into the relationship between the overall

methylation change and each of the five cancer types, and further

into the relative distance of the cancers, a cluster analysis was

carried out. In the cluster, the normal and cancer tissues were

generally separated in a bipartite mode, indicating that genome-

wide methylation change is a key event distinguishing cancer cells

from normal cells regardless of tissue types (Fig. S1A). Moreover,

each cancer type was generally grouped together, thus explaining

the tissue-specific methylomic profile in both normal and cancer

cells (Fig. 1A). A few cancer tissues were grouped nearby other

tissues. For example, three colon cancer tissues were separated

from the others and grouped together with lung cancers, showing

hypermethylation in the VHL and PRDM15 (Fig. S1B). VHL

encodes von Hippel-Lindau tumor suppressor and was shown to

be hypermethylated in lung cancer [24]. The two subgroups of

lung cancer tissues separated by the three colon cancers showed

different cancer stages, with one subgroup including only stage I

and with the other subgroup including also stage II and III.

Interestingly, we found that breast cancer was closest with lung

cancer whereas it was farthest from colon cancer. Next, we

selected 90 key cancer-related genes and carried out the cluster

analysis for cancer tissues to examine whether they could possibly

represent the whole methylation status of cancer tissue. The results

indicated a high ratio of overlapping between the two cluster

analyses with the whole genome and the cancer-related genes

(Fig. 1B).

Aberrantly methylated genes are involved in cancer-
related pathways

To construct the highest functional network in the five cancers,

a collection of genes with differential changes of methylation are

compared to the corresponding normal tissue, which was selected

after filtering off the statistically insignificant genes (p.0.05). In

each cancer, the filtered genes were compared with another tissue,

and genes appearing common in the compared tissues were

selected. This comparison step was repeated using the ten normal–

cancer pairs until less than 500 genes were filtered. At the end of

filtration 3–4 pairs were included to construct the network.

All of the sites that fit our significance criteria for differential

methylation were examined for functional analysis using the IPA

software tool. Of note, the ‘‘cancer’’ related network or bio-

function appeared as the highest confidence among all the five

cancers (Fig. 2, Fig. 3, Fig. S2, and Fig. S3).

Figure 4. In silico expression profiles of selected genes with altered methylation in breast cancer. Five genes that have shown
methylation change in breast cancer were selected, and their expression was examined in silico in the expression dataset and represented as a box
plot. There appeared a coincidence that hypermethylated genes showed downregulation, or that hypomethylated genes showed upregulation in
cancer. Data for the other four cancers is added in Fig. S4.
doi:10.1371/journal.pone.0097818.g004
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In breast cancer, ER-regulated genes including FGFR1 and

IRS1, and ERK1-regulating genes including IRF6 and TOM1L1,

were aberrantly methylated. In addition, centered in the network

is POU4F1, which interacts with ER and regulates INA, MSC,

and CHRNA3.

In lung cancer, two HOX genes, HOXA7 and HOXB4, were

highly methylated. Meanwhile, FOSL1 and THRB were hypo-

methylated, taking centers in the network and appearing to

function as the master regulator of a network of several gene

transcripts potentially relevant to lung tumor development and

progression. In colon cancer, it is remarkable that AR is

hypermethylated and acts as an interaction hub in the top

network. Activation of AR in colon tumor is known to be a

prosurvival signal, and it blocks migration [25]. PKA and ADC

were also hypermethylated, which interacted with AR. In gastric

cancer, VIM, which has been known to be a methylation marker,

was also hypermethylated, and it centered in the network

interaction with other proteins, such as PDGF complex and

TWIST1. In liver cancer, various kinds of GPCR, including

ADRB1 and DRD1PLC and their downstream element PLC,

were abnormally methylated.

Abnormally methylated genes are deregulated in cancer
To examine whether the abnormally methylated genes induce

deregulation of gene expression, in silico dataset analysis as well as

real-time RT-PCR was conducted. Twenty-two genes, five from

each cancer (two in case of liver), from the top hypermethylated

genes were selected and in silico expression analysis based on

Oncomine database platform was carried out. Among the 22

genes 9 including KISS1 [26], SERPINB5 [27], and CAMK2B

[28] are previously established methylation markers in cancer or

other diseases, meanwhile 13 genes including LILRB4, CLDN15

are novel genes of which methylation status has not been known.

As shown in Fig. 4 and Fig. S4, all the genes were dysregulated

according to the methylation status in tumor cell lines with

downregulation in case of hypermethylation and vice versa. To

further examine the relation between the expression and

methylation, real-time RT-PCR analysis for five genes, one from

each cancer, was carried out with RNA isolated from cultured cells

composed of a pair of normal and cancer cell line for the five

cancers. The result confirmed the fact that all the genes were up or

downregulated according to their methylation status in the cancer

cell (Fig. 5).

Discussion

In this study, a key regulatory network was constructed from

genes affected by promoter methylation in the highly incident five

cancers. In addition, the relationship of the cancer types posed by

the genome-wide methylation change was elucidated. So far,

cancer classification has been made based on the mRNA

expression profiles [29–31]. Epigenetic changes have emerged as

an alternative explanation to the signatures of cancer development

in time courses as well as in different tissues. Recently, a

quantitative atlas of histone modification signatures from 24

human cancer cells revealed clusters of HEK293 and U2OS; HFF,

HeLa, and PC3; and MCF7, PANC1 and MDAMB231. The data

Figure 5. RT-PCR analysis of selected genes that showed altered methylation in the five cancer types. The expression level of selected
genes was examined using real-time RT-PCR in a normal and a cancer cell line for the five cancer types. In case of stomach, HEK293 was used as the
normal cell line. There appeared a coincidence that hypermethylated genes showed downregulation, or that hypomethylated genes showed
upregulation in cancer. Each sample was examined in triplicate, and the average expression levels are presented with standard errors.
doi:10.1371/journal.pone.0097818.g005

Epigenetically Aberrant Regulatory Networks in Cancer

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e97818



showed a consistency between the mRNA levels and the histone

modifying enzymes [32]. In another study, the cancer heteroge-

neity across cancer types was addressed by the methylation

variation in epigenetic domains, with tight clustering of methyl-

ation levels in normal tissues, and marked stochastic variation in

cancers [33]. These data suggest future efforts might instead be

directed at defining the cancer epigenome as the departure from a

narrowly defined normal profile.

We found that breast cancer was closest with lung cancer and

farthest from colon cancer. Colon cancer is notable in that most

methylation alterations occur not in promoters, and also not in

CpG islands, but in sequences up to 2 kb distant, the so called

CpG island shores [34]. This unique epigenome characteristic

might put colon cancer farthest from breast cancer. Breast and

lung cancer have many common prognostic signatures, such as

hypermethylation of BRCA1 [35], SOX17 [36,37], and TLX3.

It is interesting that the cluster that was constructed from the 90

cancer-related genes showed a similar pattern at a certain level

with that constructed from the whole genes, implying the cancer-

related genes undergo a similar methylation change with that of

the genome-wide change. It is therefore helpful to chase the key

cancer-related genes when addressing the methylome status of a

specific cancer.

Notably, each cancer type represented a unique core pathway in

the highest confidence network, implying that there appears to be

a tissue-specific epigenetic cancer pathway. In the pathway, we

found previously known epigenetic markers as well as novel

markers that could be developed as epigenetic markers for cancer

prognosis. In breast cancer, FLRT2 and SCTR are good

candidates for novel markers; the expression of which is known

to be down regulated [38,39]. However, no information for their

epigenetic control is yet available.

A limitation of our study is seen in the inability to assess

methylation levels with respect to tumor grade, which thus

precludes an examination of potential methylation patterns

specific to cancer initiation versus those specific to tumor

progression. In addition, detecting the frequency of methylation

in tumor samples was limited due to the small number of databases

for each cancer. Nonetheless, the degree of consistency between

our findings and prior literature in the sampling of cancer-relevant

genes gives bearing to the potential of using organ-specific

alterations in methylation pattern as a prognostic tool in each

cancer development and progression.

In summary, we have presented a genome-wide methylation

profile of five cancers, colon, liver, lung, gastric, and breast cancer,

which we have compiled utilizing databases obtained from the

most comprehensive methylation measurement technique cur-

rently available. Our findings have provided information about the

interrelationship among the five cancers with respect to methy-

lome change. Moreover, we have found a key epigenetic

regulatory pathway that is unique in each cancer. Further research

into the mechanism leading to the common or differential

methylation in the cancers could give insights for estimating

prognosis and determining treatment options.

Supporting Information

Figure S1 Cluster analysis with genes of altered methylation for

five cancers. Cluster analysis was carried out using a methylation

index (b-value) taken from Illumina Human Methylation 27 Bead

Chip database registered at the GEO. A. Hierarchical clustering

with the correlation distance was shown for 10 tumor tissues and

10 normal tissues from each of the breast, colon, liver, lung, and

stomach cancer. B. Significance analysis of microarray (SAM) for

the 10 colon cancer tissues. Genes showing differential methylation

among the 10 tissues were represented by the heatmap analysis.

The color bar at top denotes the methylation level.

(DOCX)

Figure S2 Highest confidence network of genes displaying

altered methylation levels in colon, liver, lung, and stomach

cancer. In the network, hypermethylated genes in cancer are

colored in red, whereas the hypomethylated genes are shown in

green. The intensity of the color reflects the magnitude of

methylation change. According to IPA, the network is relevant to:

cellular growth and proliferation, cancer, connective tissue

disorders in colon cancer (A); post-translational modification,

protein degradation, protein synthesis in liver cancer (B); cancer,

dermatological diseases and conditions, cell death and survival in

lung cancer (C); hereditary disorder, neurological disease, cellular

assembly and organization in stomach cancer (D).

(DOCX)

Figure S3 Top functional pathways most strongly associated

with the significantly altered genes in colon, liver, lung, and

stomach cancer. Top functional categories are given for colon (A),

liver (B), lung (C), and stomach cancer (D). The Ingenuity software

assigns a P value based on the likelihood of obtaining the observed

number of category or pathway-related molecules in a given data

set by chance alone. The threshold line denotes the p = 0.05 level.

The line graph represents the ratio of affected genes to the total

number of genes in a pathway.

(DOCX)

Figure S4 In silico expression profiles of selected genes with

altered methylation in colon, liver, lung, and stomach cancer. Five

genes (two in case of liver) that have shown methylation change in

each cancer were selected, and their expression was examined in

silico in the expression dataset and represented as a box plot; colon

(A), liver (B), lung (C), and stomach cancer (D). There appeared a

coincidence that hypermethylated genes showed downregulation,

or that hypomethylated genes showed upregulation in cancer.

(DOCX)

Table S1 Genome-wide methylation databases analyzed in this

study.

(DOCX)

Table S2 Sequences of primers employed in this study.

(DOCX)
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