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ABSTRACT

It is widely accepted that pre-mRNA maturation,
including splicing, is tightly coupled to both tran-
scription and mRNA export, but factors linking the
three processes are less understood. By analysing
the estrogen-regulated expression of the c-fos
mRNA that is processed during transcription, we
show that the ddx5 RNA helicase, is required
throughout the major nuclear steps of the expres-
sion of the c-fos gene, from transcription to mRNA
export. Indeed, ddx5, whose recruitment on the
c-fos gene was increased upon estrogen treatment,
was required for the full transcriptional activation of
the c-fos gene. In addition, ddx5 was required for
c-fos co-transcriptional RNA splicing. When
splicing occurred post-transcriptionally in the
absence of ddx5, the c-fos mRNA was poorly
exported into the cytosol because of inefficient
recruitment of the TAP mRNA export receptor.
Finally, ddx5 was present in the c-fos messenger
ribonucleoprotein together with mRNA export
factors, which further supports that ddx5 is a key
operator in the c-fos ‘mRNA factory’.

INTRODUCTION

Pre-mRNAs are transcribed in the nucleus, where they are
processed and packaged into messenger ribonucleoprotein
(mRNP) complexes. Proper production of mRNPs
requires the addition of a 50 cap structure, removal of
introns, polyadenylation (pA) at the RNA 30-end and
loading of mRNA export factors. It has become clear
that these events are integrated and coordinated in space

and time as capping, 30 end processing and to some extent,
splicing, are coupled to transcription (1,2). In addition,
multiple links have been described between pre-mRNA
maturation and mRNA export. For example, the recruit-
ment of the TREX complex, that consists in the THO
complex and a set of export factors like the export
adaptor ALY, is enhanced by splicing (3–7). The TAP
mRNA export receptor is then recruited to the mRNPs,
associates with nucleoporins and ensures the efficient
translocation of the mRNA across the nuclear pore
(5,6). Therefore, correct nuclear processing and recruit-
ment of export factors target mRNA for export from
the nucleus and if a transcript is not properly processed,
it can be recognized by the nuclear surveillance machinery,
retained in the nucleus, and/or degraded by the nuclear
exosome, including the Rrp6 exonuclease (8,9). Rrp6 also
plays a role in the tethering of unspliced transcripts to
RNA Polymerase II (RNAPII), thereby providing a
coordination between transcript maturation and either
degradation or release (8,9).

While mRNA capping and 30 end formation are tightly
coupled with transcription initiation and termination,
respectively, RNA splicing can proceed either during
transcription (co-transcriptional splicing) or after tran-
scription and release of the transcript from the DNA
template (post-transcriptional splicing) (10–14). This dis-
tinction raises several questions. What is the fate of
mRNAs that are not spliced during transcription
compared with co-transcriptionally spliced mRNAs?
What does determine that a splicing event should
proceed in a specific mode (co-transcriptional versus
post-transcriptional) and which factors are involved in
the coupling between transcription and RNA processing?

In this context, the ddx5 (or p68) protein is particularly
interesting. This DEAD box RNA helicase acts as a tran-
scriptional co-regulator of several transcription factors,
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including the estrogen receptor (ER) (15–18). Ddx5, when
recruited to target promoters by transcription factors, can
in turn recruit or displace histone modifying enzymes, like
CBP/p300 and HDACs, and/or recruit RNAPII, which
ddx5 also binds to (19,20). Furthermore, ddx5 is a com-
ponent of the spliceosome and facilitates the pre-
spliceosome to spliceosome transition by unwinding the
U1 snRNA/50 splice site base-pairs thanks to its RNA
helicase activity (21). It must be underlined that the
splicing of some RNAs (e.g. CD44, Tau, H-ras and
NFAT5) seems particularly sensitive to the expression
level of ddx5 (22–25). In addition, a role of ddx5 in down-
stream steps has been suggested. Indeed, ddx5 is recruited
early during the splicing process, leaves the spliceosome
and comes back on the mRNA after splicing catalysis (26).
The Drosophila ddx5 RNA helicase promotes RNA
release from chromatin and its sequestration caused by
fragile X premutation rCGG repeats could lead to
mRNA transport dysfunction (27,28). Finally, ddx5 is a
shuttling protein, suggesting that ddx5 might play a role in
mRNA export (29,30).

By analysing the estrogen-regulated expression of the
c-fos mRNA that is processed during transcription
(10,13,14), we showed that ddx5, whose recruitment on
the c-fos gene was increased upon estrogen treatment,
was required for the full transcriptional activation of the
c-fos gene. In addition, ddx5 was required for c-fos
co-transcriptional RNA splicing and, in the absence of
ddx5, the c-fos mRNA was poorly exported due to the
alteration of TAP recruitment on the c-fos mRNA.
Further supporting a role of ddx5 in c-fos mRNA
export, ddx5 was present into an mRNP together with
ALY and TAP. These data identify ddx5 as a key
operator in the c-fos production line and show that a
protein factor can impact on multiple steps of the expres-
sion process of a given gene, from transcription to mRNA
export.

MATERIALS AND METHODS

Cell culture, stable cell lines and treatment

MCF-7 cells were grown in DMEM supplemented with
10% FBS, 1% glutamine and 4.5 g/l glucose (37�C, 5%
CO2). All cell culture reagents were from Gibco. HA-ddx5
was cloned in pTRE2-hyg vector to generate inducible
MCF-7/Tet-On stable cell lines (Clontech). Resistant
clones were selected with hygromycin (300 mg/ml,
Clontech) and protein expression was checked after doxy-
cycline (DOX) treatment (1 mg/ml) for 48 h. Before estra-
diol (E2) treatment, 3�106 cells were plated per 10-cm dish
and were kept for 72 h in red phenol-free DMEM supple-
mented with 2% charcoal-treated FBS. Cells were treated
with a final concentration of 10�8 M E2 for 1 h. Cells were
transfected with siRNA (26.6 nM) using Lipofectamine
RNAiMax (Invitrogen) following manufacturer’s instruc-
tions. The siddx5 siRNA is a mixture of siRNA targeting
the ddx5 50 UTR (siUTRddx5) and the ddx5 coding
sequence (siCDSddx5) (Supplementary Figure S6). Cells
were harvested 48 h after transfection.

RNA preparation and RT-PCR

RNAs from different fractions were prepared as previ-
ously described (10,31,32). For nuclear fractionation,
cells were lysed in RSB buffer (10mM Tris–HCl
[pH 7.5], 10mM NaCl, 3mM MgCl2) and the cytosolic
fraction was isolated in RSBG40 buffer (10mM Tris–HCl
[pH 7.5], 10mM NaCl, 3mMMgCl2, 10% Glycerol, 0.5%
NP40, 0.5mMDTT, 100U/ml RNase OUT). Nuclei pellet
was resupended in 20mM TrisHcl [pH 8], 75mM NaCl,
0.5mM EDTA [pH 8], 0.85mM DTT, 0.125mM PMSF,
0.1mg/ml yeast tRNA, 50% Glycerol and lysed in 20mM
Hepes, 300mM NaCl, 0.2mM EDTA [pH 8], 1mM DTT,
7.5mM MgCl2, 1M Urea, 0.5% NP40, 0.1mg/ml yeast
tRNA: the nucleoplasmic fraction (supernatant) was
adjusted with 0.1% SDS before RNA extraction. The
chromatin pellet fraction was resuspended in 10mM
Tris–HCl [pH 7.5], 510mM NaCl, 10mM MgCl2 and
incubated for 30min at 37�C with 20U DNase before
proceeding with RNA extraction.
RNAs were extracted using TRIpure reagent (Roche)

and 1ml of Glycoblue (Ambion) was added before RNA
precipitation with Isopropanol. Each RNA preparation
was treated with DNase I (DNAfree, Ambion). Reverse
transcription (RT) was performed with 0.1–1mg of RNA
using M-MLV (Invitrogen) and random primers. The RT
reactions were diluted and used either in PCR reactions
using GoTaq Polymerase (Promega) or in qPCR reactions
using Master SYBR Green I (Roche) on a Roche
LightCycler 480. Primers are described in Supplementary
Figure S6. The relative RNA levels were determined on the
basis of the threshold cycle for each qPCR product (Ct).
c-fos and cyclin D1 (CCND1) mRNA levels in total cellular
extracts were normalized by GADH mRNA levels.

Western blot analysis

Protein extracts were obtained using NP-40 buffer (50mM
Tris–HCl pH 8, 0.4M NaCl, 5mM EDTA pH 8, 1%
NP40, 0.2% SDS, 1mM DTT) and Protease Inhibitors
(Roche). Between 10 and 30 mg of proteins were separated
by SDS-PAGE and western blot was performed by using
antibodies against c-fos (sc-7202 Santa Cruz), ddx5
(ab10261 Abcam), ALY (A9979 Sigma), TAP (sc-32319
Santa Cruz), Rrp6 (EXOSC10—ab50558 Abcam), ER
(F-10 sc8002 Santa Cruz), actin (I-19 sc1616 Santa Cruz)
or H3 (ab1791 Abcam) antibodies.

RNA and DNA chromatin IP

RNA and DNA chromatin immunoprecipitation (IP) was
performed as previously described (10,32) using antibodies
against RNAPII CTD (05-623 Millipore), ddx5 (ab10261
Abcam), ALY (A9979 Sigma), TAP (sc-32319 Santa
Cruz), Rrp6 (EXOSC10—ab50558 Abcam), HA (11 867
423 001 Roche) or control immunoglobulins (Santa Cruz).
RNAPII ChIP and RNAPII RNA-ChIP experiments were
analysed with E1/2_E3/4, E1_i1, E2_i2, E4, 30UTR#1,
30UTR#2, 30UTR#3, ERBS primers sets. Ddx5, ALY
and TAP RNA-ChIPs were analysed with E1/2_E3/4
primer set. All the primers are described in
Supplementary Figure S6.
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Co-immunoprecipitation

MCF-7 cells were lysed in buffer containing 50mM
Tris–HCl pH 8, 150mM NaCl, 1% NP40, Protease and
Phosphatase inhibitors (Roche) and incubated for 30 min
on ice. Cleared cell extracts were incubated overnight with
4 mg antibodies bound to protein G magnetic beads
(Invitrogen). The protein-bound magnetic beads were
washed three times with PBS 1X, suspended in loading
buffer (Invitrogen) before western blot analysis. Inputs
correspond to 5% of the cleared cell lysates.

In situ proximity ligation assay

The in situ proximity ligation assay (PLA) was conducted
using the Duolink II Kit (Olink Bioscience) according to the
manufacturer’s instructions. Proximity ligation signals were
detected with a Zeiss fluorescence microscope (63�
objective).

RESULTS

Ddx5 is required for c-fos gene transcriptional activation
in response to estradiol

As previously shown (33–35), the expression of the c-fos
gene, which contains an estrogen receptor binding site
(ERBS, Figure 1A) downstream of the pA site, was

strongly stimulated after 1 h of estradiol (E2) treatment
of the ER-positive MCF-7 breast cancer cells (Figure 1B).
While ddx5 depletion (Figure 1C) had no effect on the
basal c-fos mRNA level, it almost completely abrogated
the E2-mediated effect (Figure 1B). Similar effects were
obtained by comparing different control siRNAs
(siCTRL) or different siRNAs targeting ddx5 (siddx5)
(Supplementary Figures S1 and S2). To test the specificity
of the effect of the ddx5 siRNA used, an siRNA targeting
the 50 UTR of the ddx5 mRNA (siUTRddx5) was trans-
fected into an inducible MCF-7 stable cell line expressing
HA-ddx5 cDNA that does not contain the 50 UTR of the
endogenous ddx5 mRNA. The effect of siUTRddx5 was
compensated upon treatment of the cells with DOX that
induced the expression of HA-ddx5 (Figure 1D and E).

Similar results were obtained after ddx5 depletion when
analysing the c-fos pre-mRNA level (Figure 2A and
Supplementary Figures S1 and S2). Furthermore, ddx5
depletion inhibited the recruitment of RNAPII induced
by E2 treatment all along the c-fos gene (Figure 2B). In
addition, ChIP experiments using the MCF-7 inducible
stable cell line expressing HA-ddx5 showed that the
recruitment of ddx5 on the c-fos ERBS was increased by
E2 treatment (Figure 2C). Finally, ddx5 depletion did not
decrease the c-fos mRNA half-life (Supplementary
Figure S3). Collectively, these data demonstrated that
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Figure 1. Ddx5 depletion impairs c-fos mRNA production in response to estradiol treatment. (A) Schematic structure of the c-fos gene and local-
ization of the primers used. (B) RT-qPCR measuring the fully spliced c-fos mRNA using primers at the exon 1-exon 2 junction and at the exon
3-exon 4 junction. MCF-7 cells were transfected with a siCTRL or siddx5 before treatment with estradiol (+E2) or vehicle (ethanol, �E2) for 1 h.
(C) Western blot analysis of ddx5 and actin as a control, using protein extract from MCF-7 cells transfected with either a siCTRL or siddx5 in the
presence or absence of estradiol (E2) for 1 h. (D) Western blot analysis of ddx5 and actin as a control, using protein extract from an inducible stable
MCF-7 cell line expressing HA-ddx5 after addition of DOX and transfected with an siUTRddx5. (E) The fully spliced c-fos mRNA was measured by
RT-qPCR using an siUTRddx5 and an inducible MCF-7 stable cell expressing HA-ddx5 after addition of DOX for 48 h, as indicated. Histograms
represent the average of at least three independent experiments. Error bars represent S.E.M. (**P< 0.005, ***P< 0.0005).
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ddx5 is required for c-fos gene transcriptional activation in
response to E2.

Ddx5 depletion results in c-fos mRNA
nuclear accumulation

Confirming our results, the E2-induced expression
of c-Fos protein was inhibited upon ddx5 depletion
(compare lanes 3 and 4, Figure 3A). However, we
noticed that the effect of ddx5 silencing was also strong
in the absence of E2 (compare lanes 1 and 2, Figure 3A),
that was unexpected since it had no effect on c-fos mRNA
and pre-mRNA levels and RNAPII recruitment in the
absence of E2 (Figures 1, 2, 4A and B).

Interestingly, fractionation experiments indicated that
ddx5 depletion decreased the c-fos mRNA level in the
cytosol while it increased it in the nucleus in the absence
of E2 (Figure 3B, C and Supplementary Figure S4A).
After verifying that ddx5 depletion did not affect the
sub-cellular localization of small nuclear or cytosolic
RNAs (Supplementary Figure S4B), we concluded that
in the absence of E2, ddx5 depletion increased the c-fos
mRNA nuclear to cytosolic ratio (N/C ratio) (Figure 3D).
A similar effect was observed in the presence of E2 (Figure
3D). Rescue experiments in the MCF-7 inducible cell line
partially restored the initial c-fos mRNA N/C ratio
(Figure 3E).
We next tested whether c-fos mRNA was still attached

to RNAPII after ddx5 depletion, which would explain the
c-fos mRNA nuclear accumulation observed in these con-
ditions. To test this hypothesis, we measured by
RNA-ChIP the level of c-fos RNA attached to RNAPII
using primers targeting sequences downstream of the pA
site (Figure 1A). As shown in Figure 3F, we did not detect
any increase in the level of c-fos RNA attached to
RNAPII after ddx5 depletion. Another primer set con-
firmed this result (Supplementary Figure S4C).
Furthermore, the level of fully spliced c-fos mRNA
associated with RNAPII was also not increased upon
ddx5 depletion (Figure 3G). Collectively, these results
demonstrated that the c-fos mRNA did not accumulate
in the nucleus upon ddx5 depletion due to its retention
within the RNAPII complex.
In fact, we observed a decrease in the level of the fully

spliced c-fos mRNA attached to RNAPII (Figure 3G),
which was confirmed in the MCF-7 inducible cell line
(Figure 3H). Based on this observation, we hypothesized
that the decrease in c-fos mRNA level attached to
RNAPII upon ddx5 depletion result from an inhibition
of c-fos splicing as the primers used in this experiment
were designed to amplify the fully spliced c-fos mRNA.

Ddx5 is required for efficient co-transcriptional splicing
of c-fos pre-mRNA

As shown in Figure 3C, the level of the fully spliced nuclear
c-fos mRNA did not decrease upon ddx5 depletion, which
suggests that the c-fos mRNA splicing was not globally in-
hibited. Interestingly, we and others have shown that c-fos
mRNA splicing occurs during transcription (10,13,14).
Therefore, we tested whether c-fos mRNA splicing was
co-transcriptionally impaired upon ddx5 depletion. As
ddx5 depletion had effects on c-fos pre-mRNA levels and
RNAPII levels on the c-fos gene in the presence of E2

(Figures 1 and 2), we made these experiments in the
absence of E2. In this condition, ddx5 depletion did not
change the global nuclear level of c-fos pre-mRNA and
did not affect the level of RNAPII on the c-fos gene using
different primer sets at various locations along the c-fos gene
(Figures 4A, B and 1A). Strikingly, while ddx5 depletion
decreased the amount of fully spliced c-fos mRNA
attached to RNAPII (Figure 3G), it increased the level of
RNAPII-associated unspliced c-fos pre-mRNA, as
measured using primers located in introns 1 and 2 (E1_i1
and E2_i2, Figure 4C). Furthermore, the level of partially
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spliced c-fos transcripts attached to RNAPII decreased after
ddx5 depletion (Figure 4D), and was rescued upon
re-expression of inducible ddx5 (Figure 4E). Collectively,
these results indicated that ddx5 was required for efficient
c-fos co-transcriptional splicing.

Ddx5 is required for making c-fos mRNA competent
for export

As shown in Figure 4C, when measuring c-fos RNA as-
sociation with RNAPII, a primer set (E4) localized in the
last exon of c-fos showed no change upon ddx5 depletion,
which suggests that c-fos transcript release from RNAPII
was not affected by ddx5 depletion. This was unexpected
as c-fos co-transcriptional splicing was impaired upon
ddx5 depletion, and previous studies indicated that
unspliced transcripts can be degraded by the Rrp6
(EXOSC10) exonuclease, a component of the exosome
complex (8,9). Intriguingly, purification of ddx5-
associated nuclear factors pointed to an interaction with
components of the exosome complex, including Rrp6
(www.nursa.org/10.1621/datasets.01001). As shown in
Figure 5A, Rrp6 and ddx5 can indeed co-
immunoprecipitate. The interaction between endogenous
ddx5 and Rrp6 proteins was further addressed using the in
situ ligation proximity assay (PLA), which generates a
signal when two proteins are in close proximity
(�40 nm) to each other. As shown in Figure 5B, promin-
ent signals were detected in fixed MCF-7 cells using
anti-Rrp6 and anti-ddx5 antibodies but not in control
experiments.
Furthermore, ddx5 depletion, which did not affect Rrp6

protein level (Figure 5C), reduced the recruitment of Rrp6
on the c-fos gene both in the presence and in the absence
of E2 (Figure 5D). As Rrp6 may travel with RNAPII, we
compared RNAPII and Rrp6 patterns along the c-fos
gene. In the absence of E2, Rrp6 level was highest at the
c-fos gene 30-end, where it was significantly affected by
ddx5 depletion (Figure 5E), whereas RNAPII level on
the c-fos gene was not affected (Figures 5E and 4B).
Thus, the decrease in Rrp6 recruitment on the c-fos gene
after ddx5 depletion was not a consequence of RNAPII
decrease at least in the absence of hormone. In the
presence of hormone, we cannot exclude that the
decrease in Rrp6 recruitment on the c-fos gene after
ddx5 depletion might be due in part to RNAPII
decrease (Figure 2B). Finally, Rrp6 depletion did not
increase the c-fos mRNA N/C ratio and did not therefore
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Figure 4. Continued
as % of input (nuclear level) after transfection of MCF-7 with either
siCTRL or siddx5. (D) RT-qPCR analysis of partially spliced c-fos
pre-mRNA associated with RNAPII (RNA-ChIP) after cell
cross-linking and IP using either a control antibody (IgG) or an
antibody against RNAPII. The results are expressed as % of input
(nuclear RNA level) after transfection of MCF-7 with either siCTRL
or siddx5. (E) RT-qPCR analysis of partially spliced c-fos pre-mRNA
associated with RNAPII (RNA-ChIP) after cell cross-linking and IP
using either a control antibody (IgG) or an antibody against RNAPII.
The results are expressed as % of input (nuclear RNA level) after
transfection of inducible stable MCF-7 cell line with either siCTRL
or siUTRddx5 and after DOX treatment as indicated. Histograms rep-
resent the average of at least three independent experiments. Error bars
represent S.E.M. (*P< 0.05, **P< 0.005).
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decrease the export of the c-fos mRNA (Figure 5F and
Supplementary Figure S5A), suggesting that the nuclear
accumulation of c-fos mRNA upon ddx5 depletion is
likely not mediated by Rrp6. Altogether, these data
suggest a role of ddx5 in Rrp6 recruitment to the c-fos
gene, and the decrease in Rrp6 recruitment on the c-fos
gene upon ddx5 depletion could explain why c-fos RNAs
were released from RNAPII despite not being spliced in
this condition.
We next investigated why the c-fos mRNAs produced in

ddx5-depleted cells were poorly exported despite their ef-
ficient release from RNAPII. First, we noticed that the

nuclear fully spliced c-fos mRNA was enriched in
the ‘chromatin fraction’ compared with the ‘nucleoplasm
fraction’ (Figure 6A and B). It must be underlined that the
so-called ‘chromatin fraction’ may contain nuclear
speckles that are enriched in splicing factors and might
play a role in post-transcriptional splicing (11,12).
Second, a larger proportion of c-fos mRNA was
associated with the mRNA export adaptor ALY
(Figure 6C), whereas a smaller proportion of c-fos
mRNA was found associated with the mRNA export
receptor TAP (Figure 6D) after ddx5 depletion.
This effect was not due to decrease of TAP expression
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level upon ddx5 depletion (Figure 6D). Further support-
ing a role of TAP in c-fos mRNA export, TAP silencing
(Figure 6E and Supplementary Figure S5B) increased the
c-fos mRNA N/C ratio (Figure 6F) as ddx5 depletion did
(Figure 3D). The effect of TAP depletion was weaker in
the presence of E2, likely because it reduced ER protein
expression levels (Figure 6E).

Ddx5 is present in the c-fos mRNP

It has been shown that ddx5 is recruited early during the
splicing process, then leaves the spliceosome and comes

back after splicing catalysis (26). Supporting a role of
ddx5 after splicing, ddx5 was found in mRNP containing
mature mRNA and is a shuttling protein (29,30).
As shown in Figure 7A, ddx5 was indeed associated
with the c-fos mRNA both in the absence and in the
presence of E2. As a control, the inducible stable cell
line expressing HA-ddx5 upon DOX treatment was
used. The c-fos mRNA was detected after IP with the
HA antibody only in the presence of DOX (Figure 7B).
In addition, ddx5 co-immunoprecipitated with both ALY
and TAP (Figure 7C) in an RNA-dependent manner,
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suggesting that ddx5-containing mRNP complexes also
contain ALY or TAP.
Finally, ddx5 depletion also affected the production of

CCND1 pre-mRNA in response to estradiol (Figure 7D),
which was expected since CCND1 is a well-characterized
ER-target gene and was also shown to be regulated by
ddx5 (36,37). Like in the case of c-fos, ddx5 depletion
increased the nuclear accumulation of CCND1 mRNA
both in the presence and absence of hormone
(Figure 7E) suggesting that ddx5 is required for the
proper synthesis and export of at least a subset of
ER-target genes.

DISCUSSION

While it has been shown that some protein factors can
physically link the transcriptional and mRNA export
machineries and play a role in different steps of the gene
expression process, their different functions were often
analysed on different mRNA targets (1–4,7,38). In this
report, we show that a factor can impact on multiple
steps in the expression process of a single gene, from
its transcription to the export of the mature mRNA.
We propose a model (Figure 7F) in which ddx5
is required for (i) the transcriptional activation of the
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c-fos gene; (ii) efficient co-transcriptional splicing of c-fos
pre-mRNA; and (iii) efficient export of mature
c-fos mRNA. In the absence of ddx5, the c-fos transcripts
appeared to be spliced after transcription and both the
diffusion of the mRNA into the nucleoplasm and
the recruitment of TAP were disturbed (Figure 7F).

While the roles of ddx5 as transcriptional co-regulator
and splicing factor have been extensively analysed, several
reports suggested a role of ddx5 in downstream steps of
gene expression. For example, the Drosophila ddx5
promotes RNA release from chromatin (27,28).
Remarkably, while this manuscript was under prepar-
ation, Dbp2, the yeast ddx5 ortholog, was also proposed
to play a role in facilitating RNP assembly and clearance
of transcripts from genomic loci (39). Interestingly, it was
shown that loss of DBP2 is synthetic lethal with depletion
of RRP6 (39). Because ddx5 is a shuttling protein (30) and
as we reported here that ddx5 was present on c-fos
mRNA, these results collectively demonstrate a role of
ddx5 in the control of nuclear mRNA fate.

An important remaining question regards the connec-
tion between all ddx5 cellular functions. Addressing this
question is likely going to be very challenging as the effect
of ddx5 on specific step(s) might be more or less
pronounced depending on the target gene and depending
on which step(s) will be rate-limiting for each target gene.
In addition, because all the steps of the gene expression
process can impact on each other, it will be difficult to
analyse precisely the molecular action of ddx5 on a
selected step. In this context, our results suggest a model
where ddx5 depletion inhibited c-fos co-transcriptional
splicing (Figure 4), which then impairs c-fos mRNA
export. As ddx5 depletion reduced the recruitment of
Rrp6 (Figure 5), unspliced c-fos RNAs were not
degraded and had a chance to be spliced
post-transcriptionally, slowing down the release of Aly
and the recruitment of TAP (Figure 6). It is likely that
this results in inefficient mRNA export rather than
complete nuclear retention of c-fos mRNA. Indeed,
despite our efforts, we could not observe any local accu-
mulation of c-fos mRNA by FISH in the nucleus of
ddx5-depleted cells (not shown), suggesting that c-fos
mRNA are not retained at specific nuclear sites. In
addition, c-fos mRNA was still detected in the cytosol
after depletion of ddx5 for 48 h (Supplementary Figure
S4A) despite its short half-life. Because the c-fos mRNA
export becomes inefficient rather than fully inhibited upon
ddx5 depletion and because the CCND1 mRNA synthesis
and export was also affected by ddx5 depletion, we
propose that ddx5 plays a role in the efficient production
of a subset of mRNAs.

This assumption is in agreement with the hypothesis
that at least some mRNAs might be produced in a very
efficient way in what has been referred to as the ‘mRNA
factory’ (1). The efficiency of co-transcriptional RNA pro-
cessing might play a critical role for gene products whose
expression level is rapidly and tightly regulated, like the
c-fos gene. Indeed, c-fos is an immediate early gene that is
induced from transcription to protein synthesis within 1 h
in response to various stimuli, such as estrogen in breast
cancer cells (33–35). As c-fos is a cell cycle activator

required during the initial G0–G1 transition stimulated
by growth factors, the efficient co-transcriptional process-
ing and export of c-fos mRNA may be a key component
of the rapid mitogenic response of MCF-7 cells to estrogen
stimulation. Interestingly, ddx5 also seems to play an
important role in the synthesis and export of the
CCND1 mRNA, which also encodes a key cell cycle regu-
lator whose expression is induced by estrogen (Figure 7D
and E).
Collectively, these data demonstrate that, transcrip-

tional co-regulators like ddx5 impact on gene expression
not only by controlling the assembly of the transcriptional
machinery, but also by coordinating multiple
co-transcriptional nuclear gene expression steps.
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