
PROTEIN UNFOLDING

Same structure, different
mechanisms?
Two interpretations of similar structures for the same molecular machine

illustrate the limits of inferring biochemical mechanism from protein

structure.

FRANCIS TF TSAI AND CHRISTOPHER P HILL

P
ursuit of the Francis Crick dictum, ‘if you

want to understand function, study struc-

ture’ has driven remarkable advances in

understanding of protein mechanisms

(Crick, 1988). However, there are always limits.

A classic goal in structural biology has been

to understand AAA+ ATPases, a large and

diverse family of enzymes that perform mechani-

cal work for cells (Harrison, 2004). A group of

AAA+ ATPases called unfoldases use the energy

of ATP hydrolysis to unfold protein substrates,

apparently by pulling the substrate through the

central pore of the ring-shaped enzyme. The

debate around how these unfoldases work has

been enlivened by two recent reports in eLife,

one by John Rubinstein, Lewis Kay and col-

leagues at the University of Toronto – including

Zev Ripstein and Siavash Vahidi as joint first

authors (Ripstein et al., 2020) – and another by

Robert Sauer and colleagues at the Massachu-

setts Institute of Technology and Harvard Medi-

cal School – including Xue Fei as first author

(Fei et al., 2020). The two groups report very

similar structures of the ClpX unfoldase in com-

plex with ClpP, an enzyme that breaks down

protein substrates unfolded by ClpX (Figure 1).

The complex formed is referred to as the ClpXP

protease. Like most AAA+ ATPases, ClpX is a

hexamer, whereas ClpP displays seven-fold sym-

metry. Despite the close similarity of the ClpXP

structures reported, the two groups propose

very different mechanisms of action for the

unfoldase.

A flurry of AAA+ unfoldase structures bound

with substrate or substrate mimics has been

reported over the past three years (Gates and

Martin, 2020). These structures show unfoldase

subunits arranged in a spiral stabilized by ATP.

In some cases, all six subunits participate in the

spiral, but in most cases one or more subunits

seem to be disengaged, as if moving from one

end of the spiral to the other.

A sequential ‘hand-over-hand’ mechanism

has been proposed for a majority of these unfol-

dase structures. In this model, one or more sub-

units of the unfoldase bind the substrate along

with a molecule of ATP as they move sequen-

tially from one end of the spiral to the other.

ATP hydrolysis at the bottom of the spiral allows

the bottom-most subunit to move to a transi-

tioning position and release the substrate. Sub-

sequent exchange of ADP for ATP allows this
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transitioning subunit to rejoin the top end of the

spiral and bind the next two residues of the sub-

strate (Figure 1C). This way, ATP binding and

hydrolysis proceed sequentially around the

AAA+ hexamer and, depending on the frame of

reference, the consequence can be described as

the unfoldase walking along the substrate or as

the substrate being pulled through the unfol-

dase pore. From either perspective, two amino

acid residues of the substrate are translocated

for each ATP hydrolyzed.

Ripstein et al. and Fei et al. report structures

of ClpXP complexes from Neisseria meningitidis

and Escherichia coli, respectively. The two struc-

tures are very similar to each other and the ClpX

hexamer closely resembles multiple other AAA+

unfoldases (Gates and Martin, 2020). The struc-

tures also show how the hexameric ClpX binds

the heptameric barrel-shaped ClpP protease to

align the substrate with the opening to the

chamber in ClpP where the substrate is broken

down. However, the two groups have proposed

different mechanisms for the unfoldase. Ripstein

et al. favor the two-residue step hand-over-hand

mechanism. In contrast, Fei et al. propose a radi-

cally different model in which ATP hydrolysis at

the top of the spiral allows the top-most ClpX

subunit to retain its grip on the substrate. The

subunit then moves to the bottom of the spiral,

pulling the substrate approximately six amino

acid residues towards ClpP before releasing it

(Figure 1C).

The model proposed by Ripstein et al. has

several attractive features. First, it is similar to

analogous mechanisms of more distantly related

nucleic acid translocases (Lyubimov et al.,

2011; Enemark and Joshua-Tor, 2008). Second,

it explains how widely divergent substrate

sequences can be bound and processed. And

third, the asymmetric nature of the spiral indi-

cates multiple structural steps along the pro-

posed reaction cycle. Balanced against this, the

model of Fei et al. also has attractive features.

First, it is consistent with published estimates of

the step size (Olivares et al., 2016). And sec-

ond, by also allowing ATP hydrolysis to occur at

subunits within the spiral, it explains how multi-

ple inactive ATPase sites can be accommodated

(Martin et al., 2005).

Together, these two studies, along with

another recent study that reported a different

structure for ClpXP (Gatsogiannis et al., 2019),

Figure 1. Structure of the ClpXP complex. (A) Side and (B) top-down views of the ClpXP complex bound to a

substrate (shown in orange). The six ClpX subunits are each shown in a different color (purple, blue, cyan, green,

sage green, and yellow), with ATP shown in red and ADP in pink. The same colors are used throughout the figure.

(C) Close-up side view of the pore region in ClpX with arrows indicating the proposed sequential (sage green

arrow; Ripstein et al., 2020) and probabilistic (purple arrow; Fei et al., 2020) mechanisms. The tyrosines lining

the ClpX pore are colored according to their corresponding ClpX subunit. Five of these tyrosines bind the

substrate while the tyrosine of the yellow subunit, which is bound to ADP, does not contact the substrate. The ATP

hydrolyzed in each of the models is indicated by a flash. In the sequential model (Ripstein et al., 2020), ATP

hydrolysis in the lower subunit allows it to disengage from substrate, transition through the ‘yellow state’,

exchange ADP for ATP, and bind the next two residues of the substrate by docking against the top-most subunit.

Because each subunit binds two residues, the net result is ClpX ‘walking’ up the substrate and translocation of two

substrate residues down toward ClpP. In the probabilistic model (Fei et al., 2020), ATP hydrolysis at the top

position (sometimes preceded by hydrolysis at other positions) causes the upper subunit to maintain a tight grip

on substrate and move it down toward the ‘yellow state’, thereby translocating substrate by approximately six

residues toward ClpP.
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add new fuel to a debate that seemed settled.

Key questions for future studies include: Do dif-

ferent AAA+ unfoldases use the same mecha-

nism to couple ATP hydrolysis with substrate

translocation? Are the mechanisms sequential?

Where and how is ATP hydrolysis triggered?

How might one ADP-bound subunit in the

model of Fei et al. bind a substrate tightly

enough to enable translocation? And, how many

amino acid residues are translocated per ATP

hydrolyzed? Moreover, the additional proposal

from Ripstein et al. that ClpX and ClpP rotate

with respect to each other during the reaction

cycle seems likely to provoke further contro-

versy. Just when AAA+ unfoldases seemed to

have yielded their mechanistic secrets, these two

new structures look very much as expected but

nevertheless create a host of new questions.
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