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Abstract

Motivation: Despite the remarkable advances in sequencing and computational techniques, noise

in the data and complexity of the underlying biological mechanisms render deconvolution of the

phylogenetic relationships between cancer mutations difficult. Besides that, the majority of the

existing datasets consist of bulk sequencing data of single tumor sample of an individual. Accurate

inference of the phylogenetic order of mutations is particularly challenging in these cases and the

existing methods are faced with several theoretical limitations. To overcome these limitations, new

methods are required for integrating and harnessing the full potential of the existing data.

Results: We introduce a method called Hintra for intra-tumor heterogeneity detection. Hintra inte-

grates sequencing data for a cohort of tumors and infers tumor phylogeny for each individual

based on the evolutionary information shared between different tumors. Through an iterative pro-

cess, Hintra learns the repeating evolutionary patterns and uses this information for resolving the

phylogenetic ambiguities of individual tumors. The results of synthetic experiments show an

improved performance compared to two state-of-the-art methods. The experimental results with a

recent Breast Cancer dataset are consistent with the existing knowledge and provide potentially

interesting findings.

Availability and implementation: The source code for Hintra is available at https://github.com/

sahandk/HINTRA.

Contact: ester@cs.sfu.ca

1 Introduction

Cancer is the result of a gradual accumulation of somatic genetic

mutations. While most of the acquired mutations are putatively neu-

tral and have no significant effect on a cell’s phenotype, some confer

a selective advantage to the host cell; they are known as driver muta-

tions. Consequently, individual tumors are heterogeneous and typic-

ally consist of multiple populations of cells (subclones), each

harboring a distinct set of driver mutations and possessing a distinct

phenotype, a phenomenon known as intra-tumor heterogeneity

(ITH). Detecting ITH helps identify the key events initiating the de-

velopment of the disease or leading to metastasis, and allows for the

determination of a tumor’s subclonal composition.

ITH is usually represented by a phylogenetic tree of tumor evolu-

tion, where individual nodes represent subclones. Mutations are

placed along the edges of the phylogenetic tree. A mutation is

assigned to the unique edge directed into the node (subclone) in

which the mutation appears for the first time (see Fig. 3 for an ex-

ample of a phylogenetic tree). In this work, we assume that the

mutations satisfy the infinite sites assumption. This assumption

means that each mutation appears exactly once in the phylogenetic

tree and is present (conserved) in all the descendants of the subclone

in which it first occurs.

Most of the existing methods for studying tumor evolution op-

erate on tumor data from a single cancer patient. The earliest

developed methods used bulk sequencing data from a single sample

[e.g. rec-BTP (Hajirasouliha et al., 2014), CTPsingle (Donmez

et al., 2017)] or multiple samples from the same individual [e.g.

PhyloWGS (Deshwar et al., 2015), AncesTree (El-Kebir et al.,

2015), LICHeE (Popic et al., 2015), CITUP (Malikic et al., 2015)].

These were followed by the development of several methods that

work on single-cell data [e.g. OncoNEM (Ross and Markowetz,

2016), SCITE (Jahn et al., 2016), SiFit (Zafar et al., 2017)]. The

most recently introduced methods, B-SCITE (Malikic et al., 2017)
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and PhISCS (Malikic et al., 2018), simultaneously utilize the com-

plementary strengths of both single-cell and bulk sequencing data.

Indeed, most of the methods above have limitations when faced

with the input consisting of a single sample low-to-medium cover-

age bulk sequencing dataset, which are predominant in existing

databases (e.g. TCGA and cBioPortal). Since these type of data

contain numerous ambiguous cases (i.e. cases where the input data

are consistent with more than one possible phylogenetic tree for

the tumor), the existing algorithms for ITH detection based on a

single tumor sample [e.g. CTPsingle (Donmez et al., 2017)] will

yield several possible solutions for those cases (Malikic et al.,

2017).

In addition to ITH, inter-tumor heterogeneity is another phe-

nomenon complicating the understanding and treatment of cancer.

Inter-tumor heterogeneity is a direct consequence of the fact that in-

dividual tumors are genetically distinct. Despite the inter-tumor het-

erogeneity, one can still expect partially similar evolutionary

trajectories among subsets of tumors (Caravagna et al., 2018;

Pathare et al., 2009). Leveraging the phylogenetic similarities among

tumors from a cohort of patients in a collaborative fashion can guide

the process of exploring the solution space and reduce the above-

mentioned ambiguities in inferring tumor phylogenies, especially for

cases when the input is low-to-medium coverage bulk sequencing

data from a single tumor sample. Most of the existing methods that

infer phylogeny at the ensemble level are based on binary mutation

data. Some of these methods [e.g. CAPRESE (Loohuis et al., 2014),

CAPRI (Ramazzotti et al., 2015) and Beerenwinkel et al. (2004)] ex-

ploit Suppes’ probabilistic causation theory (Suppes, 1970) to deter-

mine the pairwise order of mutations. Some other methods [e.g.

conjunctive Bayesian networks (Beerenwinkel et al., 2007; Gerstung

et al., 2009) and Bayesian mutation landscape (Misra et al., 2014)]

model the phylogenetic relationships as a Bayesian network and pro-

pose approaches for learning the network structure. RESIC method

proposed by Attolini et al. (2010) is based on the principles of popu-

lation genetics and models the tumor samples as individuals in the

steady-state of a genetically evolving population and infers the evo-

lutionary history of their genotypes. Since all of these methods use

binary mutation data, they do not fully utilize the potential of

sequencing data by overlooking the intrinsic information about the

timing of evolutionary events. Moreover, these methods gain general

knowledge about cancer progression and do not provide personal-

ized evolutionary details.

A recent method, Revolver (Caravagna et al., 2018), uses non-

binary sequencing data and exploits the repeating evolutionary pat-

terns for ITH detection in individual tumors by transferring infor-

mation across all tumors. In this method, the assumption is that a

particular mutation usually has the same predictor (preceding muta-

tion) across different tumors in a particular cancer type.

Accordingly, the authors consider the frequency of the direct ances-

tors of a mutation across different tumors and use that information

when inferring the phylogeny for a specific tumor. Revolver uses an

expectation–maximization (EM) approach for finding the optimum

phylogenetic trees. In the first step, an existing method [e.g.

ClonEvol (Dang et al., 2017)] is used for deriving a set of high-

scoring candidate phylogenetic trees for each tumor, the best of

which is chosen as the current tree for each tumor. Then, the fre-

quencies of the direct ancestors of each mutation are learned from

the currently selected trees for all tumors. This information, which

constitutes the parameters of the distribution over tree topologies, is

then used for re-evaluating the tree set for each tumor and selecting

the ones with the highest new scores. These two steps of updating

the parameters/frequencies (E-step) and updating the current trees

based on the new parameters (M-step) continue until convergence or

until termination criterion is met.

This approach decreases the uncertainty of phylogenetic struc-

tures by incorporating the ancestry information. However, the

underlying evolutionary assumption in Revolver, which is the de-

pendency of a mutation only on its direct ancestor (the preceding

mutation), is a limitation because earlier mutations inherited by a

subclone might also be decisive in the selection of the next mutation

during the cancer evolution. Therefore, considering only the direct

ancestor as the predictor of a mutation might result in a loss of in-

formation. Another issue, which is discussed further in Section 2.3,

is that the tree topology distribution used in Revolver is biased to-

ward more branching structures. If not controlled, this bias may

produce unrealistic results with too much branching.

In this paper, we discuss the consequences of the above key issues

and introduce a collaborative ITH detection method to address

them. Our contributions can be summarized as follows:

• We introduce a Probabilistic graphical model (PGM) called

Hintra for collaborative ITH detection, as well as a corresponding

parameter learning method. The proposed PGM is based on read

count data, instead of summary values such as cancer cell fraction

(CCF) or variant allele frequency, to account for the uncertainty

of the measurements. To reduce the bias of existing methods, we

propose a Bayesian EM method that leverages the topology uncer-

tainty when learning the parameters, using a distribution over pos-

sible phylogenetic tree topologies instead of a point estimate.
• Hintra includes a novel factorization approach for phylogenetic

tree topologies. Addressing the information loss issue mentioned

earlier, Hintra considers all the mutations preceding a particular

mutation in the phylogenetic tree, instead of only the most recent

one. Moreover, the proposed factorization allows for the predic-

tion of the next mutation that might happen in a subclone given

its current mutational landscape. This capability, which is lack-

ing in the existing methods, can be used for prognostic clinical

applications.

Using both synthetic and real data, we evaluate performance of

Hintra and compare it to the state-of-the-art methods including

Revolver (as a collaborative ITH detection method) and ClonEvol

(as a stand-alone ITH detection method). Our results for synthetic

data based on different scenarios indicate that Hintra outperforms

the existing methods. Our results for real data were biologically con-

sistent and provided new information of potential clinical interest.

2 Materials and methods

For the sake of simplicity, the methods in Sections 2.1–2.4 are pre-

sented assuming that a single sample is available for each tumor.

Later, in Section 2.5, we generalize our model to allow multiple

samples per tumor.

2.1 Problem definition
We now formally define the collaborative ITH detection problem.

We assume that the input consists of read count data across m

tumors. For each tumor, we consider read counts for a given set G

of n known driver genes. The input data are organized into two

matrices, one for the reference read counts denoted by R ¼ ½rij� 2
N

m�n
0 and the other for the variant read counts denoted

by V ¼ ½vij� 2 N
m�n
0 , where N0 denotes the set of non-negative inte-

gers. More precisely, rij and vij respectively denote the number of ref-

erence and variant reads supporting driver gene j in tumor i.
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The output is a set of phylogenetic trees fTig1� i�m, where Ti is the

phylogenetic tree of tumor i indicating the phylogenetic order of muta-

tions in that tumor. A phylogenetic tree is a representation of the evolu-

tionary events that are observed in a tumor. The root of the tree

corresponds to the germline cell and the other nodes indicate the sub-

clones of the tumor. Each edge stands for a mutation that occurs in a

cell of the subclone corresponding to the edge’s tail (the parent) and trig-

gers the growth of the subclone corresponding to the edge’s head (the

child). Our goal is to infer the tree for each tumor by considering the

evolutionary patterns of similar mutations in the other tumors’ trees.

As a byproduct, we also learn model parameters that can be used

to compute the probability that a particular mutation occurs in a

cell having a specific set of mutations. For example, the parameters

can contain information on the most frequent mutation occurring in

(i.e. providing competitive advantage to) a breast cancer cell already

containing the mutations TP53 and PIK3CA. This parameter pro-

vides predictive information with prognostic applications.

Although it is theoretically possible to consider the exact position

where each of the input mutations occurs within its gene, we chose to

analyze the data at the gene level to increase the frequency of each mu-

tation and gain statistical power. For genes affected by multiple muta-

tions in the same tumor, we use the read count data for the most

prevalent of such mutations, i.e. the mutation with the largest CCF.

The CCF represents the fraction of cells of a tumor that harbor a par-

ticular mutation and most of the existing methods preprocess the read

counts from sequencing data into CCFs before using them for phyl-

ogeny inference. This allows the use of the existing CCF computation

tools [e.g. PyClone (Roth et al., 2014)] that can handle complicated

cases such as mutations involving copy number variations (CNV).

However, it ignores the uncertainty in the computed CCFs, which may

lead to incorrect results by assigning high weights to uncertain inputs or

vice versa. Incorporating read counts directly into the inference provides

a more accurate representation and can help prioritize informative

inputs over uncertain ones. Moreover, in cases with CNV, the com-

puted CCFs can be simply translated into read counts based on an ap-

propriate approximation of the locus coverage (e.g. mean sequencing

coverage). Therefore, we choose read counts as the format of our input.

2.2 Probabilistic graphical model
The proposed PGM for Hintra is shown in Figure 1 . In this model,

each tumor i, for 1 � i � m, is associated with a phylogenetic tree

Ti, whose structure depends on a parameter b. The tree structure con-

strains the possible values of the read count data. This is done through

a latent variable hi:, which is a vector of size n of CCFs of driver muta-

tions in tumor i. The dot in the index i. denotes a vector. The CCF of a

mutation indicates the proportion of cells in the tumor sample that har-

bor that mutation. A larger CCF is, in general, evidence of earlier oc-

currence of the mutation during tumor evolution. Accordingly, hi:

depends on the tree structure Ti corresponding to tumor i and influen-

ces the noisy observed reference and variant read counts for tumor i.

According to the PGM, the joint probability of the model varia-

bles is factored as:

P V;R; h;T;bð Þ ¼ P VjR; hð ÞP hTð ÞPðTjbÞ (1)

The first term on the right hand side of Equation (1) is the likeli-

hood term and is defined as below:

PðVjR; hÞ ¼
Ym
i¼1

Yn
j¼1

Pðvijjrij; hijÞ

vijjrij; hij � Binomial ðvij þ rij; hij=2Þ
(2)

The Binomial distribution parameter is equal to hij=2 because

CCF is computed as hij ¼ 2vij

vijþrij
for driver mutation j of tumor i (note

the multiplication by 2 in the nominator). The second factor in RHS

of Equation (1) is defined as below:

PðhjTÞ ¼
Ym
i¼1

Pðhi:jTiÞ

hi:jTi � Uniðpossible valuesÞ
(3)

The possible values for vector hi: are restricted by: (i) the sum

rule indicating that the CCF for a mutation should not be smaller

than the sum of the CCFs of all of its children in the phylogenetic

tree Ti (Jiao et al., 2014) and (2) 0 � hij � 1 for 1 � j � m.

The third factor and its computation are discussed in Section 2.3.

2.3 Prior probability of phylogenetic trees
The underlying assumption of collaborative ITH detection is that

some of the evolutionary patterns (i.e. phylogenetic relationships be-

tween the evolutionary events in a tumor) are common among dif-

ferent tumors. Accordingly, the goal is to define the entire

phylogenetic tree in terms of its substructures representing the evolu-

tionary patterns. One can then investigate the frequency of the pat-

terns to find the more frequent patterns and use them as a reference

whenever there is ambiguity for a tumor with respect to the phylo-

genetic relationships between the events involved in those frequent

patterns. Here, ambiguous case refers to the case where multiple

phylogenetic trees are consistent with the observed bulk data read

counts. For a simple example of an ambiguous case we can consider

a tumor with CCF values ½0:2; 0:3; 1:0�. In this case, relying solely

on CCF values, one can easily observe that both the chain and the

branching topology are possible explanations of the observed data.

Several more complicated examples for this were recently provided

in the analysis of acute lymphoblastic leukemia patients in Malikic

et al. (2017). For an example of a non-ambiguous case we can con-

sider a tumor with mutations having CCFs ½0:5; 0:8; 1:0�. In this

case, only the chain topology is consistent with the observed CCFs.

Namely, for the branching topology, the frequencies of the two child

nodes would add up to 1.3, which is larger than the CCF of their

parent, thus violating the sum rule.

Fig. 1. Probabilistic graphical model of Hintra. Latent and observed variables

are indicated by white and shaded circles, respectively
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To the best of our knowledge, the most recent ITH detection

method that is based on the assumption of common evolutionary

patterns is Revolver (Caravagna et al., 2018). Revolver assumes in-

dependence of the edges and defines the probability of the phylogen-

etic tree of tumor i as the product of the probabilities of the

observed edges (i.e. the probability of attaching a given child node

to a particular parent node) as follows:

PðTijbÞ /
Y

p!c2Ei

Pðpjc; bÞ; (4)

where p and c are the parent and child nodes of a given edge p! c

of tree Ti, and Ei is the set of all edges of the tree for tumor i. The

parameter b governs the edge probabilities and is shared across all

tumors.

In the above approach, each node is assumed to be dependent

only on its direct ancestor. However, the selection of the next muta-

tion that brings competitive advantage to a cell does not only de-

pend on the last mutation, but it depends on the entire current

mutational burden of the cell. Figure 2A shows a scenario in which

the above assumption is violated, leading to a poor performance for

Revolver (see Section 3.1). In this scenario, the two trees have differ-

ent truncal mutations (a for topology 1 and e for topology 2).

Because of this difference, mutation d is attached to different parents

in the two trees. However, considering only pairwise relationships,

because d happens after b in 70% of the tumors, the factors of

Revolver will assign it under b even when inferring trees for a tumor

having true topology 2.

Another drawback of the above factorization is that it cannot be

translated into a prognostic application of predicting the next driver

mutation based on the current mutational landscape of a subclone.

The reason is that the conditional probability of the next mutation

given all current mutations is not computable as a function of the

parameters learned based on the above assumptions. In other words,

based on the above assumptions, the next mutation depends only on

the most recent ancestor.

To overcome the above limitations, we extend the tree factoriza-

tion to capture the effect of all existing driver mutations (ancestors)

on the next driver mutation (descendant). The occurrence order of

the ancestors is not taken into account because the selection of the

next mutation depends only on the set of current mutations, but not

the order of these mutations. We define the prior tree probability as

below:

PðTijbÞ /
Y

P!c 2 f ðTiÞ
bP;c; (5)

where P is the set of possible ancestor mutations of c in tree Ti,

which we call the ancestry set hereafter. An ancestry set consists of

all the mutations on the path in Ti from the root to any internal (i.e.

non-leaf) node/subclone and captures the mutational landscape of

that node/subclone. The function f ðTiÞ returns the set of edges of Ti

consisting of the ancestry sets and their children. The parameter b is

a matrix with rows corresponding to all possible ancestry sets for all

tumors in the dataset. The columns correspond to the set G of all

mutations. The entry bkj of the b matrix indicates the amount of evi-

dence for an edge labeled with the j-th mutation whose tail is a node

with the k-th ancestry set. Figure 3 illustrates these concepts.

2.4 Parameter learning
Although the proposed prior probability in Section 2.3 resolves the

information loss issue, it inherits the bias toward branching struc-

tures. Scenario B in Figure 2 shows a sample situation where this

bias can lead to unexpected phylogeny detection. In topology 1 in

Scenario B, mutation b occurs after a, which is not consistent with

topology 2, in which b occurs after c. A similar inconsistency exists

between the ancestors of mutation a in the two topologies.

Accordingly, based on both the Revolver and Hintra factorization

approaches, any ambiguous case that suggests a branching topology

in which a and b can occur in parallel has supporting evidence due

to the conflicting orders of a and b in the two topologies, even if it is

originally associated with one of the two topologies. However, in

case of a slight ambiguity (e.g. a 5% ambiguous cases for each of the

two topologies), the evidence for the branching topology is very

A

B

Fig. 2. Two sample scenarios in which tree factorization and parameter learn-

ing as in Caravagna et al. (2018) results in undesired inference. The small

circles denote the tumor subclones and the empty circle is the germline cell.

The edges are labeled with the mutations, denoted by letters within larger

circles. The true tree topologies are shown with solid edges. Each ambiguous

situation is shown in a different color, with dashed ovals indicating the con-

flicting evidence (source of ambiguity) and the dashed edge indicating the

possible mistake due to that evidence Fig. 3. A sample phylogenetic tree and its factorization
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small and the chain topology should be favored (which has support

from, for example, 95% of the samples). So, if the inherent bias to-

ward branching topologies in the factorization approaches is

not controlled, the methods infer the incorrect branching

structure (shown with the dashed edges) for the ambiguous cases.

We control this bias by employing a Bayesian EM parameter learn-

ing method described next. This method accounts for uncertainty of

each of the possible topologies when learning the parameters and, in

this scenario, only accepts a branching topology in cases with high

certainty (i.e. when the subclones corresponding to a and b are very

small).

We propose a Bayesian EM approach to learn the parameters of

the PGM of Hintra. The goal is to optimize the value of b, the top-

ology distribution parameter, by maximizing the marginal likeli-

hood PðVjR; bÞ and utilizing the data’s uncertainty. This is

performed using an iterative approach with the following steps at

each iteration:

1. Compute b
0
using PðTjb;V;RÞ [see Equation (6)].

2. If PðVjR; bÞ < PðVjR; b0 Þ [see Equation (10)], then set b ¼ b
0

and continue; otherwise output b
0
and terminate.

Initially, the tree priors are assumed to be uniform. Then, in the

first step, bP;c is updated for each ancestry set P and descendant mu-

tation c using the following equation:

b
0

P;c ¼
Xm
i¼1

X
Ti

1f ðTiÞðP ! cÞ � PðTijb; vi:; ri:Þ þ �; (6)

where 1AðxÞ is the indicator function for x 2 A and the value � is the

pseudo-count for avoiding zero probabilities. Equation (6) is the

sum of evidence for factor P ! c over all tumors, where the evi-

dence is weighted by the posterior likelihood of every possible tree

topology that contains the factor P ! c. Accordingly, b
0

P;c indicates

the updated evidence for the factor P ! c. The posterior likelihood

for tree topology is computed as:

P Tib; vi:; ri:ð Þ ¼ P vi:jri:;Tið ÞP Tijbð ÞP
X P vi:jri:;Xð ÞP Xjbð Þ : (7)

In the above equation, the marginal data likelihood is computed

as below:

P vi:ri:;Tið Þ ¼
ð

hi:

Yn
j¼1

P vijjrij; hij

� �
P hijjTi

� �
dhi:: (8)

Because the term containing the integral over the vector hi: is not

in closed form, we approximate that term using discrete values as

below:

P
�

vi:jri:;TiÞ �
X

hi:2dDðTiÞ

Yn
j¼1

Pðvijjrij; hij

�
PðhijjTi

�
; (9)

where dDðTiÞ is a function that enumerates all discrete values of the

vector hi: with step-size D considering the constraints imposed by

topology Ti. In our experiments (Section 3), we use D ¼ 0:05.

In the second step, the marginal probability conditional on b (i.e.

the maximization objective) is computed as:

P VR;bð Þ ¼
Ym
i¼1

X
Ti

P vi:jri:;Tið ÞP Tijbð Þ: (10)

Figure 4 illustrates, with an example, the Bayesian EM approach

described above as well as the EM approach used in Revolver, which

uses MAP point estimate. It explains how using a Bayesian approach

that employs the entire spectrum of possible topologies (i.e. data un-

certainty) instead of the point estimates as used in Revolver can re-

duce the bias inherent in both of the tree prior probability

definitions used in Revolver and Hintra. The figure shows the first

step of different EM approaches on a dataset with three tumors all

having two driver mutations, a and b. Topologies A, B and C consti-

tute all possible trees with the two mutations. Each of the three

tumors has a different topology, as shown. The bar charts show the

initial posterior probabilities of the topologies [i.e. PðTjDÞ /
PðDjTÞPðTjbÞ] for the tumors computed assuming a uniform initial

topology prior PðTjbÞ and hypothetical data likelihoods. Two types

of posteriors are computed, one based on the Bayesian estimation

(the top row) and one based on the MAP estimation (the bottom

row). The evidence b updated based on the two types of posteriors is

shown in the middle. At the right, the updated priors based on the

updated evidences are presented. Despite the fact that each of the

three topologies is observed only once, the bias in the prior defin-

ition makes the most branching topology B more likely. However,

the Bayesian approach considers the entire spectrum of possible top-

ologies (i.e. based on the data likelihood given each possible top-

ology), which reduces the bias. As shown in this figure, ambiguous

cases like B often have a more uniform distribution over topologies

than the other cases, resulting in reduced support for branching.

This mitigates the effects of the prior bias during the learning pro-

cess. Besides this, since we optimize the marginal data likelihood

Fig. 4. Bias in the topology prior probabilities and how the Bayesian approach mitigates this bias
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[Equation (10)] instead of the maximum likelihood, we adapt the

parameter b to the whole information in the observed data as

opposed to fitting it to the point estimates. This results in further re-

duction in bias.

To reconstruct the phylogenetic tree structures, we use MAP esti-

mation after the parameter b has been computed using the above

Bayesian EM approach. For each tumor i, we have:

Ti ¼ arg max
Ti

fPðvi:jri:;TiÞPðTijbÞg (11)

2.5 Generalization to multiple samples per tumor
In the more general case where multiple samples (obtained, for ex-

ample, by sequencing multiple regions of the tumor) are available

for a given tumor, we define the likelihood of tumor data [previous-

ly shown in Equation (9) for the single-sample case] as the product

of the likelihoods of the individual samples:

Pðvi:jri:;TiÞ ¼
Ysi

q¼1

Pðvi:
qjri:

q;TiÞ

�
Ysi

q¼1

X
hi:2dDðTiÞ

Yn
j¼1

Pðvij
qjrij

q; hijÞPðhijjTiÞ;
(12)

where si is the number of samples for tumor i and vq
i: and rq

i: are the

read count data for sample q of tumor i.

2.6 Extracting prognostic information
The likelihood that each mutation c follows an ancestry set P is

computed as:

P cjPð Þ ¼
bP;c
cP

; (13)

where cP is the evidence for P computed as:

cP ¼
Xm
i¼1

X
Ti

1gðTiÞðPÞ � PðTijb; vi:; ri:Þ þ 2�; (14)

where the function gðTiÞ returns all the ancestry sets in tree Ti.

Because PðcjPÞ is a proportion estimate, the minimum value for

the sample size cP to have a 95% confidence interval of width W

can be computed as 4=W2 (e.g. cP � 100 for W¼0.2).

3 Experiments and results

3.1 Experiments with synthetic data
We evaluated the performance of Hintra using synthetic data to

have access to the ground-truth phylogenetic trees. The comparison

partners included Revolver (Caravagna et al., 2018), as the only

method that explores a similar idea of collaborative ITH detection,

and ClonEvol (Dang et al., 2017), as the state-of-the-art method for

stand-alone ITH detection. We used the same evaluation metric as

in Caravagna et al. (2018), namely true positive ratio, which is the

proportion of predicted edges that exist in the ground-truth tree.

For comparison with Revolver, we conducted three different

experiments. The first experiment evaluated the information transfer

and de-noising capabilities of Hintra. In this experiment, we fol-

lowed exactly the same simulation procedure used for evaluating

Revolver. The second experiment showcased one of our main contri-

butions, the ability of Hintra to capture more complete evolutionary

patterns. This experiment was based on Scenario A in Figure 2.

The third experiment examined the ability of Hintra to control the

topology distribution bias and it was based on Scenario B shown in

Figure 2.

As in Caravagna et al. (2018), the sensitivity to CCF noise levels

are monitored in the three experiments, where noise follows a

Gaussian distribution and was controlled through tweaking the SD

(e.g. 0 or 0.05). Moreover, ambiguity was introduced into the

ground-truth models as the percentage of tumors with CCFs that

had different possible phylogenetic structures (i.e. ambiguous cases).

These experiments were conducted assuming a single sample per

tumor. To evaluate the effect of the number of samples on the meth-

ods’ performance, we conducted an additional set of experiments

where 2 or 4 samples were generated per tumor, and considering the

most difficult simulation configuration, i.e. higher noise and ambi-

guity. All samples of a tumor were assumed to be ambiguous for am-

biguous cases and they were all non-ambiguous otherwise. For each

configuration of the parameters, the experiment was repeated 10

times with de novo generation of the synthetic data at each repeti-

tion. For each single repetition, the average true positive ratio over

all tumors was computed and plotted as a point. We simulate a

sequencing coverage of 100� in all experiments.

The synthetic data in Caravagna et al. (2018) was produced by

assuming the same evolutionary tree (a chain structure) consisting of

four mutations across all tumors. We repeated the same experiments

for a cohort of 50 tumors. Two CCF noise levels of 0 and 0.05 and

three different percentages of ambiguous cases (10, 30 and 50%)

were simulated as in the original paper. The results are shown in

Figure 5. According to Figure 5, unlike ClonEvol, both Hintra and

Revolver were able to detect the correct phylogenetic trees for all

tumors and for all levels of ambiguity when there was no noise in

the CCFs. However, after introducing noise with SD 0.05 to the true

CCFs, the level of ambiguity had a stronger effect on performance.

Hintra outperformed Revolver in all the datasets with noise, and the

gap between the two methods increased with increasing level of am-

biguity. This indicates the higher robustness of Hintra to noise and

ambiguity. Interestingly, by increasing the number of samples, the

Fig. 5. Results for the synthetic datasets from Caravagna et al. (2018)
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performance of the stand-alone algorithm improved but the collab-

orative methods exhibited decreasing accuracy. These results are

consistent with the original study (Caravagna et al., 2018). The

most likely reason for this is the high level of ambiguity (50%). For

ambiguous cases, multiple noisy samples create conflicting phyloge-

nies which leads to a higher probability for branching structures.

Thus, transferring information from the ambiguous cases decreases

the overall accuracy. The stand-alone method is less sensitive

because each tumor is analyzed separately. We note that it is very

unlikely that in real data all samples of a tumor with a ground-truth

chain structure are ambiguous as we assumed here. Hintra, in gen-

eral, performs slightly better than the two other methods for larger

numbers of samples.

In the second experiment, we simulated Scenario A shown in

Figure 2 for a cohort of 50 tumors (35 with tree 1 and 15 with tree

2). Because the ground-truth topologies have branches and so are

associated with ambiguous cases, we only investigated the noise

level and the number of samples as the variable factor. Two noise

levels of 0 and 0.05 were simulated. The results are shown in

Figure 6. We observe that there are considerable gaps between the

performances of the three methods. As explained earlier, the gap be-

tween Revolver and Hintra is due to the differences in the definitions

of the tree topology factors, where Hintra looks further back into

the evolutionary history of a subclone and provides a more accurate

assignment of the mutations based on that richer information.

Unlike the previous scenario, having more samples improves the per-

formance of the methods in this scenario. This is due to the fact that

the trees are consistently branching topologies in this scenario.

These topologies are associated with ambiguous cases and, unlike

for chain topologies, having multiple ambiguous noisy samples is

not misleading for these cases. Overall, Hintra performs slightly bet-

ter than the two other methods with a larger number of samples.

For the third experiment, we simulated Scenario B as shown in

Figure 2. Two levels of noise (0 and 0.05) were introduced to the

CCFs and 6, 10 and 14% were used as the frequency of ambiguous

cases. The goal of this experiment was to investigate the capability

of the methods to control the bias toward branching structures.

Accordingly, we set small ambiguity levels to leave enough evidence

for the true structures and examined whether the methods could still

infer branching structures in absence of direct evidence. The branch-

ing structure was still supported indirectly due to the two conflicting

structures of trees 1 and 2, but there were not enough ambiguous

cases to support that structure. Figure 7 shows the results. Because

of the low levels of ambiguity, the true positive rates were in general

high for all methods. However, CloneEvol and Hintra performed

better than Revolver in this experiment. CloneEvol performed

stand-alone phylogeny inference and chose one of the two possible

topologies (chain and branching) at random. However, Revolver

had a bias toward branching structures and preferred that structure

whenever it was possible. Hintra had less bias in the topology distri-

bution due to the Bayesian EM approach and opted for the branch-

ing structure only whenever it had high probability. Therefore,

Hintra controlled the bias effectively for all levels of ambiguity and

noise in our experiments. When more samples were used per tumor

with a noise of 0.05 and an ambiguity of 14%, all the methods

showed improvement. Due to the small ambiguity, more samples

improved the evidence for the correct topology and strengthened the

information transferred from those cases, which resulted in a better

resolution for the ambiguous cases. Overall, Hintra once again out-

performed the other methods when multiple samples were used.

3.2 Experiments with real data
In the absence of ground-truth phylogenetic trees for tumor muta-

tions, performing an objective comparison of the accuracy of Hintra

and any other method is difficult. Instead, we evaluated Hintra’s

performance based on the consistency of the learned parameters

with existing biological domain knowledge. We chose Breast Cancer

as the subject of study, since it is one of the most studied cancer

types for which a rich body of domain knowledge is available. We

used a public dataset from Razavi et al. (2018), which includes 1756

advanced breast cancer patients. This dataset is the most recently

published genomic dataset for Breast Cancer with clinical data.

In the available clinical data, these patients were stratified

according to whether they do or do not express the genes for the

receptors for the hormones estrogen and progesterone (HR) and

HER2, resulting in the HRþ/HER2�, HRþ/HER2þ, HR�/HER2þ
and TN (Triple Negative) subtypes. We used this information to sep-

arate the patients into four corresponding groups and ran Hintra for

each group independently to infer tumor progression and phylogen-

etic trees. We only included tumors having single nucleotide varia-

tions (SNVs) and a normal copy number in the considered loci. We

considered mutations in breast cancer genes from COSMIC Cancer

Gene Census dataset [cancer.sanger.ac.uk (Harsha et al., 2016)] and

augmented the list by the genes mentioned in the original study

(Razavi et al., 2018). After limiting to the selected genes and filtering

out synonymous mutations, loss of heterozygosity and weak signals

(i.e. small read counts and mutations with <1% frequency in each

subtype), the number of patients with at least one mutation was

reduced to 1348. We also limited the number of mutated genes per

tumor to 5 and removed the 47 tumors (3.5%) that did not satisfy

this constraint.

A large subset of the cohort was HRþ/HER2� cases. In a major-

ity of cases in this subtype, we observed clonal mutation acquisition

in signaling cascades (TP53, PIK3CA, AKT, GATA3, PTEN, etc.) as

discussed in the original findings (Razavi et al., 2018), suggesting

that Hintra is able to reliably detect these early mutationalFig. 6. Results for the synthetic datasets based on Scenario A from Figure 2
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associations. Hintra also found that the most likely descendant of

TP53 and PIK3CA combinatory events in HRþ/HER2� subtype is

PTEN, which occurs with probability 0.2. We consulted the litera-

ture and found some inconsistencies between studies with regarding

the relationship of PTEN to PIK3CA. For example, some studies

argue that PIK3CA is mutually exclusive to PTEN (Stemke-Hale

et al., 2008), while others state that PIK3CA could be characterized

together with PTEN deletions for HRþ subtypes (Mukohara, 2015).

In the dataset we used, the mutual exclusivity of PIK3CA and PTEN

mutations was observed across the cohort. Our results suggest that

TP53 may have some additive effects on PTEN and its association to

PIK3CA. This may be a potentially interesting topic since TP53 and

PTEN are both tumor suppressors and could provide a tumorigenic

advantage to these aggressive subtypes. Consistent with the existing

knowledge, Hintra detected TP53 as the most important initiator pre-

ceding GATA3, CDH1 and FOXA1, which are commonly associated

with invasive lobular carcinoma, a subtype within HRþ/HER2�. A

high proportion of HRþ/HER2� cases acquire a CDH1 mutation,

which is a hallmark of lobular carcinoma. Furthermore, it is known

that CDH1 loss and PIK3CA gain of function are highly correlated

with these outcomes; however, their order is not accounted for in the

literature, and when these mutations are mentioned, they are charac-

terized as a group (An et al., 2018). Interestingly, we found that

CDH1 is almost three times as likely to be the initiator of this associ-

ation with PIK3CA, which may provide some insights on the develop-

ment of lobular carcinoma.

The limited number of samples in the other three subtypes

(HR�/HER2þ, HRþ/HER2þ and TN) resulted in weaker signals.

Among the stronger patterns derived from the parameters learned

by Hintra, we observed that TP53 is almost twice as likely to

be an initiator driver mutation when associated with PIK3CA in

HR�/HER2þ and TN tumors. This adds to the results of PCAWG

studies such as Gerstung et al. (2018) demonstrating that driver

mutations in PIK3CA and TP53 are more likely to be clonal.

3.3 Computational resources analysis
The size of the input for collaborative ITH detection can be defined

in terms of the CCF discretization hyper-parameter D, number of

tumors m, the number of mutations per tumor and the number of

unique mutation profiles referred to as ‘combinations’. Here, ‘pro-

file’ stands for the set of observed mutations for the corresponding

tumor. In addition to these factors, the number of utilized Central

Processing Unit (CPU) cores can affect the time and memory resour-

ces consumed by the different methods.

To evaluate the effects of these factors, a set of experiments with

synthetic data was conducted. The range of values tested and the de-

fault values for each of the factors are provided in Table 1. When

studying the effect of each factor by changing its value, all other fac-

tors were set to their default values. The datasets were generated fol-

lowing the approach in Caravagna et al. (2018). Different

combinations of mutations were generated based on the assumption

that half of the mutations of a new combination should already exist

in the previous combinations (each mutation can belong to a differ-

ent existing combination) and half of them should be new mutations

not existing in any of the previous combinations. This mimics the

real data distribution in the way that it assigns higher probability of

mutation to a few genes and promotes heterogeneity.

Both Hintra and Revolver consist of two phases: preprocessing

and EM. During Phase I (preprocessing), Revolver uses ClonEvol to

construct and score the trees for each tumor and selects the top trees

as candidates. Hintra computes the marginal likelihood using

Equation (9). The results of this phase could be stored in both algo-

rithms to avoid re-computation costs. During Phase II (EM), both

algorithms learn the parameters. The maximum number of EM iter-

ations was set to 100 for both Hintra and Revolver in these experi-

ments. We measured the running times for the two phases separately

for better interpretation. The results are shown in Figure 8.

According to these results, Revolver performed the first phase more

efficiently and was less sensitive to the problem size. This is due to

the efficient strategy used in ClonEvol for searching the tree top-

ology space, whereby the search space is pruned based on the con-

sistency of the subtrees with the CCFs, resulting in a considerably

smaller search space. On the other hand, the current implementation

of Hintra enumerates all possible topologies, whose number is com-

binatorially related to the number of mutations. Furthermore, unlike

Hintra, ClonEvol requires the clonal mutation to be identified in the

input and it builds the tree of the rest of the mutations under that

clonal mutation. This has the significant effect of reducing the

search space by fixing one node.

Another important factor affecting the running time of Hintra is D.

The running time of Hintra contains a term proportional to

D�1 þ x
x

� �
, where x is the number of mutations in a sample. Our

Fig. 7. Results for the synthetic datasets based on Scenario B from Figure 2

Table 1. Problem size factors considered in the running time

analysis

Factor Values

Samples (m) 20, 40, 60

Mutations per sample 3, 4, 5

Combinations 1, 5, 10

D 0.025, 0.050, 0.100

CPU cores 2, 4, 6

Note: Default values are italicized.
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experiments (results not shown) indicate that there was no noticeable dif-

ference between the accuracy of Hintra when D ¼ 0:05 or D ¼ 0:1 and

the latter can be used to improve the speed without sacrificing the accur-

acy. Yet, using D ¼ 0:05, our experiment with breast cancer HRþ/

HER2� subtype (see Section 3.2), consisting of 1019 samples with up to

5 mutations, took about 50min. The running time of both methods

scales linearly with the number of tumors. In contrast to Revolver, which

does not allow parallel processing in Phase I, using more CPU cores

improves the running time performance of Hintra (see Fig. 8).

In Phase II, Hintra was in general more efficient than Revolver.

However, it was more sensitive to the number of mutations. This can be

explained by the fact that Hintra integrates over all tree topologies while

Revolver focuses only on a set of top trees selected by ClonEvol, the size

of which is bounded independently of the number of mutations.

The running time of Hintra in both Phases I and II can be

improved by using alternative approaches. For example, one can use

ClonEvol and then integrate only over the selected trees in the prob-

abilistic framework of Hintra. Alternatively, Monte Carlo Markov

Chain approaches as in (Ross and Markowetz, 2016) can be used to

sample high likelihood trees in constant time. These approaches are

expected to result in a small loss of accuracy as the density over tree

topologies would be concentrated in a small area of the search

space. Another way of improving the running time is limiting the

summation in Equation (9) to h values close to the observed CCFs.

Because these values are associated with larger likelihoods, we ex-

pect this approximation to be close to the true value.

The memory consumption of Hintra is also shown in Figure 8.

Based on these results, the number of mutations per sample is the only

important factor for the amount of memory used. This affects the num-

ber of possible ancestry sets as well as the total number of mutations n.

These two values determine the size of the b parameter. Moreover, the

number of mutations per sample determines the number of possible

topologies, which indicates the number of marginal likelihoods that

need to be computed and stored. While Hintra consumes up to about

12 MB, Revolver uses about 4 GB of memory during its execution (not

shown in the figure due to the large magnitude). This may be due to

the implementation of Revolver in R, which is very inefficient com-

pared to Cþþ, which we used to implement Hintra.

4 Conclusions

We presented Hintra as a new method for collaborative ITH detection.

Hintra is a PGM with a novel tree prior probability that considers all

the mutations preceding a particular mutation in the phylogenetic tree,

instead of only the most recent one. It uses a Bayesian approach to

learn its parameters, which mitigates the bias toward branching topol-

ogies found in other tools. We compared Hintra’s performance using

synthetic and real data against both a stand-alone and a collaborative

method. In our experiments on synthetic datasets, we demonstrated

the effectiveness of both proposed tree prior probability and Bayesian

learning method using different scenarios. Similarly, for synthetic data

from the literature, Hintra inferred the true phylogenetic trees with

more accuracy compared to the state-of-the-art.

In our experiments on breast cancer data, Hintra’s findings were

consistent with the existing domain knowledge. Moreover, based on

the prognostic parameters learned, Hintra provided new insights of

potential interest. We note that the experiments on breast cancer data

used only SNVs. CNVs were excluded due to the difficulties that they

cause in inferring correct CCFs, which would be later transformed

into read counts for phylogeny detection by Hintra. Although there

are tools for inferring the CCF values for CNVs [e.g. PyClone (Roth

et al., 2014)], their accuracy is limited for low-coverage cross-section-

al data. Including CNV data will be considered in future work as

both the sequencing technologies and CCF inference tools improve.

In the current implementation of Hintra a limited number of

mutations can be considered for each patient. This number depends

on the available computational resources. Although in some datasets

(e.g. the breast cancer dataset used in Section 3.2) this limitation

does not result in a considerable information loss (3.5% of the sam-

ples with more than 5 mutations), in general it can limit the findings

to only well-known driver genes and a subset of the patients. Part of

this problem is resolved by enabling parallel computing. Further

improvements in running time can be achieved by using the ideas

discussed in Section 3.3 for future implementation.

Although the presented probabilistic framework of Hintra con-

siders a model for read count data, generalization to other increas-

ingly available data types (e.g. binary data from single-cell

sequencing) using appropriate distributions (e.g. Bernoulli) is also

possible. Investigating the possibility of an intrinsically unbiased

prior probability for phylogenetic trees that is suitable for a collab-

orative framework is another direction for future work.
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