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ABSTRACT: Support vector machine (SVM) modeling is
one of the most popular machine learning approaches in
chemoinformatics and drug design. The influence of training
set composition and size on predictions currently is an
underinvestigated issue in SVM modeling. In this study, we
have derived SVM classification and ranking models for a
variety of compound activity classes under systematic variation
of the number of positive and negative training examples. With
increasing numbers of negative training compounds, SVM
classification calculations became increasingly accurate and stable. However, this was only the case if a required threshold of
positive training examples was also reached. In addition, consideration of class weights and optimization of cost factors
substantially aided in balancing the calculations for increasing numbers of negative training examples. Taken together, the results
of our analysis have practical implications for SVM learning and the prediction of active compounds. For all compound classes
under study, top recall performance and independence of compound recall of training set composition was achieved when 250−
500 active and 500−1000 randomly selected inactive training instances were used. However, as long as ∼50 known active
compounds were available for training, increasing numbers of 500−1000 randomly selected negative training examples
significantly improved model performance and gave very similar results for different training sets.

■ INTRODUCTION
The support vector machine (SVM) algorithm1,2 is among the
most widely used supervised machine learning methods in
chemoinformatics and computer-aided drug discovery.3−5 The
popularity of SVM modeling primarily stems from generally
high predictive performance in compound classification and
virtual screening.4 Although SVMs have been applied to
investigate a variety of class label prediction and also regression
tasks in chemoinformatics and drug discovery research,4,5 so far
only very few studies have addressed the issue of training set
composition and size for SVM modeling6 and other machine
learning methods.7,8 Especially the choice of negative training
examples is often little considered in machine learning.
Typically, to train models for compound classification, a
subjectively chosen number of molecules are randomly selected
from chemical databases to serve as negative training instances,
without further analysis. Two previous studies have investigated
the choice of negative training examples in greater detail.6,7 For
SVM modeling, the use of experimentally confirmed negative
training compounds from screening assays and randomly
chosen compounds from the ZINC database9 was compared
in the prediction of active compounds.6 It was shown that the
source of negative training instances affected the performance
of SVM classification. Perhaps surprisingly, randomly selected
ZINC compounds often resulted in better models than
screening compounds that were confirmed to be inactive
against a target for which active compounds were predicted.6

No training set variations were carried out. In another study,
negative training sets were assembled from different databases

for compound classification using different machine learning
approaches.7 These calculations revealed a notable influence of
negative training examples on the predictions and a preference
for randomly selected ZINC compounds over compounds from
other sources.7 In this case, the size of negative training sets was
varied when building models using different machine learning
methods including SVMs with polynomial kernels. Training set
size variations were found to influence compound predictions.7

Performance relationships for varying numbers of negative and
positive training examples were not investigated. In other
studies, positive and negative training examples were balanced
to improve the performance of machine learning models,6,8

addressing the issue of data imbalance in machine learning.10,11

Herein, we report an analysis of the influence of training set
composition and size on SVM classification and ranking by
systematically varying the number of negative and positive
training examples and determining how these variations affect
the prediction of active compounds and stability of the
calculations.

■ MATERIALS AND METHODS

SVM Classification. For SVM classification,1 training
compounds are defined by a feature vector x ∈ and a class
label γ ∈ {−1, 1} and projected into the reference space .
SVMs solve a convex quadratic optimization problem to find a
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hyperplane H = {x|⟨w, x⟩ + b = 0} that separates the positive
and negative class. The hyperplane H is defined by a normal
vector w and a bias b and maximizes the margin between the
two classes. To achieve model generalization, non-negative
slack variables ξi are considered during training to penalize
misclassification. In addition, the cost hyperparameter C
controls the trade-off between margin maximization and
permitted training errors, and its value can be optimized by
cross-validation.12

Once the decision boundary is defined, test instances are
projected into the feature space. New compounds of unknown
class label are classified according to the side of the hyperplane
on which they fall or, alternatively, ranked according to the
value of g(x) = ⟨w, x⟩.13 The latter strategy is equivalent to
changing the bias of the hyperplane, sliding it from the most
distant points on the positive side toward the negative side, and
ranking compounds in the order they pass through the plane.
In the case of nonlinearly separable training data in a given

reference space, the scalar product <·, ·> can be replaced by a
kernel function K(·, ·), which is known as the kernel trick.14

Using kernel functions, the scalar product of two feature vectors
can be computed in a higher dimensional space where the
data may be linearly separable without the need to explicitly
compute the mapping of into . In SVM-based compound
classification, the Tanimoto kernel is one of the most frequently
used kernel functions for binary fingerprints.15

For imbalanced data sets, different class weights can be
assigned to put relative weights on misclassification of positive
and negative training instances and avoid orienting the
hyperplane toward the minority class. Accordingly, C+ and C−
balance the weight on slack variables for the positive and
negative class, respectively.16
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Compound Data Sets and Representation. Ten sets
with at least 600 active compounds (positive instances) were
obtained from ChEMBL version 22.17 Only compounds with
numerically specified equilibrium constants (Ki values) for
single human proteins were selected, while omitting borderline
active compounds (pKi < 5) that might often represent
artifacts. Table 1 reports the accession number, target name,
number of compounds and mean pKi values for these 10

compound data sets. As background set (pool of negative
instances), 250 000 compounds were randomly selected from
ZINC.9 Random subsets of these compounds were used as
negative training and test examples. For model building, all
active and inactive compounds were represented as standard
MACCS fingerprints18 consisting of 166 bits monitoring the
presence (bit set on) or absence (set off) of predefined
structural fragments or patterns. Although we deliberately
selected the simplistic and easy to rationalize MACCS
fingerprint for our proof-of-concept investigation, control
calculations were also carried out using the folded version of
the extended connectivity fingerprint with bond diameter 4
(ECFP4).19

Calculation Protocol.

(1) Each activity class was randomly divided into training
and test (prediction) sets. Training set size was varied
across values #I = {10, 50, 100, 500, 1000} for the
negative (inactive) class and #A = {10, 50, 100, 250, 500}
for the positive (active) class. Test sets always consisted
of 10 000 inactive and 100 active compounds.

(2) Preprocessing of the fingerprints of the training and test
data was carried out by removing zero-variance features
and applying centering and unit variance scaling to all
features on the basis of the training set for each trial.

(3) For each of the 25 training set combinations, SVM
models were built using the linear and Tanimoto kernel
with class weights C+ and C−. In addition, cost factors C
controlling the influence of individual support vectors
were optimized using values of 0.01, 0.1, 1, and 10. For
cost factor optimization, 10-fold cross-validation was
carried out with training data splits of 60% (model
derivation) and 40% (testing, internal validation).
Models with best cost factors were selected on the
basis of largest area under the ROC curve (AUC).

(4) The optimized SVM model was used to rank test set
compounds in the order of decreasing probability of
activity based upon the signed distance from the
hyperplane (positive to negative side). Model perform-
ance was assessed by determining the recall rate of active
compounds within the top 1% of ranked test compounds.
In addition, balanced accuracy (BA) was calculated,
defined as
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+

+
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TP FN
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TN FP
(TP, true positives; TN, true negatives; FP, false

positives; FN, false negatives).
(5) For each activity class and combination of a kernel

function and training set size, the modeling process was
carried out 50 times to obtain a distribution of recall
rates.

(6) The results were compared using hypothesis testing. The
nonparametric Kolmogorov−Smirnov test20 was em-
ployed to account for differences between cumulative
recall distributions and the Levene test21 to compare the
variance of these distributions. In addition, the
Bonferroni correction22 was introduced for multiple
testing.

The calculation protocol was implemented in R,23 and the
kernlab package24 was used for SVM modeling.

Table 1. Compound Data Setsa

accession
no. target name

number of
compounds

mean
pKi

P00734 thrombin 839 6.67
P00918 carbonic anhydrase 2 2164 7.22
P21917 dopamine D4 receptor 804 7.11
P41146 nociceptin receptor 844 7.81
P00742 coagulation factor X 1476 7.77
P29275 adenosine receptor A2b 1187 7.12
P32245 melanocortin receptor 4 1260 7.00
Q9H3N8 histamine H4 receptor 875 6.97
Q99705 melanin-concentrating hormone

receptor 1
1208 7.45

Q9Y5Y4 prostaglandin D2 receptor 2 833 7.53

aTen compound data sets were selected from ChEMBL and used for
SVM modeling. For each activity class, the ChEMBL accession no.,
target name, number of compounds, and mean pKi value are reported.
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■ RESULTS AND DISCUSSION
For different activity classes, SVM classification and ranking
models were built under systematic variation of training set
composition and size and active compounds were predicted.
Specifically, the number of negative and positive training
examples was varied in the ranges of 10−1000 and 10−500,
respectively, and all possible combinations were explored. In
addition, cost factors were optimized by cross-validation and
class-specific weights were used to account for data imbalance
in the training set.
Class Weights. Figure 1 compares balanced accuracy of the

predictions in the presence or absence of class weights for two

representative activity classes. Consideration of class-specific
weights consistently improved the accuracy of the predictions
for imbalanced training sets, except for three cases of large
training sets with at least 250 actives and 500 inactives for
which the performance was comparable. Hence, the explicit
consideration of different class weights for positive and negative
training instances produced more accurate classification
models. Under these conditions, the derived hyperplane was
not skewed toward the minority class, resulting in improved
model generalization, especially in the presence of large training
data imbalance. These effects were outweighed only for the
largest and least imbalanced training sets. Given the
demonstrated relevance of class weights for prediction accuracy,
a factor that is not always considered in SVM modeling, results
reported in the following included class weight settings.
In addition, optimization of cost factors was carried out using

cross validation. The best cost factors often varied depending
on training set composition, but for well-performing training
sets (i.e., those with large numbers of actives and inactives),
there was an overall preference for C values of 0.01 for both the
linear and Tanimoto kernels. For highly imbalanced data sets,
larger cost factors were frequently selected, indicating that
adjusting margin softness (stability) also contributed to model
generalization. It is noteworthy that for different training set
compositions and regardless of the cost factor chosen the
hyperplanes generated by the SVMs were very frequently able

to separate the training data without error and thus resulted in a
hard margin classifier.

Kernels and Fingerprints. Figure 2 reports compound
recall for alternative kernel functions under systematic variation
of inactive and active training instances for two representative
activity classes. Figure 3 shows corresponding density plots for
recall rate distributions over multiple trials. First, we focus on
relative kernel performance. The results in Figure 2 and 3 reveal
generally higher recall performance for the Tanimoto than the
linear kernel, frequently reaching a recall level of 0.9. However,
even for the linear kernel, satisfactory recall was observed, often
approaching a recall level of 0.75. Differences in recall
performance between the linear and Tanimoto kernel were
quantitatively assessed for all activity classes and statistically
compared using the two-sided and paired Kolmogorov−
Smirnov test. The results confirmed that the Tanimoto kernel
generally performed significantly better than the linear kernel
for training instances of #A = {100, 250, 500} and #I = {100,
500, 1000}. However, there was no significant difference in the
cases of #A = {10} and #I = {50, 100, 500, 1000} where
prediction accuracy was limited. Furthermore, as shown in
Figure 3, SVM models derived using the Tanimoto kernel were
generally more robust, i.e., corresponding recall rate distribu-
tions were sharper for the Tanimoto than for linear kernel. The
presence of narrow distributions indicated that models derived
from different training sets had comparable prediction accuracy
for alternative test instances. As a control, SVM calculations
were also repeated using the radial basis function (RBF)
kernel,25,26 another popular kernel function, with a sigma
setting, corresponding to the inverse kernel width, of 0.01.26

The results obtained using the RBF kernel were, on average,
nearly indistinguishable from those obtained using the
Tanimoto kernel discussed in the following. As an additional
control, the calculations were also carried out using ECFP4
instead of MACCS to compare the trends observed for training
set variation. With both fingerprints, the same trends were
observed (with the typical slightly better recall performance of
ECFP4 relative to MACCS).

Training Sets of Varying Composition and Size. The
results in Figures 2, 3, and 4 revealed two key findings; (i) recall
performance and model generalization consistently improved
with increasing size of training sets and (ii) the ratio of active vs
inactive training examples significantly influenced prediction
accuracy. The increases in recall performance observed in
Figure 2 were detected for all activity classes. When the number
of active training instances was kept constant, recall rates
increased with increasing numbers of inactive instances, except
in the case of 10 actives, where prediction accuracy was
generally low even over the range of 100−1000 negative
instances. Thus, a minimum number of active training
compounds was required for training sets of increasing size.
Similar observations were made when the number of inactive
training compounds was kept constant and the number of
active examples was increased. Ten negative examples were
consistently insufficient for building effective models and 50
negative training instances were often insufficient (Figure 2).
However, in the presence of at least 100 negative training
instances, high prediction accuracy was consistently achieved
when the number of active examples was increased (Figure 3).
For all compound classes, incremental increase in the

number of negative (positive) training instances led to
systematic performance enhancements when at least 50 positive
(100 negative) training compounds were used, as confirmed by

Figure 1. Effects of class weights on model performance. Heat map
representations show balanced accuracy over 50 independent trials
(using a two-color gradient) for training sets of varying composition
and size: (top) melanocortin receptor 4 (MC4R) ligands, (bottom)
thrombin inhibitors.
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the one-sided Kolmogorov−Smirnov test. While overall highest
prediction accuracy was achieved for training sets consisting of
500 active and 1000 inactive examples, similar accuracy was
already observed for 100 active and 500 inactive training
compounds. Furthermore, recall generally began to reach a
plateau when at least 100 active and 500 inactive training
instances were used (Figure 2). However, with further
increasing training set size, recall rate distributions became
narrower, as illustrated in Figure 3 and 4, which was indicative
of models with consistent prediction accuracy despite training
set variations, as mentioned above.
Table 2 compares the recall performance over all activity

classes for one of the worst and the best performing training set
compositions of 10 actives/100 inactives and 500 actives/1000
inactives, respectively. In the bad case scenario, recall rates of
compounds werewith one exceptionlower than 50% with
large standard deviations and balanced accuracy was around the
80% level. By contrast, for the best performing large training
sets, recall rates were consistently high, with a mean of 87%,
and balanced accuracy was approaching 100% with very low
standard deviations (Table 2). Interestingly, training set
imbalance only limited the accuracy of predictions in the case
of small but not large training sets, as illustrated in Figure 4, an
effect that can be ascribed to the use of class weights for SVM
models, as detailed above. For example, while an inactive vs
active ratio of 10:1 produced inaccurate predictions for training
sets comprising 100 inactive and 10 active training examples,
prediction accuracy was high when 1000 inactive and 100 active

training compounds were used. Similar observations were made
for other compound ratios.

Variance. Taken together, the results in Figure 3 and 4
clearly indicate that the predictions became stable with
increasing size of training sets, another key finding. Figure 5
reports the variance of recall rates over independent predictions
using training sets of increasing size and provides confirmatory
evidence. Furthermore, Levene tests for all activity classes
confirmed that the variance of recall distributions significantly
differed in 38 of 40 cases (resulting from 10 compound classes
and four training set conditions) when training sets with at least
50 active and 10 or 1000 inactive examples were used. By
contrast, no statistically significant differences in variance of
recall rate distributions were detected when the SVM models
were trained with 100 or 1000 inactive examples, regardless of
the number of actives.

■ CONCLUSIONS

Herein, we have systematically analyzed the influence of
training set composition and size on the prediction accuracy of
SVM classification models. Different from earlier studies, our
calculations have stressed the importance of considering class
weights and optimizing cost factors when imbalanced training
sets are used. Furthermore, the ratio of active vs inactive
training examples substantially affected the ability of SVM
models to correctly predict active compounds. However, recall
rates and balanced accuracy consistently improved for training
sets of increasing size for all compound classes under study.
Increasing size of training sets also compensated for inherent

Figure 2. Recall performance. The median value and interquartile range of the recall rate of active compounds among the top 1% of the ranking is
reported for 50 trials with the linear (blue dashed line) or Tanimoto (red solid line) kernel. Results monitor the evolution of recall for a constant
number of inactives (or actives) and increasing number of actives (or inactives) in the training set: (a) melanocortin receptor 4 ligands, (b) thrombin
inhibitors.
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data imbalance. Moreover, large training sets led to robust
predictions and the accuracy was essentially constant when
different training sets of the same size were used. Taken
together, our findings have implications for practical
applications of SVM classifiers. The following conclusions can
be drawn. Best performing SVM models were obtained when
250−500 active and 500−1000 randomly selected inactive
training instances were used. Moreover, as long as ∼50 known
active compounds are available for training, increasing numbers
of 500−1000 randomly selected negative training examples
improve and stabilize model performance when class weights

are taken into consideration, which provides a clear guideline

for virtual compound screening.
Finally, we note that large numbers of active compounds may

not always be available for training. However, since SVM

classification and ranking models do not take compound

potency as a parameter into account, in contrast to support

vector regression, large numbers of hits often obtained from

confirmatory screening assays might be readily used for SVM

model building.

Figure 3. Density estimates. The distribution of recall rates over 50 trials is given for 100 (top) and 1000 (bottom) inactive and increasing numbers
of active training compounds: (a) melanocortin receptor 4 ligands, (b) thrombin inhibitors.
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■ ABBREVIATIONS
AUC, area under receiver operating characteristic curve; BA,
balanced accuracy; ECFP, extended connectivity fingerprint;
MC4R, melanocortin receptor 4; RBF, radial basis function;
SVM, support vector machine

Figure 4. Influence of training set composition and size on recall rates.
Density estimates obtained from the distribution of recall rates over 50
trials are presented for training sets of varying size and composition.
For a constant number of 10−500 active training compounds, recall
distributions are shown for 10 (pink), 100 (green), and 1000 (blue)
inactive training compounds: (a) melanocortin receptor 4 ligands, (b)
thrombin inhibitors.

Table 2. Classification Performancea

10 actives and 100 inactives 500 actives and 1000 inactives

accession no. recall μ recall σ BA (%) μ BA (%) σ recall μ recall σ BA (%) μ BA (%) σ

P00734 0.433 0.211 79.3 5.1 0.911 0.021 98.8 0.6
P00918 0.388 0.219 87.2 3.7 0.770 0.036 97.0 0.9
P21917 0.288 0.164 80.9 5.9 0.744 0.045 96.9 1.1
P41146 0.455 0.163 80.9 6.3 0.924 0.018 99.4 0.3
P00742 0.236 0.138 72.4 5.7 0.872 0.027 98.5 0.6
P29275 0.407 0.226 81.5 4.5 0.820 0.030 97.0 1.1
P32245 0.486 0.276 85.6 4.5 0.942 0.018 99.0 0.5
Q9H3N8 0.440 0.233 84.3 4.5 0.888 0.030 98.4 0.7
Q99705 0.349 0.171 78.7 6.9 0.860 0.046 98.2 0.7
Q9Y5Y4 0.562 0.206 83.7 4.8 0.965 0.013 99.3 0.6
global performance 0.405 0.200 81.4 5.2 0.870 0.028 98.2 0.7

aReported are the mean (μ) and standard deviation (σ) of recall of active compounds and balanced accuracy after 50 independent trials for
differently composed training sets: “10 active and 100 inactive compounds” (low performance) and “500 active and 1000 inactive compounds” (high
performance). Results are shown for 10 compound classes, referred by accession no., according to Table 1. In addition, global performance over all
classes is reported.

Figure 5. Influence of training set composition and size on recall
variance. Heat map representations show variance of recall rates over
50 independent trials (using a two-color gradient) for training sets of
varying composition and size: (left) melanocortin receptor 4 (MC4R)
ligands, (right) thrombin inhibitors.
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■ NOTE ADDED AFTER ASAP PUBLICATION
This article was published ASAP on April 10, 2017, with an
error in the formula on page B, left column, second paragraph.
The corrected version was published ASAP on April 11, 2017.
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