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Abstract

Computational strain design protocols aim at the system-wide identification of intervention strategies for the enhanced
production of biochemicals in microorganisms. Existing approaches relying solely on stoichiometry and rudimentary
constraint-based regulation overlook the effects of metabolite concentrations and substrate-level enzyme regulation while
identifying metabolic interventions. In this paper, we introduce k-OptForce, which integrates the available kinetic
descriptions of metabolic steps with stoichiometric models to sharpen the prediction of intervention strategies for
improving the bio-production of a chemical of interest. It enables identification of a minimal set of interventions comprised
of both enzymatic parameter changes (for reactions with available kinetics) and reaction flux changes (for reactions with
only stoichiometric information). Application of k-OptForce to the overproduction of L-serine in E. coli and triacetic acid
lactone (TAL) in S. cerevisiae revealed that the identified interventions tend to cause less dramatic rearrangements of the flux
distribution so as not to violate concentration bounds. In some cases the incorporation of kinetic information leads to the
need for additional interventions as kinetic expressions render stoichiometry-only derived interventions infeasible by
violating concentration bounds, whereas in other cases the kinetic expressions impart flux changes that favor the
overproduction of the target product thereby requiring fewer direct interventions. A sensitivity analysis on metabolite
concentrations shows that the required number of interventions can be significantly affected by changing the imposed
bounds on metabolite concentrations. Furthermore, k-OptForce was capable of finding non-intuitive interventions aiming
at alleviating the substrate-level inhibition of key enzymes in order to enhance the flux towards the product of interest,
which cannot be captured by stoichiometry-alone analysis. This study paves the way for the integrated analysis of kinetic
and stoichiometric models and enables elucidating system-wide metabolic interventions while capturing regulatory and
kinetic effects.
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Introduction

Bio-production is emerging as a competitive strategy for the

production of a wide range of chemicals ranging from biofuels,

precursor chemicals and bioactive molecules (see [1–3] for detailed

reviews). The use of metabolic modeling and computations is

increasingly becoming instrumental in deciding how to engineer

the production strain [4–11]. Computational strain design

generally involves solving an optimization problem which

optimizes a specific performance requirement (e.g., maximum

flux of desired product) while minimizing the total number of

genetic alterations in the metabolic model. Depending on the

adopted description of metabolism strain design computational

tools could be broadly categorized as based on stoichiometry-alone

or kinetic models of metabolism [12].

Kinetic models of metabolism require quantitative expressions

that link reaction fluxes and metabolite concentrations. A system

of ordinary differential equations (ODEs) is typically solved to

obtain the time-dependent variation in metabolite concentrations

and reaction fluxes. Different forms of mechanistic expressions

have been used extensively such as Michaelis-Menten or Hill

Kinetic expressions [13,14]. These expressions require a priori

knowledge of detailed enzyme function mechanism and charac-

terization [15,16]. Alternatively, various approximate kinetic

forms such as lin-log [17–19] and log-lin [20] kinetics, power

law kinetic expressions such as the S-system [21] and Generalized

Mass Action [22], and other forms of cooperativity and saturation

[23,24] and convenience rate laws [25] have been proposed to

reduce the number of kinetic parameters and complexity of the

rate expressions. In addition, Varner and Ramkrishna [26–28]

pursued the development of kinetic descriptions inspired by

cybernetic modeling and optimality concepts. A number of review

articles highlight the merits and demerits of various kinetic

modeling formalisms [17,29,30]. Uncertainty in the assignment of

kinetic parameter values has motivated the development of

approaches that do not fix the parameter values but rather sample

from a probability distribution [31–34]. Even though the use of

kinetic models have led to some successes for strain design [20,35–

43] the relative small scope of the employed models, difficulties in

obtaining kinetic expressions and questionable portability of

kinetic expressions across microbial production platforms have

so far limited wide applicability and acceptance.

The introduction of genome-scale models of metabolism [44–

46] and the use of Flux Balance Analysis (FBA) to assess their
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maximum theoretical yields [47], flux ranges [48] and trade-offs

between growth and productivity [49] led to a flurry of

computational strain design approaches [50,51] that used a purely

stoichiometric description of metabolism. The advantage of using

stoichiometry alone supplemented with some regulatory informa-

tion is that the widest possible range of potentially feasible

metabolic phenotypes could be accessed. The linearity of the

underlying FBA description also affords significant computational

savings and tractability even for genome-scale models. The

downside is that identified flux redirection predictions (especially

knock up/downs) are sometimes hard to translate into an

actionable genetic intervention. For example, it is unclear if a

desired metabolic flux up-regulation is achievable or even

consistent with enzyme kinetics and/or whether it may lead to

physiologically problematic metabolite concentrations.

Stoichiometry-based strain design algorithms are often structured

as bilevel mixed integer linear optimization problems (MILP)

[4,8,9,11,52]. The outer level optimizes the biotechnological

objective (i.e. overproduction of target chemical) through metabolic

interventions, while the inner level optimizes the cellular objective

that tries to counteract any external imposed genetic or environ-

mental modifications [53,54]. Different fitness functions have been

identified to simulate the cellular objective including maximization

of biomass yield [4,8], minimization of metabolic adjustment [5,54],

regulatory on-off minimization [55,56], worst-case scenario [9,52],

or a combination thereof [11,57,58]. Details of these procedures

have been reviewed elsewhere [50,51]. Even though they may lack

important information on the enzyme kinetics of reactions these

procedures have been successfully employed for the strain design of

many important chemical products [59–64].

The need to integrate the mechanistic detail (whenever

available) of kinetic expressions with the genome-scale scope of

stoichiometric models has been recognized early by the commu-

nity. Dynamic Flux Balance Analysis (dFBA) [65] integrates

uptake kinetic expressions of the carbon substrate while optimizing

biomass at every time step to apportion fluxes to the rest of the

metabolic network. Several other researchers [66–68] extended

this approach to incorporate kinetic expressions of multiple carbon

sources and other nutrients into their quasi steady-state formal-

isms. Zhuang et al [69] and Salimi et al [70] developed the dynamic

multi-species metabolic modeling (DMMM) approach to incorpo-

rate uptake kinetics of metabolites in stoichiometric models of a

microbial consortium. Alternatively, steady-state flux distributions

(from FBA) and stoichiometric information have been used to

parameterize genome-scale kinetic models valid for small pertur-

bations [22,71–73]. For example, Fleming et al [74] incorporated

lin-log kinetic expressions from a small E. coli model (comprised of

76 equations) to constrain an FBA simulation. Similarly, Cotton et

al [75] performed Flux Variability Analysis (FVA) for each flux in

a small kinetic model (by allowing the kinetic parameters to vary

about their steady-state values) and used the tighter bounds on

kinetic parameters to refine flux estimation in genome-scale

models. Despite these advancements on the modeling front, the

use of hybrid stoichiometric/kinetic models has been left largely

unexplored in the context of strain design.

Here, we introduce k-OptForce, which extends the previously

developed OptForce procedure [9] by bridging this gap between

stoichiometry-only and kinetics-based descriptions of metabolism.

This procedure seamlessly integrates the mechanistic detail

afforded by kinetic models within a constraint-based optimization

framework tractable for genome-scale models. Instead of relying

on surrogate fitness functions such as biomass maximization or

worst-case simulation for predicting flux re-directions, k-Opt-

Force uses kinetic rate expressions to (re)apportion fluxes in the

metabolic network. Using mechanistic models available in

literature (for example kinetic models for the central metabolism

of E. coli [13,76,77] and S. cerevisiae [14,78,79]) the allowable

phenotype of both the reference and the engineered strain are

characterized to be consistent with the allowable kinetic space.

Subsequently, alternative genetic intervention strategies consis-

tent with the restrictions imposed by maximum enzyme activity

and kinetic regulations, as well as with the worst-case scenario of

production of the desired chemical are identified using a bilevel

optimization framework. We benchmarked the k-OptForce

protocol for the microbial overproduction of L-serine in E. coli,

and triacetic acid lactone (TAL) in S. cerevisiae. For the former, k-

OptForce identified key regulatory bottlenecks in upper and

lower glycolysis that must be overcome to redirect more flux

towards L-serine, which regular OptForce fails to pinpoint. In

addition, k-OptForce removed interventions identified by regular

OptForce that resulted in kinetically infeasible flux re-distribu-

tions. Application of the k-OptForce for the microbial overpro-

duction of TAL in S. cerevisiae revealed the impact of additional

kinetic constraints in alleviating a severe worst-case simulation of

regular OptForce, resulting in a higher prediction of TAL yield

from fewer interventions as compared to regular OptForce

predictions. The introduction of kinetic expressions in strain

design can significantly affect the identified interventions in

sometimes non-intuitive ways. In some cases additional modifi-

cations are needed to substitute interventions that cause enzyme

saturation or concentration bound violations. The mechanism of

action of these modifications is often subtle by alleviating

substrate inhibition or draining away cofactors from competing

pathways. In other cases, kinetic expressions shape flux distribu-

tions so as to favor the overproduction of the desired product

requiring fewer direct interventions.

Author Summary

Computational strain design procedures aim at assisting
metabolic engineering efforts by identifying metabolic
interventions leading to the targeted overproduction of a
desired chemical using network models of cellular metab-
olism. The effect of metabolite concentrations and
substrate-level enzyme regulation cannot be captured
with stoichiometry-only metabolic models and analysis
methods. Here, we introduce k-OptForce, an optimization-
based strain design framework incorporating the mecha-
nistic details afforded by kinetic models, whenever
available, into a genome-scale stoichiometric-based mod-
eling formalism. The resulting optimization problems pose
significant computational challenges due to the bilevel
nature of the formulation and the nonconvex terms in the
constraints. A tractable reformulation and solution proce-
dure is introduced for solving the optimization problems.
k-OptForce uses kinetic information to (re)apportion
reaction fluxes in the network by identifying interventions
comprised of both direct enzymatic parameter changes
(for reactions with available kinetics) and reaction flux
changes (for reactions with only stoichiometric informa-
tion). Our results show that the introduction of kinetic
expressions can significantly alter the identified interven-
tions compared to those identified with stoichiometry-
alone analysis. In particular, additional modifications are
required in some cases to avoid the violation of metabolite
concentration bounds, while in other cases, the kinetic
constraints yield metabolic flux distributions that favor the
overproduction of the desired product thereby requiring
fewer direct interventions.

k-OptForce: Kinetics with FBA for Strain Design
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Methods

k-OptForce aims at utilizing the available kinetic information

within a larger genome-scale stoichiometric model to more

accurately characterize all possible metabolic phenotypes of the

reference and engineered strains. The procedure builds upon the

OptForce procedure [9] by augmenting the metabolic network

description with kinetic rate laws whenever available. The

reactions in the metabolic network are partitioned into two

subsets: reactions with kinetic information Jkin = {j|j = 1,2,…,Nkin}

and reactions with only stoichiometric information

Jstoic = {j|j = 1,2,…,Nstoic} (see Figure 1). Metabolic flux of

reactions in Jstoic is constrained only by stoichiometric balances

and reaction directionality restrictions whereas flux for reactions in

Jkin is fully determined by enzyme activity, metabolite concentra-

tions and kinetic parameter values. The Jkin part of the metabolic

network is mathematically described by a system of (usually)

nonlinear ordinary differential equations (ODEs) denoting the

non-steady-state balance for each metabolite. For a square system

of ODEs integration yields steady-state metabolite concentrations

and fluxes. The allowable metabolic phenotype (i.e., flux ranges) of

the remaining portion of the network Jstoic is inferred so as to be

consistent with the predicted fluxes of the reactions in Jkin.

The k-OptForce procedure is composed of the following steps:

Characterization of the reference (e.g., wild-type) strain
The system of ODEs is solved first to obtain steady-state fluxes

for reactions in Jkin. The phenotypic space of the reference strain

is then identified by iteratively maximizing and minimizing the

flux of each reaction in Jstoic while keeping the fluxes of reactions

in Jkin fixed at their steady-state values, and restricting the flux of

any other reaction for which any experimental data is available at

their experimentally determined values or ranges (Figure 2A and

Supplementary Text S1).

Characterization of the overproducing strain
The flux ranges of the strain consistent with a desired

overproduction target are similarly constructed by successively

maximizing and minimizing the flux of network reactions subject to

network stoichiometry, overproduction target, while also incorpo-

rating the kinetic expressions for reactions in Jkin as additional

constraints. The resulting optimization formulation is shown

qualitatively in Figure 2B (see Supplementary Text S1 for detailed

formulation). Up/down flux regulations within Jkin are modeled by

modulating the corresponding maximum enzymatic reaction rates

vmax
j using a scalar z to denote the maximum allowable departure

from their reference values v
max,ref
j . A value for z of zero denotes a

knock-out, a value less one implies a down-regulation whereas a

Figure 1. Schematic diagram showing the partition of reactions into the ones with kinetic information Jkin and those linked by only
stoichiometry Jstoic. Note that some metabolites participate in only the stoichiometric part of the model (i.e., Istoic) whereas others participate in
both (i.e., Ikin). The flux of reaction j (vj ) in the kinetic part of the model (shaded region) is determined by the kinetic formalism, vmax

j , metabolite
concentrations ci and other kinetic parameters p while the ones in Jstoic by the mass conservation laws (non-shaded region).
doi:10.1371/journal.pcbi.1003487.g001
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value greater than one an up-regulation. The metabolite concen-

tration ranges involved in the kinetic expressions are selected by

selecting a percent allowed departure from the values obtained by

solving the system of ODEs (e.g., +/250%) and/or experimentally

derived measurements. Nonlinear kinetic formalisms give rise to

nonconvex nonlinear optimization problems (NLP) for identifying

the flux ranges of the overproducing strain. These problems are

solved to optimality using the global optimization solver BARON

[80] accessed through GAMS. It is important to note that the kinetic

expressions significantly restrict the range of allowable flux values

consistent with experimental data and/or an overproduction target

compared to flux ranges constrained only by stoichiometry. We

quantify the average extent of this contraction by defining the

Average Bound Contraction (ABC) factor:

ABC~

P
j[J

1{
vU ,kin

j {vL,kin
j

� �
vU ,stoic

j {vL,stoic
j

� �
2
4

3
5

N

Here vL,stoic
j and vU ,stoic

j denote the respective lower and upper

bounds for the fluxes consistent with the overproduction target

when only stoichiometry is used and vL,kin
j and vU ,kin

j represent the

same bounds upon the incorporation of kinetic information.

Interestingly, kinetic information for reactions in Jkin propagates

into Jstoic leading to bound contraction even for reactions with

stoichiometry-only description. Tighter description of allowable flux

ranges for the reference and overproducing strains allow for sharper

elucidation of reactions whose flux must change to meet the

imposed target (i.e., MUST sets).

Identification of MUST sets
Similar to the OptForce procedure [9], by contrasting the flux

space of the wild-type network with that of the overproducing strain,

the sets of reactions that must be up-regulated (MUSTU), down-

regulated (MUSTL), or be knocked out (MUSTX) are identified (see

supplementary text of Ranganathan et al [9] for details). This

procedure could be extended to identify higher order MUST sets

(e.g., MUST Doubles, Triples etc.) where instead of comparing the

flux ranges for individual reactions, we contrast the sum and/or

difference of two or more fluxes (depending on the order) between

the reference and the desired phenotypes. For example, this

procedure can elucidate MUSTUU, MUSTLL and MUSTUL sets

(see supplementary text of Ranganathan et al [9] for details).

Figure 2. Optimization structure for the characterization of the reference and the phenotype consistent with overproduction of
target chemical. (A) The reference phenotype characterization identifies the minimum vWT ,L

j and maximum vWT ,U
j flux limits of all reactions

consistent with the steady-state reference flux vss
j of the reactions in Jkin and the maximum biomass production v

max,ref
biomass . (B) The overproducing

phenotype is identified by calculating the minimum vOS,L
j and maximum vOS,U

j flux limits of all reactions consistent with the kinetic expressions for

Jkin, the minimum target production of desired chemical v
target
prod and biomass vmin

biomass. The metabolite concentrations and enzyme activities are allowed

to vary within a pre-specified range of their reference values.
doi:10.1371/journal.pcbi.1003487.g002
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Identification of FORCE sets
FORCE set is the minimum set of reactions (and by extension

genetic) manipulations selected from within the MUST sets whose

direct manipulation (i.e., updating of lower or upper bounds)

ensures production of the desired chemical beyond a desired target

even under the worst-case scenario where fluxes are re-

apportioned to drain flux away from the target product.

The worst-case scenario is mathematically described by

extending the bilevel optimization problem used for original

OptForce [9], as shown in Figure 3 (also see Supplementary Text

S1 for the detailed procedure). The outer problem maximizes the

flux towards the desired chemical consistent with reaction kinetics

and stoichiometry. Binary variables yL,kin and yU,kin associated with

the MUSTL and MUSTU sets of reactions in Jkin respectively, are

used to control the effect of engineering modifications to the

corresponding vmax
j . If yL,kin = 1 then vmax

j for that reaction can be

down-regulated to a value between 0 and its wild-type v
max,ref
j . If

yU,kin = 1 then vmax
j for that reaction can be up-regulated to a value

between v
max,ref
j and z v

max,ref
j . Otherwise, vmax

j is kept unaffected

at the reference v
max,ref
j value. As in the original OptForce

procedure, the inner problem simulates the worst-case scenario by

minimizing product formation but only for the reactions in Jstoic.

A separate set of binary variables yL,stoic and yU,stoic identify

interventions in Jstoic required to guarantee a non-zero yield of the

target chemical consistent with the flux distribution in Jkin. It is

important to note that the metabolic fluxes in Jkin remain

unaffected by the worst-case simulation of the reactions in Jstoic in

the inner problem.

This bilevel formulation is converted into a single level mixed

integer nonlinear problem (MINLP) using the conditions of strong

duality. We construct the dual of the inner problem (called the

primal), and add all the dual constraints, along with those of the

primal, to the outer optimization problem. Since all the nonlinear

kinetic expressions are present in the outer problem, the inner

(primal) problem is linear in the reaction fluxes vj. The fitness

function of the inner problem is imposed setting the objectives of

the primal and the dual equal to each other. It is to be noted here

that the dualization of the flux variable for each reaction in Jkin

introduces a bilinear term to the single-level formulation. This can

be avoided by imposing the Karush-Kuhn-Tucker (KKT)

conditions of complementary slackness between the primal

constraints and their dual variables. This leads to the introduction

of a binary variable for each constraint in the primal problem

which is generally more tractable than the original bilinear

constraints (see Supplementary Text S1 for detailed formulations).

The above described sequence of equivalent problem re-formu-

lations yields a single-level nonlinear MINLP (k-OptForce). The

single-level k-OptForce optimization is successively solved using

the global solver BARON [80] for an increasing number of

interventions (by increasing k) until the target yield is met.

Due to the nonconvex nature of the kinetic expressions and the

large number of binary variables the resulting MINLP equivalent

representation of the bilevel optimization problem may become

computationally intractable. For these cases, we exploit the natural

hierarchy of the model by first selecting interventions within Jkin

and subsequently within Jstoic (see Figure 4 and Supplementary

Text S1 for the algorithmic details). In the first step, a nonconvex

optimization problem is solved to identify the minimum number of

Figure 3. Single-step bilevel formulation for the identification of FORCE sets. The outer problem maximizes the flux towards the desired
chemical while the inner problem simulates the worst-case scenario by minimizing the product flux. Binary variables yU ,kin

j and yL,kin
j propagate the

effect of engineering modifications in Jkin while yU ,stoic
j and yL,stoic

j do the same in Jstoic. The fluxes in Jkin remain unchanged in the inner problem.

doi:10.1371/journal.pcbi.1003487.g003
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manipulations in Jkin that are consistent with the overproduction

target (Figure 4A). Keeping the fluxes in Jkin fixed at their

optimized values the flux ranges of the overproducing strain are

then re-calculated and the FORCE set for reactions in Jstoic are

then identified (see Step 2) as in regular OptForce [9] (Figure 4B).

By solving two separate problems the computational burden is

significantly reduced at the expense of potentially missing

synergistic interventions that share reactions between Jkin and

Jstoic. It is to be noted that while the illustrated formulation only

targets changes in vmax
j for reactions in Jkin the same analysis could

be applied for the modulation of other kinetic parameters (e.g., Km,

KI etc.) in the model.

Once the FORCE set of interventions are identified (along with

alternative manipulation strategies), it is important to manually

curate the results to understand the underlying metabolic reason

behind each intervention. This is necessary since k-OptForce

makes use of not just stoichiometry which imposes straightforward

connections between reactants and products but also kinetics that

introduce complex nonlinear couplings often between distal

reactions through metabolite pools. While it is not possible to

put forth an invariant set of rules for all applications, the following

checks can be useful in general: (1) check whether any metabolite

participating in affected reactions is hitting lower or upper

concentration bounds, (2) identify if a common metabolite is

Figure 4. Two-step formulation for the identification of the FORCE sets. (A) The first step of the formulation identifies the minimum number
of interventions (yU ,kin

j and yL,kin
j ) in Jkin required to meet the desired levels of overproduction of target chemical. (B) The second step identifies the

additional interventions (yU ,stoic
j and yL,stoic

j ) in Jstoic that would guarantee the desired yield in the worst case scenario.

doi:10.1371/journal.pcbi.1003487.g004

k-OptForce: Kinetics with FBA for Strain Design
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fixing the branching ratio of fluxes in two pathways, (3) resolve

whether a metabolite is limiting the flux of a reaction through

substrate-level inhibition, (4) confirm if the flux in a pathway has

been restricted because the vmax of one of the reactions has hit its

upper bound, and, (5) analyze all alternate intervention strategies

to identify common metabolites and/or enzymes that are being

targeted.

Results

We contrasted k-OptForce with the original OptForce [9]

predictions for the overproduction of L-serine and TAL in E. coli

and S. cerevisiae, respectively. The goal was to assess how the

addition of kinetic information into stoichiometric models changes

the list of identified interventions and more importantly what are

the underlying reasons for the new interventions.

Overproduction of L-serine in E. coli
L-Serine is a non-essential amino acid and a precursor for other

amino acids such as cysteine, tryptophan and glycine. It also

participates in the biosynthesis of purines and pyrimidines, and

serves as an intermediate for phospholipids, sphingolipids and

folate synthesis for several microorganisms [81,82]. The synthesis

of L-serine in microorganisms such as Escherichia coli and

Corynbacterium consists of a three-step pathway branching out of

the glycolytic intermediate 3-phosphoglycerate (3pg). 3pg is

converted to 3-phosphohydroxypyruvate (3php) by phosphoglyc-

erate dehydrogenase (PGCD, EC 1.1.1.95), and phosphoserine

transaminase (PSERT, EC 2.6.1.52) catalyzes the conversion of 3-

phosphohydroxypyruvate (3php) to L-phosphoserine (pser-L) using

L-glutamate as the amino acid donor. In the last step,

phosphoserine phosphatase (PSP, EC# 3.1.3.3) catalyzes the final

conversion to L-serine (see Figure 5). We used the genome-scale

iAF1260 model of E. coli [83] as the stoichiometric model for our

simulations. The kinetic rate expressions for reactions of central

metabolism were extracted from Chassagnole et al [76]. This

kinetic model, which has been used before in variety of studies

[5,36,39,84], consists of 25 metabolites and 25 reactions from

glycolysis and pentose phosphate pathway (see Supplementary

Material S1). All simulations were carried out in aerobic minimal

medium with glucose as the sole carbon source.

The reference strain (i.e., wild-type E. coli) flux ranges were

identified by finding the maximum flux variability in the entire

network while keeping the fluxes in Jkin fixed at the steady-state

values obtained by solving the system of ODEs for the kinetic

model (see Supplementary Figure S1). The L-serine overproducing

network flux ranges were calculated for a target of 90% maximum

theoretical yield (i.e., 180 mol/100 mol glucose uptake). The

minimum biomass production was kept at 10% of its maximum

achievable. The maximum enzyme activity vmax of reactions in Jkin

was allowed to vary from zero to two-fold up-regulation of its

reference activity (i.e., z = 2). Also, the concentration of metabo-

lites in Ikin was allowed to vary within a two-fold range from their

steady-state concentrations in the reference strain.

Figure 6 illustrates the reduction in flux ranges in the

overproducing phenotype after the introduction of the kinetic

constraints when compared with a stoichiometry-only description.

The average bound contraction (ABC) was 52% for the fluxes in

Jkin. For example, the flux of glucose 6-phosphate dehydrogenase

(G6PDH) in oxidative pentose phosphate (PP) pathway consistent

with the imposed L-serine overproduction ranged from 0 to

136 mmol gDW21hr21 when constrained by only stoichiometry

and from 0 to 62 mmol gDW21hr21 when imposing also kinetic

information. This range reduction is due to the limitations of the

maximum enzyme activity as well as metabolic concentrations of

glucose-6-phosphate (g6p) regulating G6PDH flux. The restric-

tions implied by kinetics also propagate throughout the stoichio-

metric part of the network leading to an on average ten percent

range contraction for reactions in Jstoic. For example, the fluxes

ranges in 2-oxogluterate dehydrogenase (AKGDH) and succinate

dehydrogenase (SUCD) in the TCA cycle decreased 7.4% and

6%, respectively as a direct consequence of the flux range

reduction for pyruvate dehydrogenase (PDH) in Jkin which

supplies acetyl-CoA (accoa) to TCA cycle. As a result of the

tighter flux ranges in the overproducing network (and character-

ization of base strain) many more reactions are identified that must

depart from their original ranges (i.e., MUST sets) compared to

regular OptForce both in MUSTU (38 vs. 3) and MUSTL (293 vs.

108) sets. For example, up-regulation of glucose-6-phosphate

isomerase (PGI) in upper glycolysis supplies more flux towards 3pg

and L-serine production. The flux range for PGI in the

overproducing phenotype (236–100 mmol gDW21hr21) was

wide enough to overlap with its reference flux value (35 mmol

gDW21hr21) suggesting PGI up-regulation is not necessary for L-

serine overproduction. In contrast, using k-OptForce we find that

the flux range of PGI in the overproducing phenotype is restricted

to 38–98 mmol gDW21hr21 which does not include the reference

value of 35 mmol gDW21hr21. This implies that it is impossible to

produce L-serine at 90% theoretical yield without directly (or

indirectly) increasing the flux through PGI which becomes a

member of MUSTU. We also observe a significant increase in the

number of reactions in MUSTL. This is because the kinetic

expressions in Jkin fix the branching ratios for fluxes emanating

from metabolites in Ikin. As a result, many reactions in Jstoic

involving metabolites participating in reactions from Jkin appear

as down-regulations. For example, k-OptForce identifies that the

acetyl-CoA carboxylase (ACCOAC) flux, which branches away

from pyr and accoa towards membrane lipid metabolism must

decrease (i.e., MUSTL) as it goes from (9–527) mmol gDW21hr21

in the reference strain to (2.1–2.3) mmol gDW21hr21 in the

overproducing strain.

Figure 7 summarizes the FORCE set of reactions as predicted

by the original and k-OptForce. As expected, the first intervention

suggested by both procedures is an at least 20-fold up-regulation in

the activity of one of the three fluxes that directly lead to the

synthesis of L-serine (i.e., PGCD, PSERT and PSP). However, the

remaining interventions follow completely different strategies. k-

OptForce emphasizes the need to remove substrate-level inhibition

Figure 5. Pathway for L-serine production in E. coli.
doi:10.1371/journal.pcbi.1003487.g005
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by making relatively small flux changes on a number of reactions

to maintain concentrations within the imposed bounds (i.e., two-

fold changes from wild-type measurements). Figure 7b illustrates

that it is necessary to up-regulate upper glycolysis and down-

regulate lower glycolysis to divert flux towards L-serine. The upper

glycolytic pathway is tightly regulated by both product metabolites

and nadh [85]. The kinetic expressions in Chassagnole et al [76]

encode inhibition of PGI and phosphofructokinase (PFK) by 6-

Phospho-D-gluconate (6pgc) and phosphoenolpyruvate (pep). The

high activity of the PP pathway and lower glycolysis in the wild-

type requires elevated intracellular levels of 6pgc (0.8 mM) and

pep (2.86 mM) to supply the fluxes through phosphogluconate

dehydrogenase (GND) (63 mmol gDW21 hr21) and pyruvate

dehydrogenase (PDH) (93 mmol gDW21 hr21) reactions. The

high concentrations of 6pgc and pep both prevent the up-

regulation of upper glycolysis and the down-regulation of lower

glycolysis. To alleviate this, k-OptForce suggests removal of PDH

coupled with an at least three-fold down-regulation in the activity

of either transaldolase (TALA) or transketolase (TKT1) reactions

in PP pathway. Removal of PDH also allows the concentration of

pep to be reduced from 2.8 to 1.43 mM thus alleviating its

inhibitory effect on PFK. Likewise, down-regulation of the PP

pathway activity reduces the flux in GND lowering the concen-

tration of 6pgc (from 0.8 to 0.4 mM). Removal of substrate

Figure 6. Reduction in the flux ranges of the desired phenotype for L-serine overproduction in E. coli after the incorporation of
additional kinetic constraints. Values on top indicate reduced flux ranges (in mmol gDW21 hr21), while values in the bottom indicate the flux
ranges (in mmol gDW21 hr21) without any kinetic information, for 100 mmol gDW21 hr21 of glucose uptake.
doi:10.1371/journal.pcbi.1003487.g006
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inhibition on PFK and PGI by pep and 6pgc leads to increased

flux towards L-serine. The original OptForce procedure cannot

identify such interventions, as substrate inhibition is not captured

through stoichiometric modeling.

The inhibitory effect of 6pgc and pep cannot be completely

removed due to their prescribed lower limits in concentration

(0.4 mM and 1.43 mM respectively). Moreover, the upper limits

on concentration of metabolites involved in upper glycolysis put an

upper bound on the amount of flux that can be carried by upper

glycolysis. Therefore, additional interventions are needed to meet

the L-serine target yield by modulating pathways away from

glycolysis. k-OptForce suggests the reversal of glycine hydroxy-

methyltransferase (GHMT) thus converting glycine to L-serine (see

Figure 7b). In contrast, the original OptForce predicts that the

entire amount of flux required for L-serine can be supplied

through the up-regulation of the serine synthase pathway as no

inhibitory effect or concentration bound is considered. It is to be

noted here that the forward activity of GHMT is essential in vivo

[86,87]. If, however, the lower limits on the concentration of 6pgc

and pep are reduced to 0.35 mM and 1.3 mM respectively, their

inhibitory effect on upper glycolysis is alleviated sufficiently to

route all the flux required for L-serine production through the

serine synthase pathway. The upper glycolytic flux of PGI

increases from 78 to 80 mmol gDW21 hr21 and the PP flux is

down-regulated further (from 22 to 20 mmol gDW21 hr21) to

provide the extra flux for L-serine (results not shown here). As a

result, k-OptForce suggests down-regulation of GHMT by at-least

3 folds from its reference flux instead of its reversal. All other

interventions remain un-altered.

The remaining interventions suggested by k-OptForce aim at

preventing the drain of metabolic flux from L-serine. Removal of

L-serine deaminase (SERD_L) prevents the conversion of L-serine

to pyruvate. This is followed by an at least six-fold down-

regulation (from 60 to 9 mmol gDW21 hr21) of either citrate

synthase (CS) or succinate dehydrogenase (SUCD) reactions to

reduce the TCA cycle activity which arrests ATP production in

the network. This prevents the conversion of L-serine to

acetaldehyde whose activity requires five units of ATP per unit

of flux. The original OptForce achieves the same goal by simply

down-regulating the transport of oxygen and up-regulating the

transport of ammonium into the cell. These interventions were not

chosen by k-OptForce as they lead to flux values that are

inconsistent with the kinetic expressions in Jkin.

Consistent with k-OptForce predictions, metabolic engineering

studies on C. glutamicum have revealed that overexpression of the

serA/B and C encoding for the three enzymes in the L-serine

production pathway have a positive, though small, effect on L-

serine production [88,89]. Removal of sdaA encoding for the

SERD_L reaction, coupled with up-regulation of the L-serine

pathway have been reported to lead to higher L-serine yields [89]

consistent with k-OptForce predictions. Other studies have shown

that down-regulation of GHMT reaction through the removal of

glyR regulator further improves L-serine production [90]. In a

recent study, overexpression of pgk was shown to divert more flux

towards L-serine in C. glutamicum [91]. This could be viewed as an

alternative strategy to the one suggested by k-OptForce involving

alleviation of the substrate level inhibition of upper glycolysis

through down-regulation of PP and lower glycolytic flux. It must

be emphasized that the k-OptForce results depend heavily on the

accuracy of the rate expressions of the kinetic model. For example,

it has been found in both E. coli and C. glutamicum, that the activity

of PGCD is feedback inhibited by L-serine [81,92]. Alleviating this

feedback regulation significantly improves production of L-serine

[91]. However, k-OptForce cannot capture this regulation since

Figure 7. Comparison of intervention strategies predicted by A. regular OptForce and B. k-OptForce for overproduction of L-serine
in E. coli. The values in brackets indicate the metabolic flux in mmol GDW21hr21 per 100 mmol gDW21 hr21 glucose uptake.
doi:10.1371/journal.pcbi.1003487.g007
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the adopted kinetic model does not include this inhibitory effect.

Accordingly, k-OptForce predictions must be carefully scrutinized

to identify the driving forces for the identified interventions (e.g.,

substrate inhibition removal, ATP drain, cofactor sequestering,

concentration increase, etc.) and the reason for the omission of

seemingly straightforward interventions (e.g., concentration bound

violation, inadequate vmax, lethal deletion, cofactor imbalance, etc.).

In addition to suggesting intervention strategies consistent with

the kinetic constraints in the network, k-OptForce also pinpoints

which ones and how original OptForce interventions violate

network kinetics. For example, the original OptForce framework

suggested the reversal of lower glycolytic reactions that converge to

3pg. This is accomplished by removing PGI and either GND,

TKT1 or TALA in PP pathway to reroute the metabolic flux

toward 3pg and pyruvate through E-D pathway by using 2-

dehydro-3-deoxy-phosphogluconate aldolase (EDA). Reversal of

enolase (ENO) and phosphoglycerate mutase (PGM) in lower

glycolysis converts pyruvate to 3pg. k-OptForce finds that this

redirection is not feasible. Reversible reactions PGM and ENO rely

on the relative concentrations of its reactants and products to inform

their directionality. Their reversal, to the extent suggested by the

original OptForce procedure requires the respective metabolic

levels of 2-phosphoglycerate (2pg) and pep to increase to 1.162 and

6.05 mM respectively, beyond the imposed upper limits of (0.856

and 4.726 mM respectively). Therefore, k-OptForce provides both

a check on stoichiometry-only derived interventions and more

importantly quantifies the impact of flux redirections on metabolite

concentrations and required enzyme levels.

Sensitivity of the k-OptForce results to perturbations in
kinetic parameters

Previous reports [93] on the sensitivity analysis of the E. coli

kinetic model by Chassagnole et al [76] showed that simulation

results are only sensitive to the values of nine (out of 25) enzyme

activities in the model. In light of this analysis, we perturbed the

enzyme activities of two sensitive ones (vmax
PDH and vmax

G6PDH ) and two

rather insensitive (vmax
PGCD and vmax

TKT1) by +/220% from their

reference levels and repeated the k-OptForce calculations. Results

showed that apart from vmax
G6PDH up-perturbation, the remaining

interventions (both up-perturbation and down-perturbation) were

identical to the original results. Increasing the value of vmax
G6PDH ,

which is one of the most highly sensitive parameters in the model

[93], increased the PP flux for the reference phenotype by 11%

(from 63 mmol gDW21hr21 to 70 mmol gDW21hr21), as the

glycolytic pathway was inhibited by increased 6pgc concentration.

As a result, down-regulation of GND was suggested as an

additional intervention to reduce the increased PP activity and

route more flux from glycolysis towards L-serine. In all other cases

metabolite concentrations and fluxes in the kinetic model were

minimally affected by perturbations in enzyme activity.

Production of triacetic acid lactone (TAL) in S. cerevisiae
4-Hydroxy-6-methyl-2-pyrone, commonly known as TAL, is a

precursor for the production of phloroglucinol [94], which is an

intermediate for many products such as 1,3,5- triamino-2,4,6-

trinitrobenzene (TATB) and resorcinol [95]. Synthesis of TAL

[96] in both E. coli and S. cerevisiae has been explored [97] [98].

Because neither E. coli nor S. cerevisiae can natively synthesize TAL,

production routes for TAL rely on the heterologous expression of

non-native enzymes such as 2-pyrone synthase (2-PS) (found in

Gerbera hybrida) [96] or a genetically modified 6-methylsalycilic acid

synthase (6-MSAS) [96,97] and fasB [96,98] with their ketor-

eductase domains deactivated. These efforts have led to TAL

yields in S. cerevisiae of only up to 6% of the theoretical maximum

(with a titer of 1.8 g/l) in glucose medium. Figure 8 shows the

targeted pathway for TAL synthesis in S. cerevisiae. We used the

iAZ900 model [99] of S. cerevisiae as the stoichiometric network of

metabolism. The kinetic expressions for reactions in central

metabolism were imported from the kinetic model of central

metabolism of S. cerevisiae described by van Eunen et al [79]. The

model consists of twelve metabolites and twelve reactions, for the

glycolytic pathway and the conversion of pyruvate to ethanol.

Since the kinetic model did not include drains for amino acids

from the central metabolic pathway metabolites (g6p, f6p, g3p,

3pg, pep), we added drains (similar to the method used in

Chassagnole et al [76]) using MFA information of S. cerevisiae

central metabolism from Gombert et al [100] to ensure biomass

production (see Supplementary Material S1).

As in the first example, we allowed for up to two-fold changes in

the metabolite concentrations and vmax from their wild-type values.

Contrary to the previous example, here the kinetic expressions do

not restrict further the flux ranges as the ABC metric (see

Methods) for all Jkin and Jstoic fluxes is zero. As a result, we find

no difference in the MUSTU (19 reactions) and MUSTL (61

reactions) sets for kinetic and original OptForce. This is due to the

relatively few fluxes with kinetic expressions and the already fairly

tight flux ranges achieved by stoichiometry-alone. For example,

the PGI flux varies within the narrow range between 91 and

97 mmol gDW21hr21 for a 90% yield for TAL even when no

kinetic expressions are used. This is because the imposed high

production target for TAL largely fixes the flow in glycolysis. As a

consequence of negligible contraction in flux ranges due to the

kinetic constraints, no difference in predicted MUST sets by

regular and k-OptForce is observed.

Figure 9 compares the FORCE sets and the respective

guaranteed yield of TAL as suggested by original and k-OptForce.

In general, both procedures suggest strategies that increase the

availability of precursors accoa and malonyl-CoA (malcoa), up-

regulating glycolysis, down-regulating PPP, and reducing nadph.

However, while the original OptForce suggests that at least four

interventions are required to achieve a 35% yield for TAL, k-

OptForce suggests that a yield of 90% is achievable by only two

interventions. Not surprisingly, both procedures suggest the up-

regulation of the ACCOAC (by at least nine-fold of its reference

flux) to increase the availability of the direct TAL precursor

malonyl-CoA. The glycolytic flux is also up-regulated to divert flux

from the PP pathway towards TAL. k-OptForce identifies that the

kinetic expressions work in concert with the overproduction goal

(given the imposed concentration ranges) without the need for any

direct enzymatic interventions for reactions in Jkin. Figure 10

illustrates the required changes in metabolite concentrations in the

overproducing network as predicted by k-OptForce. Elevated

concentrations of metabolites in glycolysis lead to an increase the

flux towards TAL. For example, the concentration of g6p in the

upper glycolysis is increased by 8% (from 1.41 to 1.55 mM)

leading to more flux through PGI (from 78 to 96 mmol gDW21

hr21). This eliminates all flux through G6PDH and PP (from 19 to

0 mmol gDW21 hr21) to maintain the steady-state metabolite

balance of g6p. Without the benefit of any kinetics, the original

OptForce suggests the removal of G6PDH reaction as a

requirement for down-regulating the PP pathway. k-OptForce

also requires that the concentrations of glyceraldehyde 3-

phosphate (g3p) and 3pg be elevated by 6% and 31%, respectively

from their reference states to up-regulate the lower glycolysis flux

from 168 to 192 mmol gDW21 hr21. This re-direction in

glycolysis prevents the loss of metabolic flux towards glycerol

synthesis. Instead, the original OptForce procedure suggests the

k-OptForce: Kinetics with FBA for Strain Design
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removal of glycerol-3-phosphatase (G3PT) in the glycerol synthesis

pathway to serve the same purpose and channel the flux towards

lower glycolysis and TAL.

The fatty acid synthase is in direct competition to TAL

production. It uses the same precursors as TAL (i.e., accoa and

malcoa) to form medium chain fatty acids. Activity of fatty acid

synthase requires the cofactor nadph for the reductive steps in the

pathway. Not surprisingly, both kinetic and original OptForce

identify strategies to lower the availability of nadph. k-OptForce

achieves this by suggesting a 20 fold up-regulation (from 3.5 to

69 mmol gDW21 hr21) in the flux of aldehyde dehydrogenase

(ALDD) which converts acetaldehyde towards acetate. The major

routes of acetaldehyde production in S. cerevisiae are either from direct

decarboxylation of pyruvate through pyruvate decarboxylase

(PYRDC) or through the alternate threonine synthesis pathway

followed by the cleavage of threonine by threonine aldolase (THRD)

to acetaldehyde and glycine (see Figure 9B). The threonine synthesis

pathway is favored in TAL overproduction as it consumes one unit

of nadph for every unit of flux. We note that the fluxes in PYRDC

and alcohol dehydrogenase (ALCD) are fixed by the kinetic

constraints in Jkin. Therefore, up-regulation of ALDD causes most

of pyruvate to be routed through the threonine production pathway

(to maintain the steady-state conservation of acetaldehyde) resulting

in a decrease in nadph levels. The original OptForce does not arrive

at this intervention as the kinetic control on the fluxes of PYRDC

and ALCD is not captured. It instead suggests the removal of

cytosolic isocitrate dehydrogenase (ICDHy) to reduce the nadph

production, and thus arrests fatty acid synthesis.

Unlike the previous example where k-OptForce required more

interventions for the same overproduction target than the original

OptForce, here the reverse trend is observed. The predicted yield

for TAL by the original OptForce is only 35% of its theoretical

maximum after four interventions whereas k-OptForce reaches

90% of theoretical maximum with only two manipulations. This is

because the incorporation of kinetic information pushes metabolic

flux in the direction that is needed for overproduction and away

from the ‘‘worst-case’’ behavior.

Effect of metabolite concentration ranges on identified
interventions

The steady-state balances of metabolites in a kinetic model

[76,79] (with as many metabolites as rate equations) form a

Figure 8. Pathway for TAL production in S. cerevisiae.
doi:10.1371/journal.pcbi.1003487.g008

Figure 9. Comparison of intervention strategies predicted by A. regular OptForce and B. k-OptForce for overproduction of TAL in S.
cerevisiae. The values in brackets indicate the metabolic flux in mmol gDW21 hr21 per 100 mmol gDW21 hr21 glucose uptake.
doi:10.1371/journal.pcbi.1003487.g009
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square-system of equations with zero degrees of freedom.

Assuming that there are no multiple steady-states due to the

nonlinearity of the kinetic expressions, steady-state fluxes or

concentrations cannot change unless accompanied by alterations

in kinetic parameters (e.g. enzyme activities vmax). However, when

a kinetic model is integrated with a stoichiometric genome-scale

model, reactions in Jstoic that involve metabolites present in Ikin

add in effect additional degrees of freedom to the square-system of

equations thus decoupling metabolite concentrations from enzyme

activities. As a result metabolite concentrations can change in such

a way that fluxes are altered without requiring any enzymatic

interventions as observed in the TAL overproduction example. In

the absence of kinetic expressions for all reactions associated with

the metabolites in Ikin a number of degrees of freedom remain for

the metabolite concentrations. To avoid drastic concentration

changes in response to the overproduction goal we explored

penalizing deviations of metabolite concentrations from their

reference steady-state values using a weight penalty factor e. This

posture in essence imposes a homeostasis term in the optimization

objective function. The outer objective function of the bilevel

formulation for identifying FORCE sets is thus modified as

follows:

Maximize 1{eð Þ 1
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The first term in the objective function is the flux of the desired

chemical vprod , scaled by its theoretical maximum flux in the

network vmax
prod . The second term is the average fractional departure

of the metabolites in Ikin (ci) from their reference values (c
ss,ref
i ).

Mkin represents the total number of metabolites in Ikin. When

using the two-step procedure for identifying MUST sets (see

Methods and Supplementary Material S1), the objective function

for the first step is modified as follows:

Figure 10. Comparison of the concentrations (in mM) of metabolites in Ikin for the engineered and reference strain of S. cerevisiae for
overproduction of TAL. The first value indicates the overproducing strain concentration, while the second value refers to the reference strain
concentration.
doi:10.1371/journal.pcbi.1003487.g010
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In this objective function, the first term is the sum of interventions

in Jkin, scaled by the total number of reactions in Jkin identified in

MUST sets (MUSTkin). No other changes are made in the

formulation of the algorithms. We tested this modified formulation

on TAL production in S. cerevisiae.

Figure 11 describes the effect of penalizing concentration

departures on enzymatic interventions in Jkin for the overproduction

of TAL in S. cerevisiae. We varied e from 0.1 (low penalty) to 0.9 (very

high penalty) on the identified interventions. Up to a e value of 0.6,

the penalty is not high enough to require direct interventions instead

of concentration changes. For a e value of 0.7 k-OptForce identified

up-regulation of enolase (ENO) while maintaining the average

deviation in concentration to 0.1053. Note that without the use of the

penalty term the concentrations for 3pg and 2pg have to be elevated

by 31% and 27% respectively, from their reference levels to redirect

more flux through the lower glycolytic reactions of glyceraldehyde-3-

phosphate dehydrogenase (PGM) and ENO. For e= 0.8 the

metabolite concentrations remain even closer to their reference

levels (average deviation is 0.0754) thereby requiring the up-

regulation of glyceraldehyde-3-phosphate dehydrogenase (GAPD) in

addition to ENO. For e equal to or greater than 0.9 at least 6

additional enzymatic interventions in Jkin are necessary to increase

glycolytic flux while concentrations remain very close to their

Figure 11. Predicted interventions in Jkin for TAL overproduction in S. cerevisiae as a function of penalty factor (e). The graph above
shows the variation in the minimum number of interventions required in Jkin to overproduce TAL with increase in e. The corresponding table below
shows of the average deviation (row 1) and the individual deviation in concentration of metabolites in Ikin for different values of e.
doi:10.1371/journal.pcbi.1003487.g011

k-OptForce: Kinetics with FBA for Strain Design

PLOS Computational Biology | www.ploscompbiol.org 13 February 2014 | Volume 10 | Issue 2 | e1003487



reference values. By increasing the value of the penalty e enables

drawing trade-offs between allowable concentration changes and

minimality of needed interventions for an overproduction goal while

also providing a prioritization strategy for implementing engineering

interventions.

Expression of a heterologous enzyme in S. cerevisiae to
improve TAL yield

The conversion from cytosolic pyruvate to acetyl-CoA (precur-

sor for TAL) in yeast follows a long and tightly regulated path

involving the intermediate production of acetaldehyde and acetate

[101]. We sought to computationally explore the use of a direct

route from pyruvate to acetyl-CoA by adding a heterologous

cytosolic PDH from E. coli in S. cerevisiae that directly converts

pyruvate to acetyl-CoA. Note that S. cerevisiae has a pyruvate

dehydrogenase activity in mitochondria but not in cytosol. The

PDH complex in E. coli uses nad as the cofactor, however, an

nadp-dependent PDH enzyme (constructed by site-directed

mutagenesis in the bab fold of the nad-binding domain of

dihydrolipoamide dehydrogenase) has also been expressed in E.

coli with identical kinetic properties [102]. The maximum

theoretical yield of TAL using the nadp-dependent PDH enzyme

increased by 40%. By bypassing the multi-step conversion of

pyruvate to acetyl-CoA, two ATP equivalents of energy are

conserved. No such maximum yield improvements are found for

the nad-dependent PDH due to nad imbalance in the cytosol.

The kinetic expression for PDH was extracted from the kinetic

model of E. coli proposed in Chassagnole et al. [76]. The

interventions predicted by k-OptForce for maximizing TAL

production are shown in Figure 12. Upon addition of the

heterologous PDH, the entire amount of flux towards TAL

production is routed through PDH. This eliminates the ACS

activity that previously drained ATP. Pyruvate decarboxylase

(PYRDC) is now down-regulated, but its activity is not reduced to

zero. The entire flux of PYRDC goes towards ethanol production

to regenerate NAD and maintain the cofactor balance in cytosol

[101]. Instead of up-regulating ALDD, k-OptForce identifies an

alternative intervention to lower nadph availability by up-

regulating either aspartate kinase (ASPK), threonine synthase

(THRS) or cystathionine synthase (METB1) in the hydroxybuty-

rate production pathway.

Discussion

k-OptForce integrates kinetic relations (whenever available)

with stoichiometry based models to identify genetic perturbations

that are consistent with enzyme expressions and metabolite

concentrations. The resulting optimization problems pose signif-

icant computational challenges due to the bilevel nature of the

formulation and the nonconvex terms in the objective function

and constraints. We introduced tractable solution workflows for

recasting the problems as equivalent single-level mixed-integer

nonlinear optimization problems (MINLP) solved using the global

optimization solver BARON to optimality. A hierarchical

decomposition approach is also introduced for first identifying

interventions within the kinetic part of the model followed by the

interventions in the stoichiometry-only part of the model. As with

other computational algorithms that make use of kinetics the

results can be dependent upon the kinetic model structure and

parameterization.

Computational results show that the introduction of kinetic

expressions in strain design can significantly affect the identified

interventions in sometimes non-intuitive ways. In some cases

additional modifications are needed to substitute interventions that

cause enzyme saturation or concentration bound violations. The

mechanism of action of these modifications is often subtle by

alleviating substrate inhibition or draining away cofactors from

competing pathways. In other cases, kinetic expressions shape flux

distributions so as to favor the overproduction of the desired

product requiring fewer direct interventions. Uncertainties in both

the accuracy of the kinetic models and allowable concentration

ranges imply that predicted interventions need to be carefully

scrutinized to pinpoint the reasons for their inclusion. An

important finding in this study was that concentration ranges

have a very significant effect on the identified interventions. By

penalizing departures of concentrations from the reference strain

values substantial re-arrangements in the predicted interventions

are observed. Each one of these changes can be analyzed and the

underlying reason for its inclusion can be identified.

A key contribution of kinetic descriptions is that they can

attribute performance bottlenecks to specific concentration bounds

and/or enzymatic parameter ranges bottlenecks revealing avenues

for model improvement and strain optimization. The case study

for L-serine overproduction in E. coli provides an example of how

k-OptForce can be used to both identify interventions and trace

the reason(s) for the exclusion of others. k-OptForce revealed that

inhibition of upper glycolysis by pep and 6pgc must be alleviated

to route more flux towards L-serine. This is achieved through

removal of PDH and down-regulation of TALA or TKT1

respectively. Flux analysis on single gene mutant strains of E. coli

show that deletion of either tala or tktA increases the flux through

PGI [103] corroborating k-OptForce predictions. However, MFA

data for the lpdA mutant encoding the PDH enzyme in E. coli [104]

showed that the upper glycolysis is down-regulated and that the

flux through PP pathway is up-regulated, contrary to k-OptForce

predictions. A possible reason for this discrepancy could be due to

insufficiencies in the kinetic expressions used to describe the

reactions in Jkin. Alternatively, since lpdA also encodes for the

activity of ICDHy and the glycine cleavage system (GLYCL), its

removal could be have a combined effect on down-regulating the

flux in upper glycolysis, which is not captured by the kinetic

model. k-OptForce, however, correctly predicts that PDH removal

down-regulates lower glycolysis which is observed in the lpdA

mutant strain [104]. Down-regulation of lower glycolysis is

necessary to prevent the flux towards L-serine from draining

away towards pyruvate. k-OptForce also sets an upper limit on the

activity of the L-serine synthase pathway that the original

OptForce procedure failed to pinpoint. In addition, k-OptForce

prevents rearrangement of fluxes that would violate kinetic

constraints and metabolite concentration limits. The original

OptForce suggested reversal of lower glycolysis by rerouting

metabolic flux through ED pathway. However, such re-distribu-

tion results in the upper and lower glycolysis to operate in opposite

directions which cannot be achieved as the same regulator, (i.e.,

cra), determines the directionality of both upper (i.e., PFK) and

lower glycolysis (i.e., PYK) [105,106] and represses the ED

pathway upon reversal of glycolysis.

k-OptForce may require fewer direct interventions if the kinetic

expressions shape fluxes so as to favor the desired overproduction

product as observed for the production of TAL where up-

regulation of ALDD was suggested to redirect flux from pyruvate

to acetyl-CoA. This is consistent with an experimental study for

isoprenoid overproduction in S. cerevisiae [107] which demonstrat-

ed that overexpression of ald6 (which encodes for the ALDD

enzyme) increases flux towards acetyl-CoA. However, a fraction of

the flux from pyruvate to acetaldehyde was routed through

threonine degradation without the requirement of any additional

interventions. This direct intervention-free flux redistribution may
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Figure 12. Metabolic interventions predicted by k-OptForce for overproduction of TAL in S. cerevisiae on heterologous expression
of nadph-dependent PDH complex from E. coli. The values in brackets indicate the metabolic flux in mmol gDW21hr21 per 100 mmol gDW21

hr21 glucose uptake.
doi:10.1371/journal.pcbi.1003487.g012
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be an artifact of the kinetic model and may require direct

manipulations to engineer. Metabolome studies on single-gene

mutant analysis in E. coli [103] revealed that, on average, internal

metabolite concentrations were minimally altered from their

reference concentrations as a result of the genetic perturbations.

Changes in metabolic fluxes were largely the result of changes in

enzyme activities. In response to this we postulated the use of a

penalty term for violating homeostasis of metabolite levels.

Alternatively, one could employ the method described in

Smallbone et al [73] to formulate approximate lin-log expressions

for all reactions associated with metabolites in Ikin that do not

have a kinetic expression (i.e. not part of Jkin). This would restore

the square-system of equations in Jkin and recouple all metabolite

concentrations with enzyme activities.

The k-OptForce procedure is versatile enough to incorporate

additional omics information, whenever available, to further

improve prediction fidelity. For example, MFA data for reactions

can be included as additional constraints to further tighten flux

ranges. k-OptForce can also capture other types of metabolic

regulation and select from a wider palette of direct interventions

(e.g., enzymatic changes and transcriptional control) such as the

dynamic hybrid model of E. coli metabolism by Lee et al [108] that

integrates signaling and transcriptional regulation with FBA.

Temporal consideration can also be addressed be deploying

k-OptForce within the dFBA framework [65] to explore the

variation of metabolic interventions as a function of time alluding

to RNAi type of interventions. We expect that k-OptForce

predictions will help improve the breadth and accuracy of kinetic

modeling descriptions by providing the quantitative means to

assess model accuracy ultimately leading to improved fidelity of

metabolic descriptions.

Supporting Information
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