
Species-Specific Traits plus Stabilizing Processes Best
Explain Coexistence in Biodiverse Fire-Prone Plant
Communities
Jürgen Groeneveld1,2*, Neal J. Enright3,4, Byron B. Lamont3,4, Björn Reineking5,6, Karin Frank1,

George L. W. Perry2,7

1 Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany, 2 School of Environment, University of Auckland, Auckland,

New Zealand, 3 School of Environmental Science, Murdoch University, Murdoch, Australia, 4 Department of Environment and Agriculture, Curtin University, Perth,

Australia, 5 Biogeographical Modelling, University of Bayreuth, Bayreuth, Germany, 6 Unité de recherche écosystèmes montagnards, Irstea, Grenoble, France, 7 School of
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Abstract

Coexistence in fire-prone Mediterranean-type shrublands has been explored in the past using both neutral and niche-based
models. However, distinct differences between plant functional types (PFTs), such as fire-killed vs resprouting responses to
fire, and the relative similarity of species within a PFT, suggest that coexistence models might benefit from combining both
neutral and niche-based (stabilizing) approaches. We developed a multispecies metacommunity model where species are
grouped into two PFTs (fire-killed vs resprouting) to investigate the roles of neutral and stabilizing processes on species
richness and rank-abundance distributions. Our results show that species richness can be maintained in two ways: i) strictly
neutral species within each PFT, or ii) species within PFTs differing in key demographic properties, provided that additional
stabilizing processes, such as negative density regulation, also operate. However, only simulations including stabilizing
processes resulted in structurally realistic rank-abundance distributions over plausible time scales. This result underscores
the importance of including both key species traits and stabilizing (niche) processes in explaining species coexistence and
community structure.
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Introduction

Neutral models have been used to describe coexistence and

some aspects of community structure in species-rich plant

communities, such as tropical rainforests and fire-prone Mediter-

ranean-type shrublands [1–3]. However, it seems obvious that the

basic assumption of neutral theories, that all species within a

trophic level are ecologically equivalent, is violated in most systems

(but see [4]). For example, in Mediterranean-type ecosystems two

distinct adaptations to recurrent disturbance by fire can be

identified [5]: some species are killed by fire (non-sprouters) and

rely on post-fire recruitment from seeds, while others recover

vegetatively (resprouters). These two Plant Functional Types

(PFTs) defined by their response to disturbance differ in their

longevities by at least an order of magnitude [5,6]; and the

outcomes of neutral theory are sensitive to such differences [7]. In

contrast to neutral models, niche-based models seek to explain

species coexistence on the basis of stabilizing processes [8].

Intraspecific density regulation is a frequently discussed stabilizing

process [9], and intense intraspecific competition due to spatial

aggregation at the microsite scale [10] and negative density

dependence at the seedling stage [11] both highlight the

importance of density regulation for coexistence. Trade-offs

between different life-history attributes (e.g. competition vs

colonization) are also often suggested as mediating coexistence in

niche-based models [12]. Trade-offs can be equalizing, i.e.

resulting in identical establishment rates for all species, or

stabilizing, i.e. under particular conditions (that vary through

space and time) different species, especially at low densities, will be

favoured. Fundamentally, niche-based processes are stabilizing,

whereas under equalizing processes species abundances essentially

perform a random walk in the state space [8,9]. The assumptions

of perfect equalizing processes are, however, rarely met [8,13].

Although neutral and stabilizing models appear to contradict

each other, marrying them might help to explain the maintenance

of species richness at the community scale [14]. While individual

species do differ in their functional responses to environmental

conditions and in their ecological attributes, groups of species

within communities may share traits and so be ecologically similar

at this level. Thus, species are often grouped into PFTs [15,16]. It

has been shown that both neutral and niche models produce

indistinguishable species abundance distributions so long as there

is a sufficient number of species in each PFT [17,18].

At our study site in fire-prone Mediterranean-type shrublands of

southwestern Australia, large shrub species are restricted to dunes
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where deep, unconsolidated sands provide access to soil water

through the summer, while the shallow sands of interdunal areas

(separating these dune-top communities) support only low shrubs

and graminoids [19]. Local communities of large shrubs on the

sand dunes are well connected through long-distance dispersal

[20] and therefore provide an ideal system to study the

maintenance of diversity in a plant metacommunity comprising

contrasting PFTs with many species in each category [21]. Here,

we implement a simulation model for two PFTs that differ

fundamentally in their response to fire: non-sprouters (fire-killed)

and resprouters. We compare scenarios in which species are

equivalent within a PFT (neutral) and also where species within

the same PFT differ in their key demographic properties,

reproductive rate and fire survival probability. Reproductive rate

can vary markedly between, and more subtly within, these two

PFTs, while survival probability also varies within the resprouter

PFT [5,19,22,23]. We address the following questions:

1) Can current metacommunity models explain the long-term

coexistence of two PFTs (10 000 and 100 000 years)?

2) Do species have to be strictly ecologically equivalent within a

PFT to coexist?

3) How important is intraspecific density regulation as a

stabilizing process in accounting for species coexistence?

Materials and Methods

Our metacommunity simulation model was developed for shrub

communities growing on the upper slopes and crests of deep sand

dunes (sand to 10 m depth) in the Eneabba Plain, 250–330 km

north of Perth [24]. We consider two PFTs: fire-killed species (for

scenarios with 8 and 132 non-sprouting species) and vegetatively

recovering species (for 8 and 132 resprouting species). Parameter-

isation of the model and the two PFTs is based on the detailed data

set available for the population dynamics of large non-sprouting

and resprouting, serotinous (i.e. with on-plant seed storage) shrubs

in the genus Banksia [25–27].

Our model description follows the ODD (Overview, Design

concepts and Details) protocol [28]. Detailed descriptions of the

submodels are provided in the electronic supplementary material

(ESM, Methods S1). The landscape is represented as a grid of

square cells (Fig. 1a). Each grid cell represents 1 ha and we

simulate a landscape of 1206120 grid cells, representing an area of

144 square kilometres. Each grid cell contains 65,813 sites (based

on density estimates in [3]) that can be either empty or occupied

by one individual per site. The metacommunity simulation arena

is a square of 40640 grid cells (16 square kilometres) in the centre

of the simulation area. The buffer area minimises edge effects

arising in the fire-spread component of the model. Grid cells are

classified as being either potential habitat (dunes) or uninhabitable

matrix (swales). Habitat islands for large shrubs (patches) comprise

four contiguous habitat cells grouped as squares that are

distributed randomly so as to occupy half of the metacommunity

simulation arena (i.e. 200 patches covering 800 grid cells). To

represent spatial heterogeneity in the fire regime, fire spread acts

at the grid cell level, so that a patch can either burn entirely or

partially (Fig. 1a). At the grid cell level the species identity of a

cohort, number of individuals in each cohort, age of cohorts, and

the time since last fire are stored.

All species belong to one of two PFTs: non-sprouters or

resprouters. Within a given PFT, species may be identical (neutral

model), or may vary in their reproductive rate described by

number of seedlings per adult bi (for any species, i) (Fig. 1b) and, in

the case of resprouters, their fire survival probability, psurv,i (Fig. 1c).

For non-sprouters the reproductive rate bi is multiplied by a

seedling modification factor bi that allows variation in this

parameter. bi represents the number of seedlings a non-sprouting

shrub has accumulated 9 years after fire. Depending on the

scenario intraspecific seedling density regulation is modelled

following a logistic model. The grid is updated synchronously at

each annual time step. Simulations run for 10 000–100 000 years,

corresponding to 200–20 000 generations for non-sprouters,

depending on the mean fire interval.

Process overview and scheduling
The metacommunity model simulates the fundamental demo-

graphic processes of birth, death and migration. We explain the

fire spread, seed dispersal, seed production, fire survival, and

establishment sub-models in detail in the ESM (Methods S1).

Depending on the scenario intraspecific negative density regula-

tion of seedlings is considered in the seed dispersal and seed

production sub-model. Fire occurs every year (one ignition per

year) somewhere on the 144-km2 grid, the ignition location (cell) is

chosen at random and the fire’s spatial structure is determined by

a percolation model [29,30]. Not all fires spread across the

metacommunity simulation arena containing the habitat patches.

Only burnt grid cells are updated: all plants in burnt habitat patch

cells release their (on-plant-stored) seeds, non-sprouters die and

resprouters survive with probability psurv,i. Seedlings can establish

in sites that become empty as a result of the fire (depending on

inter- and intraspecific seedling competition), but competition

from established vegetation prevents them from establishing in

unburnt cells. Although we term a site ‘empty’ if none of our study

species are in it, we assume that these cells are occupied by species

from other PFTs (e.g. sub-shrubs, perennial sedges/rushes). We do

not consider seed release in unburnt grid cells, assuming strong

serotiny for the modelled species (and no recruitment even if there

is any seed release; [31]). Seeds arrive at a site by either local

dispersal from a parent plant within the same patch, or via long-

distance dispersal from the metacommunity [20]. This distinction

between local patches and the metacommunity is similar to the

hierarchical design embodied in many neutral models (e.g. [1]),

and thus allows comparisons between our approach and neutral

models.

Design concepts
Emergence. Community structure is the result of stochastic

local events such as establishment and death, and interactions

between local communities via long-distance seed dispersal.

Interaction. Neighbouring and non-contiguous grid cells are

linked by fire, since only burnt grid cells disperse seeds that can

potentially establish in other burnt grid cells.

Stochasticity. Fire spread, resprouter fire survival, and

establishment by lottery competition are represented as random

processes.

Collectives. Individuals of the same species and same age are

modelled as cohorts.

Observation. Fire-related characteristics such as mean fire

size and local time since last fire are recorded, as are abundances

at the metacommunity level. If species differ, their characteristics

are also stored. At the end of each simulation, species abundances

are stored for each patch.

Initialization. All grid cells are initialized with the same

number of individuals of each species. The initial local time since

last fire is drawn from a uniform distribution in the range 1 to 25

years. The initial age of all non-sprouting cohorts is the same as

the local time since last fire. The age of the initial resprouting

Hybrid Metacommunity Model

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e65084



cohort is drawn from a uniform distribution bounded by the local

time since last fire and the maximum longevity of resprouters (c.

300 years; [19]).

Simulation experiments
We conducted a sensitivity analysis for eight model parameters

(Table 1) using a Latin Hypercube sampling design [32].

Parameter ranges were split into 10 intervals. Overall, 201 Latin

Hyper Cube samples were taken, resulting in 201610 = 2 010

parameter combinations. For each combination, we measured the

number of non-sprouting species SNS, resprouting species SRE and

total number of species S that survived for 10 000 years. The

metacommunity was initialized with 16 (8 non-sprouters and 8

resprouters) species. We explored the effect of each parameter and

the average time since last fire in habitat grid cells on the

dependent variables (SNS, SRE, S) using boosted regression trees

[33,34].

We explored three scenarios to investigate how similar species

with a given PFT have to be to coexist and to explore the

importance of intraspecific density regulation: neutral scenario (no

density regulation is applied and all species within one PFT have

exactly the same parameterisation – see Table S1 for details), non-

neutral scenario (no density regulation is applied and species differ

in their species-specific number of seedlings per adult bi – see

Table S1), and niche scenario (density regulation is applied and

species differ in their species-specific number of seedlings per adult

bi – see Table S1). To better understand the impact of individual

processes and their interactions on species and PFT coexistence,

we systematically varied the two key demographic parameters,

maximum fire survival probability (psurv,max) and the number of

seedlings for non-sprouters, by varying the number of non-

sprouter seedlings at age 9 years bi - for the three scenarios (EMS,

Table S1). We used 21 possible parameter values for each of the

two parameters (psurv,max varied over 0.79–0.99 in steps of 0.01 and

bi over 0.5–2.5 in steps of 0.125) and simulated all possible (441)

pairs. We summed the species richness in the metacommunity,

Ssum, for each of the 441 parameter combinations for each scenario

(Fig. 2 a,d,g). The fire regime was parameterized as a simple

percolation model (fmode = 0) with a basic fire-spread probability

pc = 0.4825. Finally, we investigated the effect of species richness

and time scale on the rank-abundance distributions for the three

scenarios with 16 and 264 species (the latter approaches the

expected number of species at our study site, after [3]) over 10 000

and 100 000 time steps. For all rank abundance distribution

simulations we have parameterized the fire regime as a simple

percolation model (fmode = 0) with a basic fire-spread probability

pc = 0.48.

Results

Maintenance of species diversity
A trade-off between fire survival probability and the reproduc-

tive rate of non-sprouters has been suggested to be a potential

explanation for coexistence between non-sprouters and resprouters

[35]. Therefore we systematically varied two key demographic

parameters, maximum fire survival probability psurv,max and the

number of seedlings produced by non-sprouters - by varying the

number of non-sprouter seedlings at age 9 bi (Fig. 2a,d,g) for the

three specific scenarios: 1. If all species within one PFT have the

same demographic parameters and there is no density regulation

(neutral scenario, EMS Table S1) then species can coexist across a

wide range of parameter combinations given a positive correlation

between bi and psurv,max (Fig. 2a, for 21% of all 441-parameter

combinations, all 16 species persist). 2. If species differ in their

reproductive rates (dR = 0.1, i.e. species-specific reproductive rates

vary 65% around the mean), but density regulation does not

occur (non-neutral scenario, see EMS Table S1), species richness

decreases substantially, and for no parameter combinations do all

16 species persist (Fig. 2d). 3. If intraspecific density regulation is in

place (fK = 1) and species differ within each PFT (dR = 0.1, niche

scenario) species coexist across a wide range of parameter

combinations (for 13% of all parameter combinations, all 16

species persist) (Fig. 2g).

While observed species richness can be matched for both the

neutral model and niche model with density regulation (Fig. 2a,g),

their rank-abundance distributions (RAD) differ substantially

(Fig. 2c,i). The difference in RAD is more pronounced if the

model is initialized with 264 species (Fig. 3). Only the niche model

produces structurally realistic RAD as observed in the study area

[3,45], where relative abundances vary over several orders of

magnitude and abundances of non-sprouters and resprouters show

large within-group variation (Figs. 2 & 3). Using 16 species RAD

reached an equilibrium after 10 000 years, whereas the neutral

model still largely reflected initial conditions. Results are different

for the species-rich system: when 264 species are used, RAD did

not reach equilibrium by 100 000 years in the niche-based model,

although most of the extinction events occur in the first 50 000

Figure 1. Basic model assumptions. a) The model works at two spatial scales: fire spread is modelled at a 1-ha resolution, whereas
neighbourhoods of four contiguous grid cells all containing suitable habitat comprise a patch containing one local community. b) Number of
seedlings per adult bi, vary between mature resprouters (crosses) and non-sprouters (circles). We varied non-sprouter reproductive rates across a wide
range of plausible values (shaded grey area in Fig. 1b). c) Fire survival probabilities for resprouters change with plant age; variation in the fire survival
probabilities are indicated by the grey shaded area in Fig. 1c.
doi:10.1371/journal.pone.0065084.g001
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years (not shown here). In the neutral model 100 000 years are not

sufficient for realistic differences between species relative abun-

dances to emerge and non-sprouters and resprouters still form

relatively homogeneous groups. The temporal dynamics of RADs

are presented as animations in the electronic supplementary

material (Animations S1 and S2).

Sensitivity analysis
The relative influence of each parameter, and the average time

since last fire, on species richness differed between non-sprouters,

SNS, and resprouters, SRE (Table 1, Fig. 4). Partial dependence

plots are shown for the four most important parameters. These

plots are the result of boosted regression tree analysis of simulation

runs with 2 010 parameter sets (see Methods section). The most

important parameter is the local time since last fire tslf. Non-

sprouter richness SNS is highest for intermediate fire regimes (15–

30 years) while resprouter richness SRE increases steadily with local

time since last fire tslf. The number of non-sprouter seedlings at age

9 years, bi, is the second most important parameter influencing

species richness and increasing the seedling numbers of non-

sprouters has a positive effect on the non-sprouter richness SNS and

a negative impact on resprouter richness SRE (Fig. 4 and Table 1).

The maximum fire survival probability of resprouters psurv,max is the

second most important parameter for resprouter richness SRE,

whereas the impact of this parameter on overall species richness S

is less important.

Discussion

The central assumption of neutral theory is that species at the

same trophic level are ecologically equivalent [1]. This assumption

clearly does not hold for many trophically equivalent species, e.g.

fire-killed as opposed to resprouting shrubs in Mediterranean-type

fire-prone ecosystems [5,6]. However, assuming that all species

within a single PFT are neutral may help to resolve the apparent

paradox that there are far more species than there are ecological

niches [36]. We have shown that this approach allows two PFTs,

each comprised of completely neutral species, to coexist over a

wide range of demographic parameters so long as there is a trade-

off between the per capita reproductive rate of non-sprouters and

the fire survival probability of resprouters. However, and in line

with previous studies [7], small departures from the strict

neutrality assumption reduce the parameter range across which

species may coexist. Therefore, in the absence of stabilizing

Table 1. Overview of the model parameters.

Description Parameter Reference value min max
Relative nfluence
RNS (%)

Relative influence
RRE (%)

Time since last fire, a function of basic
fire-spread probability (pc) and the mode
of fire spread (fmode)

tslf 30 42.1

Number of non-sprouter seedlings at age 9 bi 1.8 0.5 3.5 32.7 16.4

Maximum fire survival probability psurv,max 0.94 0.74 0.99 11.4 21

Range of species-specific variation in
psurv,max

dp 0 0 0.25 1.7 13

Range of species-specific variation in
number of seedlings per adult bi

dR 0 0 0.25 13.3 0.1

Strength of density regulation 1/fK 0 0.1 1 5.2 1.3

Metacommunity dispersal rate m 0.1 0 0.25 4 1.9

Basic fire-spread probability pc 0.48 0.47 0.5 1.1 4.2

Mode of fire spread (0: simple percolation;
1: fuel age dependent)

fmode 0 0 1 0.5 0

Age of maturity for resprouters a2 30 - - -

Run time (years) tmax 10 000 - - -

Demographic threshold np 5.5 - - -

Grid cell size (ha) gsize 1

Grid size (grid cells; ha)(total; simulation
arena; buffer)

ngrid 14 400; 1 600; 12 800 - - -

Total number of patches npatch 200 - - -

Patch area (grid cells; ha) Apatch 4 - - -

Initial species number for main simulation
experiments (total; non-sprouters;
resprouters)

S, SNS, SRE 16; 8; 8 - - -

Maximum number of individuals per grid
cell or ha

Kgridcell 65 813 - - -

Parameters of the sigmoidal relation
between local time since last fire and
fire-spread probability (years21, years);

d,b 1; 5

The sensitivity of the model results for 8 parameters and the average time since last fire was explored using Latin Hypercube sampling, where min refers to the smallest
possible parameter value and max to the largest parameter value. The results of a boosted regression tree analysis are given to indicate the parameters’ relative
influence on species richness of non-sprouters RNS, and resprouters RRE. See text for further details. Parameterisation is mainly based on [25–27].
doi:10.1371/journal.pone.0065084.t001

Hybrid Metacommunity Model

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e65084



mechanisms species dissimilarity limits species coexistence. If there

is even small interspecific variation, stabilizing processes such as

intraspecific density regulation must be operating for species

richness to be maintained.

We confirm the importance of the specifics of the fire regime,

including time since last fire and mode of fire spread, on species

richness [21,37]. However, in our model, resprouters are more

sensitive to changes in the fire regime than are non-sprouters. This

differs from previous local community models [38] where non-

sprouters were not permitted to compensate for local extinctions

by colonization from elsewhere in the metacommunity. Boosted

regression tree analysis indicates that non-sprouters are best

adapted to intermediate fire regimes (local time since last fire,

tslf = 12–30 years, which is close to the reported recent fire

intervals [39]), whereas resprouters always responded positively to

an increase in the time between fires. However, only resprouters

can persist under a regime of very frequent fires (e.g. local time

since last fire, tslf #5 years). In the systems we consider, whether

fire spread depends more on vegetation age (and therefore on

standing biomass) than on weather conditions is contentious [40–

43]. Our sensitivity analysis showed that fuel age dependency of

fire spread has a positive effect on species richness, mainly because

it results in a longer average time since last fire [21] (see Fig. S1 in

EMS).

Figure 2. Species richness and RAD. Impact of non-sprouter number of seedlings per adult (the number of non-sprouter seedlings at age 9 bi),
and resprouter maximum fire survival probability psurv,max on final species richness (after 10 000 time steps a,d,g) and RAD after 10 000 (b,e,h) and
100 000 years (c,f,i, circles show relative abundance of non-sprouters and triangles relative abundance of resprouters) for three selected scenarios:
a,b,c) all demographic parameters are identical for species within a PFT and there is no density regulation (neutral), d,e,f) demographic parameters
vary between species within a PFT and there is no density regulation(species differ), and g,h,i) demographic parameters vary between species and
density regulation is operating (niche).
doi:10.1371/journal.pone.0065084.g002

Hybrid Metacommunity Model
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Niche and neutral models differ markedly in their temporal

dynamics [44]. It has been claimed that if there is a sufficiently

large number of species in each niche then niche-based and

neutral models produce similar rank-abundance distributions

(RAD) [17,18]. This assertion is not supported by our study.

Initial conditions persist in neutral models for a very long time –

slow dynamics are fundamental to the maintenance of species

richness in such models [1]. If species have different life-history

attributes, a distinctive community structure emerges much faster.

After 100 000 years, only those models that included species-

specific variation resulted in RAD close to those observed near our

study site [3,45]. Although it has been shown that neutral models

can be parameterized for Mediterranean-type ecosystems [2,3],

the slow transient dynamics revealed in our simulation model and

the empirical study of Perry et al. [3] cast some doubt on their

suitability.

Theoretical studies have shown that identical species cannot

stably coexist in a network of habitat patches [46]. However, it is

questionable whether an equilibrium perspective is appropriate for

ecosystems where environmental conditions can change substan-

tially over the lifespan of long-lived individuals [47,48]. This is

why we focus on transient system dynamics over a period of

10 000 years (equivalent to 200–2000 generations of non-

sprouters). We know much less about the dynamics of the neutral

model than we do about its steady-state predictions [49]. Shifting

focus from equilibrium steady-state to transient dynamics [50]

suggests that similar species can coexist over ecological time-scales

in niche-based models similar to that of Wang, Zhang and Wang

[46]. Exploring transient dynamics with simulation models is

important if the response of ecological systems is delayed or

memory effects are present [51,52]. On the other hand, simulation

models often comprise a large set of parameters and a number of

processes and rules, and it is a non-trivial task to investigate the

impact of individual parameters on the results and to disentangle

the influence and interactions of different processes [53].

Therefore thorough and rigorous sensitivity analyses are crucial

for such models [53].

Despite the importance of sensitivity analyses, coping with the

structural complexity and number of parameters in detailed

models is technically demanding. Modern statistical computational

methods such as boosted regression trees [33], together with new

modelling strategies such as pattern-oriented modelling [54],

provide us with powerful tools to deal with high-dimensional

problems. The combination of stochastic process-based simulation

models and flexible model analysis tools will enable us to improve

our understanding of the processes that maintain species diversity

beyond the lessons we have learned from deterministic equation-

based models.

Conclusions

Combining the niche and neutral approaches by creating niche-

based models for PFTs yielded a metacommunity model that

allowed the long-term coexistence of non-sprouting and resprout-

ing species in fire-prone Mediterranean-type shrublands across a

wide range of values for several key demographic parameters.

Coexistence of these two PFTs could be explained by a trade-off

between the higher reproductive rate of non-sprouters and fire

survival probability of resprouters. Species richness was main-

tained under two contrasting assumptions: i) species within one

PFT are identical and intraspecific density regulation is not

required, or ii) species show specific variation in their demographic

attributes and intraspecific density regulation is required. Howev-

er, rank-abundance distributions in the neutral model remain

Figure 3. Simulated rank-abundance curves. Simulated rank-abundance curves for two scenarios: neutral scenario, and niche scenario after
10 000 time steps (a, b) and 100 000 time steps (c, d). Circles represent non-sprouting species and triangles resprouting species. The simulation
started with 132 non-sprouting and 132 resprouting species.
doi:10.1371/journal.pone.0065084.g003

Hybrid Metacommunity Model
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dominated by initial conditions even after 100 000 years because

only chance events structure the community. In contrast, the

niche-based approach, where species within a particular PFT show

interspecific variation, together with intraspecific density regula-

tion, resulted in a more realistic rank-abundance structure over the

same time period. Our results emphasise the ecological impor-

tance of variability in species characteristics, and demonstrate that

neglecting this variation can have a large impact on our

understanding of system dynamics that might lead to an

underestimate of extinction risks for rare species.

Supporting Information

Table S1 Scenario overview. Overview of the three scenarios

presented and discussed in the main text. Scenarios are

characterised by the range of species-specific variation in number

Figure 4. Sensitivity analysis. Partial dependence plots for the four most important predictor variables for: a) overall species richness S, b) non-
sprouter species richness SNS, and c) resprouter species richness SRE based on a boosted regression tree analysis of 2 010 random parameter samples
(see Table 1 for details). The fitted value on the y-axis shows the effect of a given variable on the response after accounting for the average effects of
all other variables in the model. The relative influence (%) of each predictor variable on the response is given in brackets in the legend of the x-axis.
doi:10.1371/journal.pone.0065084.g004
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of seedlings per adult (dR ) and the strength of density regulation.

(fK
-1). In all three scenarios fire survival does not differ between

species (dp = 0) and fire spread does not depend on vegetation age

(fmode = 0).

(DOCX)

Figure S1 Time since last fire. Average time since last fire of

habitat grid cells is a function of the basic fire-spread probability pc

and the mode of fire spread fmode, i.e. whether fire spread depends

on the fuel age (filled circles) or not (unfilled circles).

(TIF)

Methods S1 Details – description of the submodels.
(DOCX)

Animation S1 Temporal dynamics of RADs for the
neutral scenario. Corresponding to Figure 3 a, we present

the temporal dynamics of the RAD for the neutral scenario

initialized with 132 non-sprouter species (circles) and 132

resprouter species (triangles) over 10 000 years.

(MP4)

Animation S2 Temporal dynamics of RADs for the niche
scenario. Corresponding to Figure 3 b, we present the temporal

dynamics of the RAD for the niche scenario initialized with 132

non-sprouter species (circles) and 132 resprouter species (triangles)

over 10 000 years.

(MP4)
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