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Abstract: Identifying novel indications for approved drugs can accelerate drug development and
reduce research costs. Most previous studies used shallow models for prioritizing the potential
drug-related diseases and failed to deeply integrate the paths between drugs and diseases which
may contain additional association information. A deep-learning-based method for predicting
drug–disease associations by integrating useful information is needed. We proposed a novel
method based on a convolutional neural network (CNN) and bidirectional long short-term memory
(BiLSTM)—CBPred—for predicting drug-related diseases. Our method deeply integrates similarities
and associations between drugs and diseases, and paths among drug-disease pairs. The CNN-based
framework focuses on learning the original representation of a drug-disease pair from their similarities
and associations. As the drug-disease association possibility also depends on the multiple paths
between them, the BiLSTM-based framework mainly learns the path representation of the drug-disease
pair. In addition, considering that different paths have discriminate contributions to the association
prediction, an attention mechanism at path level is constructed. Our method, CBPred, showed
better performance and retrieved more real associations in the front of the results, which is more
important for biologists. Case studies further confirmed that CBPred can discover potential
drug-disease associations.

Keywords: drug repositioning; convolutional neural network; drug research and development;
bidirectional long short-term memory; attention mechanism at path level

1. Introduction

The research and development (R&D) stage of producing a novel drug is a time-consuming,
complex, and costly process that normally lasts for more than ten years and costs approximately
1 billion dollars [1–4]. Simultaneously, there is a large gap between the high investment in R&D and the
number of new drugs finally approved [5–7]. Because approved drugs have undergone the necessary
clinical trials, their safety has been evaluated, identifying new indications for these drugs, (i.e., drug
repositioning), which can effectively reduce the time and costs for drug-related R&D [5,8,9].

Network-based approaches have been widely used to study biological and medical associations [10,11].
Computational prediction of the associations between drugs and diseases can identify candidates for
further wet-lab validation [12,13]. Several methods are used to predict and prioritize drug-associated
diseases, which can generally be divided into two categories. Methods in the first category capture
network topology information using a diffusion algorithm and then provide association scores for
candidate diseases [14–17]. Wang et al. [16] identified candidate diseases using an iterative update
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algorithm based on the guilt-by-association principle. Luo et al. [15] established a drug network and
disease network and calculated association scores by random walk of the two networks. Liu et al. [14]
integrated the two networks as a drug–disease network and applied a random walk method to the
network. These methods inferred candidates with edges weighted by similarities and associations
among nodes in the network. However, a major limitation to these approaches is that they only
consider the topological information of the network while ignoring original information at the nodes.

Methods in the second category mainly integrate the heterogeneous similarities of drugs or
diseases through matrix factorization and projection [1,18]. A method developed by Liang et al. [1]
works by minimizing the loss of the prediction matrix from the original association matrix from various
perspectives. Zhang et al. [18] considered the biological background using the similarities of drugs and
diseases as a constraint for low-dimensional matrices during prediction. However, in these methods,
low-frequency effective information may be missed during the projection process. Additionally, the
final prediction matrix only fits the original association from the mathematical layer and does not learn
the deep representation among nodes.

The above two types of shallow methods have limited representation for complex biological data
and lack the ability to learn essential features from sparsely known drug–disease associations (ratio of
known associations to unknown associations was approximately 1 to 169 in our study) [19]. Series
literatures found that deep learning methods are well suited for modeling complex biological data
to support drug discovery [20–22]. In this study, we present CBPred, a novel method for predicting
the potential drug–disease associations. First, we constructed a drug–disease heterogeneous network
based on the similarities and known associations between nodes. Next, we proposed a novel two-way
deep learning structure, a convolutional neural network (CNN), and bidirectional long short-term
memory (BiLSTM)—named CBPred—for predicting and prioritizing candidate diseases of drugs.
The original information and topological information among nodes were integrated using the CNN
and BiLSTM to obtain deep representations and provide candidate diseases. An attention mechanism
was introduced to improve the performance of our model because the contribution of different types of
information to the drug–disease associations are different.

This novel method can deeply explore the original and topological representation of similarities
between nodes, i.e., drugs and diseases, and known associations among two nodes. When we
applied this method to various well-characterized drugs, CBPred recommended candidate diseases for
treatment with the drugs with high accuracy. Case studies of five drugs, ciprofloxacin, ceftriaxone,
ofloxacin, ampicillin, and levofloxacin, also demonstrated the ability of our method to recognize
potential associations between drugs and diseases.

2. Materials and Methods

Our primary aim was to predict and prioritize novel association scores between drugs and diseases.
We first constructed a drug–disease heterogeneous network via various connections among nodes,
i.e., similarities and associations. To comprehensively consider original information and topological
information of the drug–disease pair, we designed a novel prediction model based on the CNN module
and BiLSTM module. Finally, we obtained association score between a drug ri and disease dj. A higher
score indicated a greater likelihood that ri was involved in the disease process of dj.

2.1. Dataset

Drug–disease associations were obtained from a previous study [23], consisting of 763 drugs and
681 diseases. The drug–disease association data were originally extracted from the Unified Medical
Language System [24]. There were 3051 known drug–disease associations. The chemical fingerprints
for drug similarity calculations were extracted from PubChem [25]. Additionally, we used the method
developed by Wang et al. [26] to construct directed acyclic graphs of the diseases using standard
Medical Subject Headings disease terms.
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2.2. Construction of a Drug–Disease Network

A two-layer heterogeneous drug–disease network, DrDisNet, was constructed based on the
similarities and associations of drugs and diseases, which consisted of a drug network (DrNet) and
disease network (DisNet) as well as the edge (i.e., association between drugs and diseases) among the
two networks.

2.2.1. Drug Network Construction

To measure the drug similarities for constructing the drug network (DrNet), we used the method
developed by Liang et al. [1] to calculate the cosine similarity of the chemical substructure vector
among the drugs. The chemical substructure vector of a drug is an 869-dimensional binary vector.
The presence or absence of each chemical substructure of a drug is encoded as 1 or 0. When the drug
similarity was greater than 0, we added an edge to connect the two drug nodes in DrNet; the weight of
the edges reflected the similarity between the drugs (Figure 1). DrNet can be represented by matrix
R =

[
Ri j

]
∈ RNr×Nd where Nr is the number of drugs and Ri j is the similarity of drugs ri and r j in the

range 0 to 1. An Ri j closer to 1 indicates greater similarity between ri and r j. Ri j is calculated as follows:

Ri j =
ci·c j

||ci||||c j||
(1)

where ci and c j are the chemical substructure vectors of ri and r j, respectively, and ||·|| indicates the
magnitude of vector.
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Figure 1. Construction of drug-disease heterogeneous network DrDisNet. R and D are the similarity 
matrix of drugs and diseases, respectively. A is the association matrix between drugs and diseases, 
while AT is the transpose of A. 

2.2.2. Disease Network Construction 

Disease similarities play an important role in disease network construction. Wang et al. [26] used 
the MeSH disease term for each disease to calculate their respective semantic values. Next, semantic 
similarity was calculated from the semantic values of any two diseases. A larger number of common 
annotation terms among the two diseases indicated higher semantic similarity. 

DisNet consisted of all pairs of diseases with similarity values greater than 0. The weight of any 
edge in the network was set to the similarity among the diseases to which the edge was connected. 
Matrix d dN N×∈D R   denotes DisNet where 𝑫  is the similarity between diseases 𝑑  and 𝑑  and 𝑁  is the number of diseases.  

Figure 1. Construction of drug-disease heterogeneous network DrDisNet. R and D are the similarity
matrix of drugs and diseases, respectively. A is the association matrix between drugs and diseases,
while AT is the transpose of A.

2.2.2. Disease Network Construction

Disease similarities play an important role in disease network construction. Wang et al. [26] used
the MeSH disease term for each disease to calculate their respective semantic values. Next, semantic
similarity was calculated from the semantic values of any two diseases. A larger number of common
annotation terms among the two diseases indicated higher semantic similarity.

DisNet consisted of all pairs of diseases with similarity values greater than 0. The weight of any
edge in the network was set to the similarity among the diseases to which the edge was connected.
Matrix D ∈ RNd×Nd denotes DisNet where Di j is the similarity between diseases di and d j and Nd is the
number of diseases.
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2.2.3. Edges between DrNet and DisNet

We considered the known associations between drugs and diseases as the edges that connected
the corresponding nodes in DrNet and DisNet. The edge set was represented as A ∈ RNr×Nd , where
each row represented a drug and each column represented a disease. Ai j is 1 when drug ri has a known
association with d j, while it is 0 when an association is not observed between ri and d j.

Finally, the heterogeneous drug–disease network DrDisNet was constructed by connecting DrNet
and DisNet via known drug–disease associations (Figure 1). To concisely illustrate the subsequent
methods, we assumed that Nr = 5 and Nd = 4.

2.3. Prediction Model Based on CNN and BiLSTM Module

We propose a novel prediction model based on CNN and BiLSTM—named as CBPred—which
is shown in Figure 2. The convolution module on the left part of CBPred was introduced to learn
the association representation from the perspective of the original features of a node pair (ri, d j).
Additionally, because the path from ri to d j also responds to the associated tendency between ri
and d j, a BiLSTM module on the right part was used to integrate topological information into the
path representation.
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Figure 2. Construction of the framework based on the convolutional neural network and bidirectional 
long short-term memory for learning the original and path representations. 
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Feature matrix of drug and disease for the CNN module. Normally, if the similarity of a drug 
is more consistent with the association of a disease, the more likely it is that they are associated and 
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associations between drug and disease nodes, as shown on the left side of the feature matrix. 
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Figure 2. Construction of the framework based on the convolutional neural network and bidirectional
long short-term memory for learning the original and path representations.

2.3.1. Embedding Layer

Feature matrix of drug and disease for the CNN module. Normally, if the similarity of a drug is
more consistent with the association of a disease, the more likely it is that they are associated and vice
versa. Therefore, we spliced up and down the similarities between the drug nodes and associations
between drug and disease nodes, as shown on the left side of the feature matrix.

We use drug r1 and disease d4 as an example to illustrate the integration process (Figure 3).
The first row of the drug similarity matrix R indicates the similarity to other drugs with r1, and the
fourth of the AT expresses the association drugs with d4. Because r1 is similar to r4 and r5, r3 and r5 are
also both related to d4. Thus, r1 is likely to be involved in the disease process of d4.
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Figure 3. Integration process of drug and disease nodes to construct the feature matrix in the CNN 
module of our model and path set in the BiLSTM module of our model. 
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module of our model and path set in the BiLSTM module of our model.

Similarly, if the relationship of r1 and d4 are more consistent with each disease, they will show
a higher propensity for association. r1 is associated with d2 and d3, while d4 is similar to d1 and d3,
and thus, r1 may associate with d4. Based on this information, we integrated the first row of A and
the fourth row of D, as shown in the right part of the feature matrix. The final integration result is
represented by the feature matrix F ∈ R2×(Nr+Nd). Furthermore, the first and second rows of F are
feature embedding of the drug and disease, respectively.

Path sequence features for the BiLSTM module. It is well known that if two drugs are very
similar, they are likely involved in a similar disease process. For example, for the path, r1–r5–d4, r1 is
similar to r5, and r5 is associated with d4, indicating an association between r1 and d4. Based on similar
logic, we can obtain the following path: Because d3 is similar to d4 and r1 is associated with d3, d4

may be treated by r1. Thus, there is a second path, r1–d3–d4. Finally, we enumerate the path from the
starting point rs to the end of dt in the network to obtain the path set P(s,t) ∈ RNpath ×1 × (Nr + Nd), where
Npath is the number of paths between nodes rs and dt, and the i-th path sequence in the P(s,t) defined as
pi. P(1,4) is inputted into the bidirectional LSTM module as the path feature of the pair (r1, d4) to learn
the representation at the path level.

2.3.2. Convolutional Module on the Left

The feature matrix F is fed into the convolutional module to learn a latent original representation
of node pair (r1, d4) (Figure 4). To capture the boundary information of F, we first pad F to obtain
Pconv ∈ R(2×pconv+2)×(2×pconv+Nr+Nd), where pconv is the number of padding layers around F. For the first
convolution layer, to apply the filter operators to the feature areas of wh ×ww, we set the size of filter as
(wh, ww).

Next, we can obtain the feature map Z1 ∈ R(2×pconv−wh+3)×(2×pconv+Nr+Nd−ww+1)×Nconv in this layer,
where Nconv is the number of filters. We used the subscript of the first element in the filter in Pconv as
the filter position. For example, Wconv(i, j, k) indicates that the kth filter starts at the feature area at ith
row and jth column in Pconv. The area and process of convolution are defined as follows:

Pconv(i, j) = Pconv(i : i + wh − 1, j : j + ww − 1) (2)

Z1i, j, k = g(Pconv(i, j) × Wconv(i, j, k) + bconv(k)) (3)

i ∈ [1, 2 + 2 × pconv − wh + 1], j ∈ [1, Nr + Nd + 4− ww + 1], k ∈ [1, Nconv] (4)
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1 
 

 
Figure 4. Learning process of the original representation of drug–disease pair by convolution and
pooling on the left part.

Z1(i, j, k) is the first convolution output in which the kth filter is sliding to the ith row and jth
column of Pconv. g is a nonlinear activation function (rectified linear unit, ReLU), and bconv is a bias
vector. To integrate features and reduce parameters, we use average pooling to compress the data
in Z1 in the pooling layer. The size of the pooling window is set to a × b, from which we obtain

Q1 ∈ R
2×pconv−wh+3

a ×
2×pconv+Nr+Nd−ww+1

b ×Nconv . We then use Q1 as the input to the second convolution layer,

and obtain a similar output q ∈ R1×
2×pconv+Nr+Nd−ww+1

b ×Nconv through the second average pooling. q is
then flattened to obtain an original representation of the node pair (r1, d4), denoted as vn:

vn = f latten(q) (5)

2.3.3. BiLSTM Module on the Right

The LSTM module controls the information flow through the gate mechanism, while the BiLSTM
module learns the context representation of the input sequence from a forward LSTM and reverse
LSTM [27,28]. The previously obtained path set P(1,4) was fed into the BiLSTM module on the right
part to learn the path representation of r1 and d4 (Figure 5).Cells 2019, 8, 705 7 of 16 
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Figure 5. Learning process of the path representation in the BiLSTM module. 
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Figure 5. Learning process of the path representation in the BiLSTM module.
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There are three gates, the forget gate f f
i j, input gate i f

i j, and output gate o f
i j, in the forward LSTM

unit which control how much information from path sequences should be forgotten, inputted, and
outputted, respectively. The formulas for the three gates were defined as follows:

f f
i j

i f
i j

o f
i j

 =


σ
σ
σ


(
Wf

g

[
h f

i( j−1)
⊕ xi j

]
+ b f

g

)
(6)

where σ is the sigmoid activation function and⊕ is the connection operator. The upper corner f indicates
that this is a parameter of the forward LSTM unit; for example, W f

g and b f
g are the weight matrix and

bias vector of the gate in the forward unit, respectively. xi j represents the embedding of the jth node of
the ith path pi in the path set P(1,4).

Forward LSTM linearly integrates the candidate state ĉ f
i( j − 1)

of xi( j − 1) with the candidate state

ĉ f
i j of xi j and determines how much information in the ĉ f

i( j − 1)
should be retained by f f

i j and how much

information in the ĉ f
i j are accepted by i f

i j. Thus, obtaining the state c f
i j of the sequence consisting of the

1st to jth nodes in the pi:

c f
i j = f f

i j

⊙
ĉ f

i( j−1)
+ i f

i j

⊙
ĉ f

i j (7)

where
⊙

is the element-wise product operator. The candidate state ĉ f
i j of xi j is obtained by

comprehensively considering the information from the previous node and xi j, defined as follows:

ĉ f
i j = tanh

(
W f

c

(
h f

i( j−1)
⊕ xi j

)
+ b f

c

)
(8)

where W f
c and b f

c are the weight matrix and bias vector of the candidate state, respectively. Finally,
how much information in c f

i j is adjusted by o f
i j as the hidden state h f

i j output is expressed as follows:

h f
i j = tan h

(
o f

i j

⊙
c f

i j

)
(9)

where h f
i j is a forward path representation of the 1st to jth nodes in pi. We take the hidden state h f

il of

the last node as the representation of pi, where l is the length of pi. The inverted sequence pb
i of pi is

then inputted into a structurally similar backward LSTM module to obtain a backward representation
hb

il of pb
i . The upper corner b indicates that this is a parameter of the backward LSTM module. Thus, the

path representation of the ith path in the bidirectional LSTM module is given by the following formula:

hi = h f
il ⊕ hb

il. (10)

2.3.4. Attention Mechanism at Path Level

From the perspective of P(1,4), not all paths equally contributed to the association prediction of r1

and d4. An attention mechanism at the path level was introduced to extract paths important in the
association between the drug and disease [29]. This yields:

ui = tanh
(
Wphi + bp

)
(11)

αi =
exp

(
uiuT

p

)
∑

j exp
(
u juT

p

) (12)

vp =
∑

i

αihi (13)
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where ui is a hidden representation of hi. The path level context vector up attempts to generalize the
path strongly contributing to the association between r1 and d4 from P(1,4), while uT

p is the transpose of
up. Next, we measured the importance of pi in P(1,4) by comparing the similarity between ui and up, and
obtained the attention weight αi through the softmax function. vp is a path vector, which is a weighted
sum of all information from path set P(1,4) based on the attention weights and path representations.

2.3.5. Combined Strategy

The original representation vn and path representation vp are both high-level representations
of r1 and d4 and can be used as features for association classification. Thus, we projected the two
representations vn and vp into the association distribution of C classes via the SoftMax layer while
choosing the cross-entropy loss to evaluate the error between the known association distribution and
prediction distribution:

sn = so f tmax(Wnvn + bn) (14)

lossn = −
∑
t∈T

C∑
c = 0

pg
c (t) × log(sn(t)) (15)

sp = so f tmax
(
Wpvp + bp

)
(16)

lossp = −
∑
t∈T

C∑
c = 0

pg
c (t) × log(sp(t)) (17)

where t is the node pair in the training set T, pg
c (t) is the one hot embedding of t, and sn(t) and sp(t) are

the predicted scores of t from the CNN and BiLSTM modules, respectively. We designed a combined
strategy for the model to make full use of the original representation vn and path representation
vp. We used the Adam optimization algorithm to optimize the objective function [30]. Let λ be a
hyperparameter to control the contribution of the original representations and path representations of
the node pairs for the final predicted score.

s = λsn + (1− λ)sp (18)

3. Experimental Evaluation and Discussion

3.1. Evaluation Metrics

We performed 5 fold cross-validation 20 times to evaluate the performance of our prediction
method and the corresponding results were averaged [31,32]. First, known associated drug–disease
pairs were divided randomly into five subsets and treated as positive samples. The remaining pairs
were considered negative samples. Because the number of positive samples was much smaller than the
number of negative samples in our dataset (approximately 1 to 169), we sampled a matching number
of non-associating pairs randomly and divided them into five subsets to reduce the impact of class
imbalance in predicting the results. Particularly, in each fold cross-validation, we used four positive
and negative subsets as the training set for model training and the remaining positive samples as the
testing set for performance evaluation. Finally, a higher rank for the positive samples indicated better
the prediction performance of the method.

A disease with a score higher than the threshold θ indicates that it is identified as a positive
sample and vice versa. Thus, the TPRs (true-positive rates) and FPRs (false-positive rates) under
various θ can be calculated as follows:

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

(19)
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where TP (true-positive) and TN (true-negative) are the number of positive and negative samples
which were correctly identified, while FN (false-negative) and FP (false-positive) are the number of
positive and negative samples which were misidentified [33]. The receiver operating characteristic
(ROC) curve can be drawn according to the TPR and FPR under each θ [34].

A ROC curve was constructed for each drug, and the area under the ROC curve (AUC) was used
to evaluate the predictive performance of the method for the specific drug [35,36]. The average AUC
of all drugs is considered as the comprehensive performance of the prediction model.

However, in most cases of class imbalance, the precision–recall (P–R) curves are more informative
than the ROC curve [37]. Precision is the proportion of true-positive samples in all identified positives
and recall is the ratio of true-positives among the samples with known associations [38]. Therefore, we
used the P–R curve as another measurement to evaluate the performance of each method. The area
under the P–R curve (AUPR) is another evaluation metric that focuses on true-positive samples [39].
The precision rates and recall rates can be defined as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (20)

Additionally, biologists typically select the top part of the predictive result for further validation
in wet-lab experiments. Thus, the recall rates of the top k candidate drug-related diseases are more
important because they reveal the number of successfully identified positive samples. We calculated
the recall rates of the top k candidate to demonstrate the performance of each method on the top
rankings of the predictive result.

3.2. Comparison with Other Methods

To evaluate the performance of CBPred, we compared this method with a series of state-of-the-art
methods for predicting associations between drugs and diseases, including MBiRW [15], LRSSL [1],
SCMFDD [18], and HGBI [16].

The hyperparameter of CBPred, λ, was selected from {0.1, 0.2, . . . , 0.9}. Since CBPred yielded
better performances for both λ = 0.1 and 0.2, we chose 0.12 as the final value of λ after fine tuning.
The learning rate was set as 0.001. For the first convolutional layer, we set the kernel size = (3, 5),
out channel = 16, and pooling size = 2. For the second convolutional layer, kernel size = (3, 11), out
channel = 32, and pooling size = 2. For fair comparison, the parameters in other methods were adjusted
according to the authors’ suggestions (i.e., α = 0.3, c = −11, d = log(9999), l = r = 2 for MBiRW, µ = λ =

0.01, γ = 2, k = 10 for LRSSL, k = 45%, µ = 1, λ = 4 for SCMFDD, and α = 0.4 for HGBI).
As shown in Figure 6a, CBPred showed the best performance for 763 drugs (AUC = 0.955).

Specifically, CBPred showed a 25.3% higher AUC than HGBI, 23.2% higher AUC than SCMFDD,
12.7% higher AUC than MBiRW, and 12.4% higher AUC than LRSSL. We also show the predictive
results of 15 well-characterized drugs in Table 1; CBPred achieved the best performance for 12 drugs.
Both CBPred and LRSSL not only consider the nodes’ attributes based on node similarities, but also
extract topological information of drug–disease heterogeneous networks. Thus, compared to other
methods, CBPred and LRSSL achieved the best and second-best performances. Luo et al. constructed
a random walk with a restart-based model, MBiRW, for predicting associations between drugs and
diseases. It focuses on the topological information of the networks, while node attributes are ignored.
Additionally, because the restart probability is difficult to determine, which may result in insufficient
global topological information or excessive noise, the performance of MBiRW was worse than the
second method, LRSSL. Zhang et al. applied a matrix factorization-based model, SCMFDD, for
predicting novel associations, which relies on the adjacency matrices of the heterogeneous network.
However, reducing the dimension of the feature vectors may lead to loss of the potential information.
Thus, the performance of SCMFDD was worse than that of MBiRW but better than that of HGBI.
Comprehensively, HGBI showed lower performance than the other methods because it was too
dependent on the similarity of drugs and diseases.
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ceftazidime 0.940 0.925 0.939 0.924 0.916 
ceftizoxime 0.902 0.894 0.841 0.823 0.854 
ceftriaxone 0.863 0.925 0.808 0.779 0.851 

ciprofloxacin 0.917 0.893 0.810 0.790 0.844 
doxorubicin 0.921 0.749 0.361 0.486 0.918 

erythromycin 0.859 0.817 0.769 0.734 0.857 
itraconazole 0.942 0.543 0.701 0.560 0.897 
levofloxacin 0.910 0.852 0.824 0.819 0.867 
moxifloxacin 0.909 0.792 0.841 0.849 0.826 

ofloxacin 0.899 0.884 0.851 0.845 0.896 
The bold values indicate the higher AUCs.  

The precision–recall curves of each method are demonstrated in Figure 6b. The average AUPR 
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Figure 6. Two type of curves of CBPred and other methods for predicting performance evaluation. (a)
Receiver operating feature characteristic (ROC) curves; (b) precision–recall (P–R) curves.

Table 1. Prediction results of CBPred and four other methods for 15 drugs in terms of the area under
the receiver operating characteristic curve (AUC).

Disease Name
AUC

CBPred LRSSL SCMFDD HGBI MBiRW

Ave AUC on 763 drugs 0.955 0.831 0.723 0.702 0.828

ampicillin 0.909 0.885 0.861 0.786 0.906
cefepime 0.953 0.932 0.898 0.910 0.872

cefotaxime 0.906 0.902 0.911 0.870 0.967
cefotetan 0.889 0.892 0.897 0.908 0.866
cefoxitin 0.913 0.911 0.899 0.909 0.907

ceftazidime 0.940 0.925 0.939 0.924 0.916
ceftizoxime 0.902 0.894 0.841 0.823 0.854
ceftriaxone 0.863 0.925 0.808 0.779 0.851

ciprofloxacin 0.917 0.893 0.810 0.790 0.844
doxorubicin 0.921 0.749 0.361 0.486 0.918

erythromycin 0.859 0.817 0.769 0.734 0.857
itraconazole 0.942 0.543 0.701 0.560 0.897
levofloxacin 0.910 0.852 0.824 0.819 0.867
moxifloxacin 0.909 0.792 0.841 0.849 0.826

ofloxacin 0.899 0.884 0.851 0.845 0.896

The bold values indicate the higher AUCs.

The precision–recall curves of each method are demonstrated in Figure 6b. The average AUPR of
CBPred was greater than those of all the other methods (AUPR = 0.182). Our method, CBPred, achieved
a 17.0%, 16.9%, 13.7%, and 7.5% higher AUPR than HGBI, SCMFDD, MBiRW, and LRSSL, respectively.
As shown in Table 2, CBPred showed the best performance for 12 of the 15 well-characterized drugs.
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Table 2. Prediction results of CBPred and four other contrast methods for 15 drugs in terms of the area
under the precision–recall curve (AUPR).

Disease Name
AUPR

CBPred LRSSL SCMFDD HGBI MBiRW

Ave AUPR on 763 drugs 0.182 0.107 0.013 0.012 0.045

ampicillin 0.249 0.220 0.059 0.089 0.058
cefepime 0.258 0.562 0.101 0.137 0.279

cefotaxime 0.276 0.273 0.072 0.098 0.266
cefotetan 0.177 0.724 0.093 0.131 0.152
cefoxitin 0.227 0.136 0.051 0.081 0.186

ceftazidime 0.201 0.187 0.132 0.164 0.119
ceftizoxime 0.328 0.168 0.125 0.174 0.153
ceftriaxone 0.269 0.138 0.081 0.101 0.123

ciprofloxacin 0.471 0.256 0.061 0.074 0.071
doxorubicin 0.164 0.159 0.006 0.007 0.075

erythromycin 0.194 0.034 0.013 0.013 0.052
itraconazole 0.334 0.057 0.008 0.006 0.097
levofloxacin 0.263 0.512 0.086 0.111 0.177
moxifloxacin 0.301 0.158 0.095 0.126 0.098

ofloxacin 0.221 0.214 0.114 0.158 0.095

The bold values indicate the higher AUPRs.

A Wilcoxon test to evaluate the prediction results of 763 drugs revealed that CBPred significantly
outperformed the other methods [40–42]. These results were observed using a p-value threshold of
0.05, with CBPred showing better performance in terms of both AUCs and AUPRs (Table 3).

Table 3. Results of Wilcoxon test on CBPred and four other contrast methods for 763 drugs.

p-Value between CBPred
and Another Method LRSSL SCMFDD HGBI MBiRW

p-value of ROC curve 3.577 × 10−13 1.218 × 10−75 1.460 × 10−80 3.724 × 10−32

p-value of P–R curve 2.591 × 10−15 1.122 × 10−76 6.075 × 10−80 4.577 × 10−38

Among the top k-ranked drugs, a higher recall rate indicated that drug-associated diseases were
correctly identified. Our method, CBPred, consistently outperformed the other methods under different
k values, as shown in Figure 7, and ranked 76.38% for the top 30 drugs, 85.78% for the top 60, and
92.54% for the top 120. Zhang’s method, SCMFDD, showed very similar results to Wang’s method,
HGBI, for most of the recall rates, with the former ranked 27.97%, 41.75%, and 55.82% for the top
30, 60, and 120 drugs, respectively, while the latter ranked 25.70%, 37.39%, and 51.57%. The recall of
LRSSL was higher than that of MBiRW before the top 120, after which it was surpassed. This may be
because the k-nearest neighbors algorithm is utilized in the process of LRSSL, which may make the
prediction effect too dependent on neighboring node information, causing difficulties in predicting
isolated nodes. Luo’s method, MBiRW, captured the global information for the drug–disease network
and local topology of the node through random walk with restart algorithm, which showed better
results than LRSSL.

In addition, to confirm the performance of CBPred from another perspective, we constructed a
new drug–disease network where the disease similarities are calculated using disease ontology and
disease-related genes according to Cheng’s method [43]. The ROC and P–R curves of CBPred and
other methods are shown in Supplementary Materials Figure S1. Our method, CBPred, still achieved
the best performance under the new drug–disease network, which also illustrated that CBPred was
effective when the disease ontology and disease-related genes were taken into account.
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3.3. Case Studies of Five Drugs

To demonstrate the ability of CBPred to discover novel drug–disease associations, we conducted
case studies of ciprofloxacin, ceftriaxone, ofloxacin, ampicillin, and levofloxacin and then analyzed
their top ten candidate diseases (Table 4).

Table 4. The top 10 candidates of 5 popular drugs supported by databases. The associations involved
in the table are all inferred by the literature in the comparative toxicogenomic database or included
by databases.

Rank Disease Name Description Rank Disease Name Description

C
ip

ro
flo

xa
ci

n 1 Conjunctivitis, Bacterial ClinicalTrials 6 Campylobacter Infections Drugbank
2 Chlamydia Infections CTD 7 Neurocysticercosis Drugbank
3 Thrombocytopenic, Idiopathic Drugbank 8 Respiration Disorders ClinicalTrials
4 Acanthamoeba Keratitis Drugbank 9 Anthrax CTD
5 Scalp Dermatoses PubChem 10 Skin Diseases CTD

C
ef

tr
ia

xo
ne

1 Panic Disorder Drugbank 6 Bacteroides Infections PubChem
2 Respiration Disorders ClinicalTrials 7 Bone Diseases, Infectious ClinicalTrials

3 Respiratory Distress Syndrome,
Adult ClinicalTrials 8 Multiple Myeloma Drugbank

4 Rickettsia Infections PubChem 9 Rectal Neoplasms inferred candidate
by 2 literature

5 Respiratory Distress Syndrome,
Newborn ClinicalTrials 10 Maxillary Sinusitis Drugbank

O
flo

xa
ci

n

1 Trichuriasis inferred candidate
by 1 study 6 Pulmonary Valve Stenosis PubChem

2 Corneal Ulcer PubChem 7 Schizophrenia CTD
3 Nausea CTD 8 Peritonitis CTD
4 Rectal Neoplasms ClinicalTrials 9 Mouth Diseases CTD
5 Epididymitis Drugbank 10 Proteus Infections CTD

A
m

pi
ci

lli
n 1 Keratosis inferred candidate

by 1 literature 6 Pneumonia, Bacterial CTD,
ClinicalTrials

2 Bacterial Infections CTD 7 Toothache ClinicalTrials

3 Respiratory Syncytial Virus
Infections

inferred candidate
by 1 study 8 Respiratory Tract Fistula PubChem

4 Respiratory Tract Diseases ClinicalTrials 9 Mouth Diseases ClinicalTrials
5 Burns CTD 10 Sarcoma, Ewings PubChem

Le
vo

flo
xa

ci
n 1 Pneumonia, Mycoplasma ClinicalTrials 6 Respiratory Syncytial Virus Infections CTD

2 Rhinitis PubChem 7 Soft Tissue Infections Drugbank
3 Bacteroides Infections PubChem 8 Respiratory Tract Fistula PubChem
4 Tuberculosis, Pulmonary ClinicalTrials 9 Listeriosis PubChem
5 Respiratory Tract Diseases ClinicalTrials 10 Mouth Diseases ClinicalTrials
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The impacts of chemicals (i.e., drugs) on human health are presented in the Comparative
Toxicogenomics Database (CTD). This information was manually collected and verified from published
works. DrugBank records various attributes of the drug itself, such as associations with diseases.
As shown in Table 3, 12 candidates are supported by direct evidence in CTD, and 9 candidates are
involved according to DrugBank. These records indicate that these candidate diseases are treated with
the corresponding drugs.

Clinical Trials is a database of clinical trials conducted worldwide and provides access to various
ongoing and completed experimental information, with detailed patient descriptions and experimental
dosing regimens and treatment outcomes. We selected only records with a status of “Completed” as
our support material. The clinical trial results showed that our drug has a therapeutic relationship
with the candidate disease. PubChem is a public database containing information on chemicals and
their biological activities and is supported by the National Institutes of Health. Fifteen candidates
were included from Clinical Trials and 11 candidates were included by PubChem. This demonstrated
that the candidates are supported by clinical trials.

In addition to the manually verified drug–disease associations, the CTD database also contains
inferred associations from literature that are temporarily unconfirmed. Four candidates were included
by the inferred part of CTD, which shows that they are likely to have associations. Direct or indirect
descriptions of all disease candidates for five drugs were found, revealing that CBPred can identify
drug–disease association candidates with high reliability and accuracy.

3.4. Prediction of Novel Drug–Disease Associations

After evaluating CBPred’s prediction performance through five-fold cross-validation, case studies,
and Wilcoxon test, we applied CBPred to all drugs. All known drug–disease associations were
considered as the training set to train CBPred’s prediction model. Many high-confidence candidate
diseases of drugs were obtained via CBPred and are listed in Supplementary Materials Table S1.

4. Conclusions

A novel method based on a CNN and BiLSTM—CBPred—was developed for predicting potential
disease indications for drugs. The CNN module of the CBPred captures complex and non-linear
relationships among drug similarities, disease similarities, and drug–disease associations about a
drug–disease pair. The path information was deeply integrated using the BiLSTM module of this
method. We also established an attention mechanism at the path level to discriminate the different
contributions of the path, which enhanced the prediction performance of CBPred. The experimental
results revealed that CBPred outperformed other state-of-the-art methods in terms of both AUCs
and AUPRs. Case studies of five drugs confirmed the ability of CBPred to discover potential disease
indications for drugs. Our method, CBPred, is a prioritization tool that identifies reliable candidate
drug–disease associations for subsequent biological validation in wet-lab experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/8/7/705/s1.
Table S1: The top 10 potential candidates for 763 drugs. Figure S1: Two type of curves of CBPred and other
methods under a new drug–disease network.
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