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Abstract

Pluripotent stem cells can potentially be used in clinical applications as a model for studying

disease progress. This tracking of disease-causing events in cells requires constant assess-

ment of the quality of stem cells. Existing approaches are inadequate for robust and auto-

mated differentiation of stem cell colonies. In this study, we developed a new model of

vector–based convolutional neural network (V-CNN) with respect to extracted features of

the induced pluripotent stem cell (iPSC) colony for distinguishing colony characteristics. A

transfer function from the feature vectors to the virtual image was generated at the front of

the CNN in order for classification of feature vectors of healthy and unhealthy colonies. The

robustness of the proposed V-CNN model in distinguishing colonies was compared with that

of the competitive support vector machine (SVM) classifier based on morphological, tex-

tural, and combined features. Additionally, five-fold cross-validation was used to investigate

the performance of the V-CNN model. The precision, recall, and F-measure values of the V-

CNN model were comparatively higher than those of the SVM classifier, with a range of 87–

93%, indicating fewer false positives and false negative rates. Furthermore, for determining

the quality of colonies, the V-CNN model showed higher accuracy values based on morpho-

logical (95.5%), textural (91.0%), and combined (93.2%) features than those estimated with

the SVM classifier (86.7, 83.3, and 83.4%, respectively). Similarly, the accuracy of the fea-

ture sets using five-fold cross-validation was above 90% for the V-CNN model, whereas

that yielded by the SVM model was in the range of 75–77%. We thus concluded that the pro-

posed V-CNN model outperforms the conventional SVM classifier, which strongly suggests

that it as a reliable framework for robust colony classification of iPSCs. It can also serve as a

cost-effective quality recognition tool during culture and other experimental procedures.

PLOS ONE | https://doi.org/10.1371/journal.pone.0189974 December 27, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Kavitha MS, Kurita T, Park S-Y, Chien S-I,

Bae J-S, Ahn B-C (2017) Deep vector-based

convolutional neural network approach for

automatic recognition of colonies of induced

pluripotent stem cells. PLoS ONE 12(12):

e0189974. https://doi.org/10.1371/journal.

pone.0189974

Editor: Jianjun Hu, University of South Carolina,

UNITED STATES

Received: May 31, 2017

Accepted: December 5, 2017

Published: December 27, 2017

Copyright: © 2017 Kavitha et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This research was supported by a grant

of the Korea Health Technology R&D Project

through the Korea Health Industry Development

Institute (KHIDI), funded by the Ministry of Health

& Welfare, Republic of Korea (Grant Number:

HI15C0001) to BCA; by Basic Science Research

Program through the National Research

Foundation of Korea (NRF) funded by the Ministry

https://doi.org/10.1371/journal.pone.0189974
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189974&domain=pdf&date_stamp=2017-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189974&domain=pdf&date_stamp=2017-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189974&domain=pdf&date_stamp=2017-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189974&domain=pdf&date_stamp=2017-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189974&domain=pdf&date_stamp=2017-12-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189974&domain=pdf&date_stamp=2017-12-27
https://doi.org/10.1371/journal.pone.0189974
https://doi.org/10.1371/journal.pone.0189974
http://creativecommons.org/licenses/by/4.0/


Introduction

Induced pluripotent stem cells (iPSCs), which are created from an adult cell that has been

reprogrammed, enable the development of an unlimited source of any type of human cells

needed for drug discovery and clinical applications [1]. iPSCs are able to help track the earliest

disease-causing events in cells and can be used as sources of various cell-based therapies.

Because a healthy quality of undifferentiated iPSCs is an essential requisite for further experi-

mental and therapeutic approaches, the rapid and robust estimation of iPSC quality is very

important to meet growing demands [2–4]. The morphological structure of a healthy or good-

quality iPSC colony commonly has tightly compacted round cells and an explicit boundary,

whereas unhealthy or bad-quality colonies show a different morphology [5]. The present

approach of evaluating the quality of iPSCs on the basis of colony morphology is predomi-

nantly subjective and can strongly differ according to individual skills. Therefore, a quantita-

tive system for the rapid and accurate segmentation and estimation of colony quality is

essential in order to reduce classification errors. Furthermore, removal of the use of fluorescent

labeling or other chemical reagents would be helpful in preparing the iPSCs for additional

research experiments.

Automated segmentation of stem cell colonies for phase contrast imaging is challenging

and requires specialized algorithms to handle the problems of halo artifacts and overlapping of

the colony edges with the feeder cells [6]. The currently available image analysis techniques to

achieve stem cell colony selection are based on morphological operations, thresholding, and

watershed transformation. A combination of these techniques is designed to examine the

status of the colony in each individual research [7–9]. Alternatively, other approaches have

adopted commercial software tools that basically use filtering, automatic thresholding, and

Voronoi algorithms for stem cell segmentation and tracking [1, 5, 10, 11]. In addition, the

morphological categories of colonies based on commercial program require manual interpre-

tation to locate the colony area for feature measurement [5]. Because these aforementioned

image analysis techniques are quite problem specific and rely strictly on parametric settings,

they lack controllability to manipulate variations among the stem cell heterogeneity on a large

scale.

Recently, several supervised machine learning approaches have also been developed and

their significance in distinguishing stem cell colonies confirmed [12–15]. The approaches

designed for the selection of colonies, based on k-nearest neighbor searching with [13] and

without error correction output codes [14], ensemble support vector machine (SVM) [12],

and random forest methods [15], acquired local features from the patches of original images.

In addition, the development of the learning set for discrimination of cells in the colony has to

be done manually. However, a high degree of reliability and cost-effectiveness is very impor-

tant in clinical applications. Recently, many researchers have focused on implementing the

convolutional neural network (CNN) for various medical imaging modalities, and its high reli-

ability and validity for object segmentation and detection applications have been revealed [16,

17]. In addition, CNNs have been successfully applied to microscopic cell imaging data, with

robust decisions on ambiguous cell classifications found, making the process suitable for

clinical applications [18–20]. A deep CNN method for identifying mitosis in the cell nucleus

reportedly had higher satisfactory performance than estimation with conventional methods

[21]. A deep multiple instance learning-based CNN approach effectively segmented mamma-

lian and yeast microscopy images with remarkable accuracy [18]. However, the above-men-

tioned CNN approaches on biomedical imaging data differ from our study, as they have

adopted deep neural networks for image segmentation tasks. In this study, our target was to

train a CNN model to classify colonies on the basis of obtained features of the segmented
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colony. Most of the aforementioned studies tested colony morphology for estimating colony

categories. However, apart from certain quantitative morphological features, textural features

are the most important, as they describe the spatial intensity variations of the colony image.

Furthermore, textural features are closely connected with cellular characteristics [22]. Hence,

this study considered both colony morphological and textural features for the evaluation of

iPSCs.

The objectives of this study were 1) to determine, whether or not the proposed feature vec-

tor-based convolutional neural network (V-CNN) is the most suitable and best model of col-

ony quality recognition from the morphological and textural features of a segmented colony;

2) to confirm the promising results of colony quality recognition through use of an accurate

cross-validation process; 3) to demonstrate the superiority of the proposed deep V-CNN learn-

ing approach over the SVM classification system.

Materials and methods

Cell culture and image data acquisition

The iPSCs were maintained as described previously [23]. For inactive murine embryonic

fibroblasts (MEFs) isolation, we used day 13.5 embryos. After the removal of the head, visceral

tissues, and gonads, the remaining bodies were washed and dissociated with 0.25% trypsin-

EDTA (Sigma-Aldrich, Saint Louis, MI, USA). Ten-million cells were plated on each gelatin-

coated 100- mm dish and incubated at 37˚C with 5% CO2. The next day, floating cells were

removed by washing with PBS. In this study, MEFs were used within passage 4 to avoid repli-

cative senescence. Normal iPSC line (HPS0063) was obtained from the RIKEN Bioresource

Center [24]. The harvested colonies were triturated to generate medium-sized small fragments,

which were then seeded on new plates together with the mitomycin C-treated MEFs in com-

plete ES medium composed of DMEM (Sigma-Aldrich) supplemented with 20% knockout

serum replacement, 5 ng ml−1 recombinant human basic fibroblast growth factor (Peprotech),

20 mM HEPES buffer (pH 7.3), 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino

acids, 2 mM L-glutamine and 100 U ml−1 penicillin/streptomycin (all other materials were

from Gibco). All images were prepared under the 100× objective of the phase contrast micro-

scope in the BioStation CT system, using automatic Z-focus with a resolution of 1360 × 1024

pixels.

In addition this study analyzes the variations of marker expression among iPSC samples

using TRA-1-60 and TRA-1-81 antibody (mouse, 1:100, Chemicon, Billerica, MA, http://www.

chemicon.com/). The cells were analysed with a laser scanning confocal microscope equipped

with Fluoview SV1000 imaging software (Olympus FV1000, Olympus, Tokyo, Japan). It

expressed only on the established healthy iPSCs and not on unhealthy iPSCs which is pre-

sented in S1 Fig. Hence the variations of marker expression among healthy and unhealthy col-

onies and morphology were used to label the iPSC samples used in this study.

iPSC colony segmentation

A block diagram of the proposed automated system is shown in Fig 1. As mentioned above,

the system interfaces image analysis methods with the V-CNN model for segmenting colonies

in order to compute their morphological and textural features for use in their classification by

deep learning architecture. Robust segmentation of the colony region prior to classification is

beneficial for automating pluripotency. However, the computerized segmentation of colony

regions with feeder cells included is more challenging for the subsequent measurement of

stem cell characteristics [25]. In this study, the entire colony image was used for the segmenta-

tion of the colony region. In the beginning of the process, median filtering was used as a

Deep vector-based neural network for recognizing iPSC colonies

PLOS ONE | https://doi.org/10.1371/journal.pone.0189974 December 27, 2017 3 / 18

http://www.chemicon.com/
http://www.chemicon.com/
https://doi.org/10.1371/journal.pone.0189974


preprocessing step to reduce the background noise and further to preserve the edges of the

stem cell regions. This works on the original image object, replacing the center value of the

window with the median value of all neighboring pixel values. A median mask size value of

9 × 9 pixels was applied to the original image.

After the preprocessing step, we used an iterative multiple thresholding algorithm to sepa-

rate the image pixels into the foreground and background, where the threshold estimation

depends on maximization of the between-class variances of the pixel values [26]. This esti-

mates the thresholds iteratively and returns two optimal thresholds. The iteration continues

until the errors become small or the thresholds no longer change. We initialized the thresholds

t1 and t2 as I/3 and 2I/3, respectively, where I indicates the intensity range of the image. The

error functions are represented as

ε
1
ðt

1
; t

2
Þ ¼ ½mð0; t1Þ þmðt1; t2Þ�=2 � t1 ð1Þ

and

ε2ðt1; t2Þ ¼ ½mðt1; t2Þ þmðt2;1Þ�=2 � t2 ð2Þ

where

mðtm; tnÞ ¼
1

t
m
þ tn þ 1

Xtn

h¼tm

wðhÞ:h ð3Þ

where w(h) indicates the image histogram. The thresholds t1 and t2 were updated to force the

Fig 1. Block diagram of the proposed deep vector-based convolutional neural network for classification of induced pluripotent stem cell

colonies.

https://doi.org/10.1371/journal.pone.0189974.g001
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errors ε1 and ε2 toward zero. The updated thresholds are represented as

t0
1
¼ t1 þ ε1 ð4Þ

t0
2
¼ t2 þ ε2 ð5Þ

The resultant binary image was then processed using morphological closing and opening

operations. It was closed using a disk-shaped structuring element with a radius of 2, and

opened using a diamond-shaped structuring element with a distance of 19. The resultant

connected components were then filled, and the contours of the objects were smoothed with

morphological erosion and hole-filling operations. Furthermore, the unwanted cells around

the colony regions, which are smaller than the user-specified threshold, were removed using

a size filtering method. We noticed that a size of 9000 pixels was suitable for removing the

other regions that surround the colony area. Finally, the resultant segmented colony region

was evaluated for further quantitative feature measurements by connected component label-

ing with eight-neighbor connectivity. This method is generally used to estimate adjacent pix-

els that share the same set of intensity values [27]. The segmentation results of the healthy

and unhealthy colony image are shown in Figs 2 and 3, respectively.

Colony feature extraction and selection

Each colony region was estimated for ten morphological features; namely, area, perimeter,

centroid, equivalent diameter, eccentricity, solidity, major axis, minor axis, extent, and

orientation. The definitions of these features are described in S1 Table. The textural features

adopted in this study can be explained in terms of a gray-level co-occurrence matrix of 13 fea-

tures (for details, see [28]), which reveals the different combinations of pixel intensity values in

a specific spatial displacement. The most relevant features of colony categories are identified

using the feature selection technique. In this study, Fisher score analysis was applied to deter-

mine the most relevant features for the subsequent classification task, while excluding the irrel-

evant ones. Fisher scores were automatically computed for each feature in the feature sets of

training data (Fig 4) and used to select the informative features by which the within-class dis-

tance is minimized and the between-class distance is maximized [29]. Specifically, given the

selected f features, the input data matrix X 2 Ra×n reduces to Q 2 Rm×n. Hence, the Fisher

score is represented as follows:

arg max tr
Q

n
eV t
� 1 eV b

o
ð6Þ

where eV t and eV b are defined as

eV t ¼
Xn

i¼1

ðQi � ~mÞðQi � ~mÞ
L
; eV b ¼

Xc

k¼1

nkð~mk � ~mÞð~mk � ~mÞ
L

ð7Þ

where emk and nk are the mean vector and size of the kth class, respectively, in the reduced data

space; that is, Qem ¼
Xc

k¼1

nkemk is the overall mean vector of the reduced data.

Vector-based convolutional neural network for classification

CNNs are a branch of neural networks that have been implemented successfully in image rec-

ognition and classification [16–21]. Although the CNN has been applied for various medical

imaging segmentations, it has not been used previously for the input of feature vector-based
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classifications for colony quality. The selected features of colony morphology and textures

obtained from the segmented colony were entered into the V-CNN model in order for the

classification task to identify the colony quality. However, input feature vectors cannot be

entered directly into the typical CNN. Hence, we added a transfer function from the feature

vectors to the virtual image at the front of the CNN model organization. In addition, the

parameters of the mapping function were trained to obtain an adequate transfer function for a

target classification task of the CNN framework. Hereafter, we briefly explain the mathematical

framework of V-CNN and the process of training to implement the classification task. The

V-CNN architecture used in this study is arranged by stacking a set of convolutional, transfer

function, and pooling layers in an alternate way, as shown in Fig 5. The main work of the con-

volutional layer is to estimate local conjunctions of features from the input feature vectors and

to map their occurrence to a feature map. As a result of convolution in neuronal networks, the

feature vectors are partitioned into perceptrons, generating local flexible fields and finally

trampling the perceptron into feature maps of size n1 × n2. In each layer, there is a bank of n fil-

ters that detect features at every location of the input. The output Y ðqÞa of layer q consists of n(q)

feature maps of size nðqÞ1 � nðqÞ2 . The ath feature map, indicated as Y ðqÞa , is computed as

Y ðq Þa ¼ GðqÞa þ
Xnðq� 1Þ

b¼1

V ðqÞa;b �Y ðq� 1Þ

b ð8Þ

Fig 2. Quantitative feature measurements for a healthy image of a segmented induced pluripotent stem

cell colony. (A) Original image. (B) Iterative thresholding. (C) Morphological operation with size filter (D) Labeling.

https://doi.org/10.1371/journal.pone.0189974.g002
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where GðqÞa is a bias matrix and V ðqÞa;b is the filter of size 2tðqÞ1 þ 1� 2t2
ðqÞ þ 1, connecting the bth

feature map in layer (q − 1) with the ath feature map in the layer. The weights of these filters

and their values are altered throughout the training to reduce the classification error on any

training data. The next operation is to apply the transfer function to produce a set of feature

maps. This helps the classifier to build nonlinear decision boundaries. The selection of an acti-

vation function has a strong influence on the computational costs of both training and valida-

tion performances. Hence, in this study, we chose the rectified linear unit (ReLU) as a transfer

function, which is many times faster than the other activation functions. It is defined as

Y ðqÞa ¼ maxð0;Y ðq� 1Þ

a Þ ð9Þ

The third operation is the max-pooling layer, which partitions the input feature vectors into

a set of non-overlapping rectangles and returns the maximum value of each such rectangular

feature set. Furthermore, it significantly reduces the input size and number of network param-

eters, hence controlling CNN overfitting. It is usually implemented after multiple stages of

convolutional and nonlinearity layers in order to minimize both the computational require-

ments as well as the likelihood of overfitting. The max-pooling layer q has two hyper parame-

ters: the spatial extent of the filter F(q), and the step size S(q). The pooling layer describes a

Fig 3. Quantitative feature measurements for an unhealthy image of a segmented induced pluripotent

stem cell colony. (A) Original image. (B) Iterative thresholding. (C) Morphological operation with size filter (D)

Labeling.

https://doi.org/10.1371/journal.pone.0189974.g003
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window of size F(q) × F(q) and minimizes the data within this window to a single value. Simi-

larly to the convolutional layer, the window is moved by S(q) positions after each operation.

The minimization of the data is repeated at each position of the window until the entire activa-

tion volume is spatially reduced. In this study, we evaluated max pooling with a 2 × 2 window,

using a step size of 2. The output feature maps of these operations can then be fed as the input

to another round of the same three operations (convolutional, ReLU, max-pooling layers). The

last operation for final classification is to create fully connected layers of mono-dimensional

features, which are designed to map the activation volume from the fusion of previous differ-

ent layers to a class probability distribution. If (q − 1) is a fully connected layer, then it is

defined as

yðqÞa ¼ f ðzðqÞa Þ ð10Þ

Fig 4. Fisher scores assigned to each feature in the feature sets of (A) morphology, and (B) textures. Cen, centroid; Are, area; Ecc, eccentricity;

Per, perimeter; Ori, orientation; Maj, major axis; Min, minor axis; Dia, equivalent diameter; Sol, solidity; Ext, extent; D_V, difference variance; Hom,

homogeneity; Ene, energy; D_E, difference entropy; Con, contrast; Cor, correlation; Inf_1, information measure of correlation_1; S_A, sum average; Inf_2,

information measure of correlation_2; S_E, sum entropy; Ent, entropy; S_V, sum variance; Var, variance.

https://doi.org/10.1371/journal.pone.0189974.g004

Fig 5. V-CNN architecture for recognition of induced pluripotent stem cell colony quality.

https://doi.org/10.1371/journal.pone.0189974.g005
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where

zðqÞa ¼
Xnðq� 1Þ

b¼1

wðqÞa;by
ðq� 1Þ

a ð11Þ

The purpose of the complete fully connected structure is to tune the weight parameters wðqÞa;b

to produce a stochastic likelihood representation of each class found on the activation maps

created by the combination of convolutional, ReLU, and pooling layers. The repeated imple-

mentation of these two operations generates an output vector of class scores, which assists as

the classification prediction. In addition, a cost function is employed to reduce the classifica-

tion error. In this study, we applied a soft-max cost function in order to generate a probability

output in the range of 0 to 1 that can automatically be converted to class values. We imple-

mented training and testing of the V-CNN in Python, using the Keras, TensorFlow, NumPy,

SciPy, and Scikit-learn Python packages [30–33]. The training data were partitioned into fixed

batch sizes (10) of the input feature vectors. All the batches of input feature vectors were evalu-

ated in 20 epochs, which means that the procedure ran 20 times on the entire training data set.

The V-CNN was trained with the TensorFlow framework at a learning rate of 0.001, using the

Adam optimizer for cross-entropy minimization. The scale of the samples were evaluated

using train_test_split () function and random_state parameter with different seed values to

ensure the reproducibility of the classification performance of the model. The accuracy and

loss values were evaluated to show the fitness of the model. The performance of the proposed

V-CNN model for classifying the colony quality was estimated using the morphological fea-

ture, textural feature, and combined morphological and textural features (hereafter referred

simply to as “combined features”).

Results

The most relevant features of colony morphology and textures determined by Fisher scores

using training data (40) were involved in the classification of the iPSC colony quality. On the

basis of the Fisher scores, the features with the lowest score were not considered as the most

relevant for quality estimation in this study. The Fisher score of each feature of colony mor-

phology and textures for discriminating the quality is presented in S2 and S3 Tables, respec-

tively. Only features that had a Fisher score higher than a certain threshold (e.g., 0.450) were

kept, whereas others that showed a less discriminant effect on the classifier were removed.

Under the colony morphology feature, the equivalent diameter, minor axis, major axis, solid-

ity, and extent were selected as being the most relevant features, showing higher Fisher scores

than the other features. Under textures, the sum variance, variance, sum entropy, entropy,

sum average, and information measures of correlation_2 were selected as the most relevant

features. The ranges of values of these features for the healthy colonies were higher than those

for the unhealthy colonies are depicted in Fig 6. The potential of each individual morphologi-

cal and textural feature in distinguishing the iPSC colonies was examined from the area under

the curve (AUC), using receiver operating characteristic curve analysis (NCSS 11 Statistical

Software, Kaysville, UT, USA). The performance of each individual morphological and tex-

tural feature (estimated through AUC values) in distinguishing the colonies is summarized in

Table 1. Among the morphological features, solidity outperformed the rest with an AUC value

of 0.878 ± 0.03 and a confidence interval (CI) of 0.747–0.933 (Fig 7). Among the textures, vari-

ance (AUC = 0.859 ± 0.03, CI = 0.741–0.926) slightly outperformed the sum entropy and sum

variance in distinguishing the colonies (Fig 8).
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In order to analyze the classification performance, the selected features were inserted into

the V-CNN model to distinguish the healthy and unhealthy colonies of iPSCs. Since feature

vectors cannot be entered directly into the CNN network, we added a transfer function from

the feature vectors (11) to the virtual image at the front of the CNN organization. We found

that (28 × 28) size of the virtual image was optimum by experiment to produce better results in

this study. This was then entered through a stack of two-dimensional convolutional layers of

32 filters with convolution kernel sizes of 3 × 3 throughout the operation of the network. The

training process of the model was performed using a labeled dataset of input feature vectors.

The testing size of 0.33 and random_state with seed value of 9 was observed to produce best

performance of the proposed model. The total dataset was then divided into 60 for training

and 30 for testing the model. The V-CNN model had a higher capacity in classifying the quality

of colonies, as indicated by its high accuracy and low loss values (Fig 9). The estimated loss val-

ues for the morphological, textural, and combined features were low (0.209, 0.285, and 0.202,

respectively), implying the behavior of the model after 20 iterations of optimization. In

Fig 6. Comparison of the ranges of values between healthy and unhealthy colony groups based on (A) morphological and (B) textural features.

https://doi.org/10.1371/journal.pone.0189974.g006

Table 1. Performance validation of each individual feature, using the area under the curve (AUC), corresponding standard error (SE), and 95%

confidence interval.

Features AUC SE CI (Lower-Upper)

Morphology

Solidity 0.8780 0.0378 (0.747–0.933)

Extent 0.7137 0.049 (0.603–0.766)

Major axis 0.7673 0.048 (0.628–0.859)

Equivalent_diameter 0.8395 0.040 (0.716–0.912)

Minimum axis 0.8377 0.041 (0.713–0.911)

Textures

Entropy 0.8505 0.0392 (0.729–0.919)

Variance 0.8594 0.8594 (0.741–0.926)

Sum average 0.7129 0.0528 (0.560–0.815)

Sum entropy 0.8542 0.387 (0.735–0.922)

Sum variance 0.8567 0.384 (0.738–0.924)

Information correlation_2 0.8210 0.0431 (0.6927–0.8993)

https://doi.org/10.1371/journal.pone.0189974.t001
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addition, the performance of the V-CNN model was further compared with that of the SVM

classifier, using the radial basic function kernel. Quadratic programming was applied to opti-

mize the parameters of the SVM model and the program used in the experiments was imple-

mented using Scikit-learn toolkit [31]. The hyper-parameters γ that control the capacity of the

kernel and C, the regularization parameter [34, 35] were determined by using cross-validation.

The combination of parameters were observed to produce better results at γ = 2 and C = 1.

The performance of the V-CNN model in determining the quality of iPSC colonies on the

basis of various feature sets is presented in Table 2. The accuracy of the morphological features

in assessing the colony quality was slightly higher than that of the textural features. In addition,

with the V-CNN model, the accuracy of the morphological (95.5%), textural (91.0%), and

combined (93.2%) features in determining the quality of colonies was higher than that of those

features (86.7%, 83.3%, and 83.4%, respectively) used in the SVM classifier. Furthermore, to

validate the performance of the proposed model, precision, recall, and F-measures were used

[6]. Precision demonstrates the number of positive predictions divided by the total number of

positive class values predicted, and is defined as

Precision ¼

Xc

i¼1

ðTPiÞ

Xc

i¼1

ðTPi þ FPiÞ

ð12Þ

Fig 7. Receiver operating characteristic curve for the morphological features.

https://doi.org/10.1371/journal.pone.0189974.g007
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Recall indicates the number of positive predictions divided by the number of positive class

values in the test data, and is defined as

Recall ¼

Xc

i¼1

ðTPiÞ

Xc

i¼1

ðTPi þ FNiÞ

ð13Þ

F-measure conveys the weighted harmonic mean of the precision and recall, and is defined

as

F � measure ¼
2� Precision � Recall
Precision þ Recall

ð14Þ

where c is the number of classes, and TP, FP, and FN represent the number of true positives,

false positives, and false negatives, respectively. TP indicates when the model predicts the ith

class label as “(healthy colony)” and the ith ground truth class label is likewise “(healthy col-

ony).” FP indicates when the model predicts the ith class label as “(healthy colony)” but the ith

ground truth class label is “(unhealthy colony).” FN indicates when the model predicts the ith

class label as “(unhealthy colony)” but the ith ground truth class label is “(healthy colony).”

The precision, recall, and F-measure values generated in the current study with the V-CNN

model were high that indicated the fewer numbers of false positives and false negatives than

those generated by the competing SVM classifier (Table 2). Furthermore, the reliability and

generalization of the proposed V-CNN model were investigated using a five-fold cross-

Fig 8. Receiver operating characteristic curve for the textural features.

https://doi.org/10.1371/journal.pone.0189974.g008
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Fig 9. Performance of the V-CNN model with regard to accuracy and loss. The model’s performance in classifying the colonies was based on (A)

morphological, (B) textural, and (C) combined features.

https://doi.org/10.1371/journal.pone.0189974.g009

Table 2. Performance of the proposed V-CNN model and SVM classifier in classifying colonies on the basis of morphological, textural, and com-

bined features.

Features Accuracy (%) Precision (%) Recall (%) F-measure (%)

V-CNN model

Morphology 95.5 93.3 93.1 93.1

Textures 91.0 87.7 87.0 87.3

Combined 93.3 89.9 89.7 89.8

SVM classifier

Morphology 86.7 87.5 87.3 86.0

Textures 83.3 85.3 83.4 83.5

Combined 83.4 84.5 82.0 82.5

https://doi.org/10.1371/journal.pone.0189974.t002

Deep vector-based neural network for recognizing iPSC colonies

PLOS ONE | https://doi.org/10.1371/journal.pone.0189974 December 27, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0189974.g009
https://doi.org/10.1371/journal.pone.0189974.t002
https://doi.org/10.1371/journal.pone.0189974


validation method [30, 31], which functions by partitioning the datasets into k parts (k = 5).

The partitioned data are represented as a fold. The method was trained on k–1 folds with one

held back, and tested on the held back fold. This was continued five times separately, applying

different members of the training and testing data that possess compositions different from

those of the other experiment. The mean value of these five different compositions of classifi-

cation performance was evaluated and considered as the overall accuracy of the model. The

experimental results of the five-fold cross-validation of the performance of the V-CNN and

SVM classifiers in determining the quality of iPSC colonies on the basis of various feature sets

are presented in Table 3. The overall accuracy results using five-fold cross-validation for the

V-CNN were much higher than those of the SVM, which was more than 10%. Similarly, five-

fold cross-validation of the performance of the two tested models in evaluating the precision,

recall, and F-measures produced high values in the range of 85–89% for V-CNN and very low

values in the range of 68–83% for SVM, indicating the robustness and effectiveness of the pro-

posed V-CNN approach in determining the quality of colonies.

Discussion

This study has proposed a new automatic system that interfaces image analysis methods with

the V-CNN model for the segmentation and classification of phase contrast microscopy

images, using the morphological and textural features of iPSC colonies. To our best knowl-

edge, this is the first study to have designed a vector-based deep CNN for classification of iPSC

colony quality. The motivation for implementing the V-CNN in this study was to investigate

the suitability of this classifier model in accomplishing the classification of feature vectors of

healthy and unhealthy colonies, which is the main contribution of this study. The V-CNN

model classifier had a higher discriminant ability with colony morphologies than with colony

textures. The model revealed highly acceptable classification accuracy (95.5%) compared with

the SVM classifier (86.7%) that was implemented for similar feature vectors in this study. The

overall accuracy using five-fold cross-validation with V-CNN and SVM was<90% and 75–

77%, respectively. Furthermore, the precision, recall, and F-measure values of the V-CNN

model were much higher than those of the SVM classifier. The differences in performance

could be due to the transfer of the prior knowledge of feature maps of the V-CNN model

across the stacked layers of the network capable of minimizing the classification error. Further-

more, the local shared weight capacity of the neurons drastically reduced the network com-

plexity and number of parameters, thus contributing to the robustness of the performance in

classifying the stem cell colonies.

There are several machine learning techniques that are preferred for training algorithms to

classify the colonies of stem cells [7–15]. However, unstable classification performances have

Table 3. Five-fold cross-validation of the performance of the proposed V-CNN model and SVM classifier in classifying colonies on the basis of

their morphological, textural, and combined features.

Features Accuracy Precision Recall F-measure

V-CNN model

Morphological 92.4 89.9 89.1 89.6

Textures 90.2 85.3 85.1 85.4

Combined 91.6 86.6 86.4 86.6

SVM classifier

Morphological 75.2 77.2 70.4 74.7

Textures 77.3 75.8 77.1 77.0

Combined 77.0 83.0 68.4 76.9

https://doi.org/10.1371/journal.pone.0189974.t003
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been demonstrated on colonies that exhibit deformable and changeable morphologies. In

other studies using k-nearest neighbor classifier, multiclass quality evaluations of iPSCs based

on local features of the colony reportedly had the highest classification accuracy of 62.4%

[13,14]. Other detection methods based on the colony morphology of the stem cells, computed

on overlapping blocks of images, revealed moderate accuracy (80%) by means of the linear

SVM classifier [36]. A method developed for embryonic stem cell colony segmentation and

tracking, using dynamic and morphological features on time data by various machine learning

algorithms, revealed both low and high accuracies [8]. However, our current study with deep

V-CNN executing batch-based feature vectors of colony morphology has reduced the compu-

tational complexity and produced a stable classification performance with an accuracy of

95.5% in discriminating the colonies. In addition, the cross-validated accuracy of the V-CNN

classifier (92.4%), as evaluated on the basis of morphological features, was much higher than

that of the SVM model (75.2%) in this study. The difference between these results is reason-

able, because the proposed system with V-CNN architecture has the advantage of a broader

integrated structural complexity to effectively handle a certain degree of variations of features

of stem cells and hence produce excellent performance in classifying the colonies, unlike other

methods.

Several recent studies have demonstrated the highly significant contributions of CNN

toward microscopic cell image segmentation compared with other conventional methods [19,

37]. A deep CNN for bacterial colony segmentation demonstrated its superior performance

over the SVM method, similar to our study [37]. Bacterial colony enumeration using CNN

obtained improved precision and recall values that were almost similar to those obtained in

the current study [19]. However, these aforementioned studies used CNN for the segmentation

of image objects, whereas our current study incorporated CNN for the classification of feature

vectors of images, and hence the results are strictly speaking not directly comparable. Most of

the previous studies considered colony morphology to be the most important criterion for esti-

mating colony categories [5, 8, 38]. In the study by Zahedi et al. [8], area was the best individ-

ual feature for colony discrimination. Contrary to that study, another report found the shape-

based solidity feature to have the strongest ability in classifying stem cells, similar to what was

found in our current study [7]. However, as the clinical target, feature descriptors, and classi-

fier models of those studies were different from ours, the studies might not be directly compa-

rable. The limitation of our study was the small number of training data used to build the

classifier model. Further studies with a much larger number of training data, with various

objectives (10×, 20×, and 40×) of iPSC colony images as well as live cell imaging evaluation,

should be used to evaluate the performance of the proposed V-CNN model. Furthermore, the

present model analyzed gray-level co-occurrence matrix-based texture features for quality

determination. In future, the usefulness of other textural features, such as discrete wavelet and

geometric moment based analysis, could be considered to enhance and generalize the pro-

posed model.

In conclusion, our newly proposed framework of interfacing image processing methods

with the V-CNN model produced encouraging results in determining the iPSC colony qual-

ity. Although the CNN has been applied before for microscopic cell image segmentation,

this is the first implementation for input feature vector classification of colony quality. The

suitability of the V-CNN model for addressing the classification task has been successfully

shown, revealing it to have higher classification accuracy than that of the competitive

SVM classifier. The proposed V-CNN-based colony identification system has been experi-

mentally tested and cross-validated to be the most optimal model. Additionally, the proposed

approach does not require much computational resources, and reduces on architectural and

computational complexities, and thus it can be implemented as a valuable tracking technique
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in a real-time classification system. Overall, our experimental results indicated that the pro-

posed deep V-CNN approach can allow the accurate, rapid detection of colony quality, out-

performs the state-of-the-arts, and thus it can be a promising decision support model for

clinical applications.
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