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In this paper, the slice-within-Gibbs sampler has been introduced as a method

for estimating cognitive diagnosis models (CDMs). Compared with other Bayesian

methods, the slice-within-Gibbs sampler can employ a wide-range of prior specifications;

moreover, it can also be applied to complex CDMs with the aid of auxiliary variables,

especially when applying different identifiability constraints. To evaluate its performances,

two simulation studies were conducted. The first study confirmed the viability of

the slice-within-Gibbs sampler in estimating CDMs, mainly including G-DINA and

DINA models. The second study compared the slice-within-Gibbs sampler with other

commonly used Markov Chain Monte Carlo algorithms, and the results showed that

the slice-within-Gibbs sampler converged much faster than the Metropolis-Hastings

algorithm and more flexible than the Gibbs sampling in choosing the distributions of

priors. Finally, a fraction subtraction dataset was analyzed to illustrate the use of the

slice-within-Gibbs sampler in the context of CDMs.

Keywords: the slice-within-Gibbs sampler, CDMs, DINA model, G-DINA model, Gibbs sampling, MH algorithm

1. INTRODUCTION

Cognitive diagnosis models (CDMs) aim to provide a finer-grained evaluation of examinees’
attribute profiles. As psychometric tools, CDMs have been employed in both educational and non-
educational contexts (Rupp and Templin, 2008; de la Torre et al., 2018). Thus far, several reduced
and general CDMs have been proposed. Examples of the former are the deterministic inputs, noisy
“and” gate (DINA; Junker and Sijtsma, 2001)model and deterministic inputs, noisy “or” gate (DINO;
Templin and Henson, 2006) model; whereas examples of the latter are the generalized DINA (G-
DINA; de la Torre, 2011)model, log-linear CDM (Henson et al., 2009), and general diagnosticmodel
(GDM; vonDavier, 2008).When applying CDMs, a fundamental issue is model identifiability of the
Q-matrix. For different models, different identifiability conditions have been proposed, including
strict identifiability (Liu et al., 2013; Chen et al., 2015; Xu, 2017) and milder identifiability (Chen
et al., 2020; Gu and Xu, 2020).

Basically, in the CDM literature, two estimation methods were widely used. The first is the
Expectation-Maximization (EM) algorithm within the frequentist framework (de la Torre, 2009,
2011; Huo and de la Torre, 2014; Chiu et al., 2016; George et al., 2016; Minchen et al., 2017; Kuo
et al., 2018). However, the main motivation of CDMs is to identify the latent attribute profiles
of examinees’ and Bayesian methods are often more natural to reach the goal. The second most
commonly used method is Markov chain Monte Carlo (MCMC) method (de la Torre and Douglas,
2004; Culpepper, 2015; Culpepper and Hudson, 2018; Zhan et al., 2018, 2019; Jiang and Carter,
2019). Usually, to use the MH algorithm, it is necessary to choose a proposal distribution that
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can lead to optimal sampling efficiency. However, empirically
determining the optimal proposal distribution can be challenging
in practice. Culpepper (2015) first introduced the Gibbs sampling
to the DINA model and Zhang et al. (2020) applied the Pólya-
Gamma Gibbs sampling based on auxiliary variables to DINA
model. Culpepper and Hudson (2018) introduced Bayesian
method to the Reduced Reparameterized Unified Model (rRUM;
DiBello et al., 1995; Roussos et al., 2007).

With the development of the identifiability, more complex
restrictions need to be taken into account. How to estimate
more general models incorporating to the corresponding
identifiability conditions has been a technically appealing task.
In this paper, a sampling method called the slice-within-
Gibbs sampler is introduced, in which the identifiability
constraints are easy to be imposed. The slice-within-Gibbs
sampler can avoid the boring choices of tunning parameters
in the MH algorithm and converges faster over the MH
algorithm with misspecified proposal distributions. In addition,
it has more flexibility over the Gibbs sampling in prior
choices and can be easier to apply to more general models
compared with the Pólya-Gamma Gibbs Sampling and the
Gibbs sampling. In line with the original idea of the slice-
within-Gibbs sampler, data would still be augmented with
auxiliary variables to make sampling from complicated posterior
densities feasible. Existing theoretical results on convergence
and stability of the slice-within-Gibbs sampler guarantees that
the method is equally applicable to psychometric models, in
general, and CDMs, in particular. As such, this paper focuses
mainly on demonstrating the usage, as well as evaluating the
performance of the slice-within-Gibbs sampler in conjunction
with CDMs.

The remainder of this paper is organized as follows. Section
2 provides an overview of CDMs, mainly the G-DINA and
DINA models. A detailed slice sampler algorithm for the
DINA model is presented in section 3, followed by some
advantages of the algorithm. In section 4, two simulations are
conducted to illustrate the feasibility of the sampler and its
advantages over other MCMC methods. Section 5 contains
an application of the slice-within-Gibbs sampler to fraction
subtraction data, and section 6 provides a discussion of the
findings and limitations of this work and possible future
research directions.

2. OVERVIEW OF CDMs

Suppose there are a total of I examinees and J items with K
required attributes in a test. Let Yij denote the binary response
of examinee i to item j, and Y = {Yij}I×J be the response
matrix. In CDMs, it is often assumed that the latent trait
of examinees is quantified by K−dimensional vectors, called
attribute profiles. That is, for ith examinee, the latent profile is
αi = (αi1,αi2, · · · ,αiK), where αik ∈ {0, 1} and αik = 1 means
that examinee i has mastered the kth attribute, whereas αik =

0 otherwise. Therefore, there possibly exist C = 2K different
attribute profile classes, denoted by αc = (αc1,αc2, · · · ,αcK),
c = 1, 2, · · · ,C. The association between items and attributes

is specified by Q-matrix Q=
{
qjk

}
J×K

(Tatsuoka, 1983), where

qjk = 1 means the kth attribute is required to answer jth item
correctly, and qjk = 0 otherwise.

CDMs model the item response Yij using the following
Bernoulli distribution,

P(Yij = yij|αi,Ωj) = f
yij
ij h

1−yij
ij , (1)

where fij = 1− hij = P(Yij = 1|αi = αc,Ωj) is the probability of
answering item j correctly for examinee i with attribute pattern
αc, and Ωj denotes the unknown parameter set of item j. The
likelihood of the data can be written by obtaining the weighted
sum across the different attribute profiles. More specifically,
assuming an identically and independently distributed latent
membership, πc = P(αi = αc), the joint likelihood can be
written as,

P (Y|Ω ,π) =

I∏

i=1

J∏

j=1

C∑

c=1

πcP(Yij = yij|αi = αc,Ωj). (2)

2.1. The G-DINA Model
The G-DINAmodel is a saturated CDM that subsumes a number
of reduced CDMs. In this model, P(Yij = 1|αi,Ωj) in Equation
(1) is expressed as a function of the main effects and interactions
of the required attributes for each item. Following de la Torre
(2011), let K∗

j =
∑K

k=1 qjk denote the number of required

attributes for item j. For notational convenience, but without
loss of generality, let the first K∗

j attributes be required for item

j, and let α
∗
ij = (αi1,αi2, · · · ,αiK∗

j
) be the reduced vector of αi

associated with item j. The fij in the G-DINA model for item j is,

P
(
Yij = 1

∣∣∣α∗
ij, δj

)
= δj0 +

K∗
j∑

k=1

δjkαik

+

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αikαik′ · · · + δj12···K∗
j

K∗
j∏

k=1

αik, (3)

where δj0 is the intercept; δjk is the main effect of αik; δjkk′ is the
two-way interaction effect of αik and αik′ ; and δj12···K∗

j
is the K∗

j -

way interaction effect of αi1, · · · ,αiK∗
j
. Aside from the identity

link, the G-DINA model can be expressed using log and logit
links (de la Torre, 2011).

2.2. The DINA Model
The DINA model is one of most commonly used CDMs, and its
fij is given by

P
(
Yij = 1

∣∣∣α∗
ij, sj, gj

)
=

{
1− sj for α

∗
ij = 1,

gj otherwise,
(4)

where gj and sj are the guessing and slip parameters, and α
∗
ij =

1 = (1, 1, . . . , 1)T denotes that examinee i has possessed all the
required attributes of item j. In the DINA model, Ωj = {gj, sj}.
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As many researchers have already noted, the DINA model is
a special case of the G-DINA model. The former can be derived
from the latter by setting δj0 = gj, δj0 + δj12··· ,K∗

j
= 1 − sj, and

remaining parameters to zero. Thus, in the DINA model, only
theK∗

j -way interaction is taken into account, which indicates that

the response is expected to be correct only when all the required
attributes have been mastered.

2.3. Identifiability of Restricted Latent
Class Models
For most common statistical inferences, the identifiability of
the models is a precondition. To guarantee the identifiability
when estimating CDMs, we follow a set of sufficient conditions
presented by Xu (2017) for a class of restricted latent
class models. Specifically, these CDMs need to satisfy the
following assumptions:

(i) (Monotonicity relations) For any attribute profile αi
′,

P(Yij = 1|αi,Ωj,αi � qj) ≥ P(Yij = 1|αi
′,Ωj)

≥ P(Yij = 1|αi,Ωj,αi = 0); (5)

and (ii) If qj = ek for k = 1, 2, . . . ,K,

P(Yij = 1|αi,Ωj,αi = 1) > P(Yij = 1|αi,Ωj,αi � ek), (6)

where α � q holds if and only if αk ≥ qk for any k ∈ {1, 2, . . . ,K}
and α � q means there exists at least one k ∈ {1, 2, . . . ,K} such
that αk < qk; 0 = (0, 0, . . . , 0)T ; and ek is a vector whose kth
element is one and the rest elements are zero.

Both the G-DINA and DINAmodels are considered restricted
latent class models. Specifically, for the DINA model, the above
assumptions are equivalent to 1−sj > gj. For the G-DINAmodel,
the transformation is more complicated and will be discussed in
section 3.2.

Identifiability in restricted latent class models satisfies the
following sufficient conditions (Xu, 2017):

(C1) The Q-matrix is constructed such that

Q =



IK
IK
Q′


 ,

where IK is a K × K identity matrix; and
(C2) For any item in Q′, examinees who possess no

required attributes have the lowest success probabilities. That is,
min
αi 6=0

P(Yij = 1|αi,Ωj) > P(Yij = 1|αi = 0,Ωj), for j > 2K.

δLjk = max



max

i∈̥j



Uij −


δj0 +

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αikαik′ · · · + δj12···K∗
j

K∗
j∏

k=1

αik






 , δ∗L



 , and

δRjk = min



min

i∈5j



1− Vij −


δj0 +

K∗
j∑

k′=k+1

K∗
j −1∑

k=1

δjkk′αikαik′ · · · + δj12···K∗
j

K∗
j∏

k=1

αik






 , δ∗R, 1−

∑

−jk

δj



 ,

3. INTRODUCING THE
SLICE-WITHIN-GIBBS SAMPLER FOR
CDMs

In this section, we introduce the slice-within-Gibbs sampler
as a method of estimating CDMs. Moreover, we list
its advantages.

3.1. Using the Slice-Within-Gibbs Sampler
to Estimate CDMs
First, the joint posterior distribution of model parameters (Ω ,π)
could be written as,

P (Ω ,π |Y) ∝ P (Y|Ω ,π ) P (Ω ,π) , (7)

where P (Ω ,π) denotes the joint prior distribution.
Step 1: Sample the positive auxiliary variables Uij and Vij from
the following posterior distribution,

Uij |Y ,Ω ,π ∼ Uniform(0, fij), if Yij = 1,

Vij |Y ,Ω ,π ∼ Uniform(0, hij), if Yij = 0. (8)

The joint posterior distribution P(Ω ,π ,U ,V|Y) is
proportional to

I∏

i=1

J∏

j=1

[
I(Yij=1)(Yij)I(0,fij)(Uij)+ I(Yij=0)(Yij)I(0,hij)(Vij)

]
P (Ω ,π) .

Note that P(Ω ,π |Y) =
∫ ∞

0

∫ ∞

0 P(Ω ,π ,U ,V |Y )dUdV ,
which means that considering the above posterior
distribution is enough to estimate (Ω ,π); I(·) denotes the
indicator function, and I(Yij=1)(Yij) = 1 if Yij = 1, and

I(Yij=1)(Yij) = 0 otherwise.

Step 2: Sample item parameters Ωj, j = 1, 2, . . . , J, from the
following truncated distribution:

Ωj

∣∣Y ,U ,V ,Ω−j,π ∼ P
(
Ωj

)
I(

ΩL
j <Ωj<ΩR

j

)(Ωj), (9)

whereΩL
j andΩR

j are derived from the identifiability restrictions,

and inequalities 0 < Uij < fij, and 0 < Vij < hij.
For example, in the DINA model, sLj = max{max

i∈▽j

{
Vij

}
, 0 },

and sRj = min{min
i∈△j

{
1− Uij

}
, 1 − gj} , where ▽j =

{i
∣∣∣Yij = 0,α∗

ij = 1 } and △j =
{
i
∣∣∣Yij = 1,α∗

ij = 1
}
. In the

G-DINA model,
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FIGURE 1 | Bias of the slip, guessing, and the latent membership parameters under four different noise levels. Given on the X-axis are the Q-matrix and αc, where a

black square denotes the presence of the attribute.
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FIGURE 2 | RMSE of the slip, guessing, and the latent membership parameters under four different noise levels. Given on the X-axis are the Q-matrix and αc, where a

black square denotes the presence of the attribute.
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where 5j =
{
i
∣∣Yij = 0

}
, ̥j =

{
i
∣∣Yij = 1

}
, and δ∗L and δ∗R are

the lower and upper bounds, respectively, determined from the
identifiability conditions of the restricted models.
Step 3: Update the latent membership probabilities π and
the latent profile αi. Following Huebner and Wang (2011)
and Culpepper (2015), the prior of π is assumed to follow
Dirichlet(ϕ0, . . . ,ϕ0). The full conditional distribution of the
latent class probabilities π can be written as

π |α1, . . . ,αC ∼ Dirichlet (ϕ0

+

I∑

i=1

I(αi=α1)(αi), . . . ,ϕ0 +

I∑

i=1

I(αi=α1)(αi)

)
.

In this process, αi is sampled from the distribution

αi

∣∣Y i, s, g,π ∼ Multinomial (1, [ςi1, ..., ςiC]) , (10)

where

ςic = P (αi = αc|Y i,Ω ,π) =
πc

∏J
j=1 P

(
Yij

∣∣αi = αc,Ωj

)

C∑
c=1

πc
∏J

j=1 P
(
Yij

∣∣αi = αc,Ωj

) .

A number of differences exist in updating the item parameters
using theMH algorithm, Gibbs sampling, and slice-within-Gibbs
sampler. The MH algorithm samples the new value from a
proposal distribution pproposal(Ωj). In this paper, we adopted
truncated normal distributions as the proposal distributions.
Within the Gibbs sampling framework, samples are drawn from
the posterior distributions, which is a feature inherited by the
slice-within-Gibbs sampler. For practicability, conjugate priors
are normally employed for in the Gibbs sampling. In the “dina”
3 R package, for example, Culpepper (2015) used the Gibbs
sampler to estimate the DINA model. In contrast, to make
sampling more convenient and flexible to implement, the slice-
within-Gibbs sampler transforms the posterior distributions of
item parameters into a uniform distribution by introducing
auxiliary variables. However, for updating the latent membership
probabilities π and the latent profile αi, the same formula was
adopted by all the samplers.

3.2. About the Monotonicity Restrictions
When applying the slice-within-Gibbs sampler, the monotonicity
restrictions are needed to cooperate with Step 3 for identifiability.
For DINA model, it is easy to implement this constraint, that
is, sj + gj < 1. However for other complex CDMs, it is a bit
complicated. In this part, we present how to restrict parameters
specially in G-DINA model.

In this part, we only took K = 3 as an example. When
K = 3, there exist at most 2K = 8 parameters and corresponding
C classes in G-DINA model. The inequalities (5) and (6) are
actually equivalent to adopt the following inequality considering
all combinations of the q−entries.

0 ≤ δ0 ≤

δ0 + δ1
δ0 + δ2
δ0 + δ3

≤

δ0 + δ1 + δ2 + δ12
δ0 + δ1 + δ3 + δ13
δ0 + δ2 + δ3 + δ23

≤
δ0 + δ1 + δ2 + δ3

+δ12 + δ13 + δ23 + δ123 ≤ 1.

(11)

Therefore, the corresponding bound can be imposed as follows:

1. Consider δ
(t+1)
0 ∈ [δL0 , δ

R
0 ] and δL0 = 0, δR0 =

min{P(1, 0, 0), P(0, 1, 0), P(0, 0, 1)}, where P(α) = P(Yij = 1|α).

2. Consider δ
(t+1)
1 which is equivalent to consider δ∗ = δ

(t+1)
1 +

δ
(t+1)
0 and δ∗ ∈ [δ∗L, δ∗R]. And

{
δ∗L = δ

(t+1)
0 ,

δ∗R = min{P(1, 1, 0), P(1, 0, 1)}.

3. Apply similar formula to other main-effect parameters.

4. Consider δ
(t+1)
12 which is equivalent to consider δ∗ = δ

(t+1)
0 +

δ
(t+1)
1 + δ

(t+1)
2 + δ

(t+1)
12 and δ∗ ∈ [δ∗L, δ∗R]. And

{
δ∗L = max{P(1, 0, 0), P(0, 1, 0)},

δ∗R = P(1, 1, 1).

3.3. Some Advantages of the
Slice-Within-Gibbs Sampler
The MH algorithm typically relies heavily on the proposal
distributions to achieve sampling efficiency. Under
unidimensional cases, some researchers suggest that about
50% of candidates need to be accepted for an appropriate
proposal distribution to be optimal. The probability of
acceptance reduces to around 25% when sampling two- or
three-dimensional parameters (Patz and Junker, 1999). For
more complex CDMs, this probability needs to drop even more.
Compared with MH algorithm, the slice-within-Gibbs sampler
as an extension of the Gibbs sampler inherits the high efficiency
of the latter. Specifically, the slice-within-Gibbs sampler avoids
choosing a proposal distribution because the posterior acts
as its proposal distribution. This gives the slice-within-Gibbs
sampler acceptance probabilities equal to 1, which makes it
highly efficient.

In contrast to the Gibbs sampler, the slice-within-Gibbs
sampler has greater flexibility in choosing the prior distributions.

TABLE 1 | True Q-matrix for K = 3.

Item α1 α2 α3 Item α1 α2 α3

1 1 0 0 16 1 1 0

2 0 1 0 17 1 0 1

3 0 0 1 18 0 1 1

4 1 0 0 19 1 1 0

5 0 1 0 20 1 0 1

6 0 0 1 21 0 1 1

7 1 0 0 22 1 1 0

8 0 1 0 23 1 0 1

9 0 0 1 24 0 1 1

10 1 0 0 25 1 1 1

11 0 1 0 26 1 1 1

12 0 0 1 27 1 1 1

13 1 1 0 28 1 1 1

14 1 0 1 29 1 1 1

15 0 1 1 30 1 1 1
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TABLE 2 | True parameters of the G-DINA model items.

δj0 δj1 δj0 δj1

δj0 δj1 δj2 δj12 δj0 δj1 δj2 δj12

Item Item δj0 δj1 δj2 δj3 δj12 δj13 δj23 δj123

1 0.10 0.70 16 0.20 0.10 0.15 0.40

2 0.10 0.70 17 0.20 0.10 0.15 0.40

3 0.10 0.70 18 0.20 0.30 0.30 -0.05

4 0.10 0.70 19 0.20 0.30 0.30 -0.05

5 0.10 0.70 20 0.20 0.30 0.30 -0.05

6 0.10 0.70 21 0.20 0.20 0.20 0.00

7 0.10 0.70 22 0.20 0.20 0.20 0.00

8 0.10 0.70 23 0.20 0.20 0.20 0.00

9 0.10 0.70 24 0.20 0.20 0.20 0.00

10 0.10 0.70 25 0.20 0.10 0.10 0.10 0.05 -0.05 0.05 0.15

11 0.10 0.70 26 0.20 0.10 0.10 0.10 0.10 0.10 0.05 0.05

12 0.10 0.70 27 0.20 0.10 0.10 0.10 0.05 -0.05 0.05 0.15

13 0.20 0.10 0.15 0.40 28 0.20 0.10 0.10 0.10 0.05 -0.05 0.05 0.15

14 0.20 0.10 0.15 0.40 29 0.20 0.10 0.10 0.10 0.10 0.10 0.05 0.05

15 0.20 0.10 0.15 0.40 30 0.20 0.10 0.10 0.10 0.05 -0.05 0.05 0.15

TABLE 3 | Bias and RMSE for s, g, and π estimates under the DINA model.

True Bias RMSE

I s g π s g π s g π

500 0.100 0.100 0.031 0.008 0.004 0.000 0.029 0.017 0.008

0.200 0.100 0.031 0.011 0.002 0.000 0.033 0.023 0.009

0.100 0.200 0.031 0.006 0.004 0.000 0.038 0.018 0.009

0.200 0.200 0.031 0.009 0.002 0.000 0.044 0.024 0.010

1,000 0.100 0.100 0.031 0.003 0.001 0.000 0.022 0.012 0.006

0.200 0.100 0.031 0.005 0.001 0.000 0.023 0.016 0.006

0.100 0.200 0.031 0.004 0.002 0.000 0.030 0.013 0.006

0.200 0.200 0.031 0.003 0.001 0.000 0.031 0.017 0.007

3,000 0.100 0.100 0.031 0.001 0.000 0.000 0.012 0.007 0.003

0.200 0.100 0.031 0.003 0.000 0.000 0.013 0.010 0.004

0.100 0.200 0.031 0.001 0.000 0.000 0.017 0.008 0.004

0.200 0.200 0.031 0.001 0.000 0.000 0.019 0.011 0.005

TABLE 4 | Bias and RMSE for s, g and π estimates under the negatively

correlated DINA model parameters.

Bias RMSE

I s g π s g π

500 0.009 0.002 0.000 0.028 0.014 0.008

1,000 0.004 0.002 −0.000 0.018 0.011 0.006

3,000 0.002 0.000 0.000 0.011 0.006 0.003

Although highly efficient, finding easy-to-use conjugate prior
distributions renders the use of the Gibbs sampler challenging
in practice. However, this is not an issue with the slice-within-
Gibbs sampler - its efficiency is not affected by the choice of

TABLE 5 | Bias of δ and π estimates under the G-DINA model.

I K*
j Intercept One-way Two-way Three-way π

500 1 0.007 −0.006 — —

2 0.008 −0.001 -0.007 — 0.000

3 0.017 0.021 −0.044 0.053

1,000 1 0.003 −0.003 — —

2 0.003 −0.000 −0.004 — 0.000

3 0.008 0.006 −0.016 0.020

3,000 1 0.001 −0.001 — —

2 0.001 0.000 −0.001 — 0.000

3 0.003 −0.001 0.000 −0.001

TABLE 6 | RMSE of δ and π estimates under the G-DINA model.

I K*
j Intercept One-way Two-way Three-way π

500 1 0.022 0.035 — —

2 0.039 0.057 0.084 — 0.015

3 0.059 0.070 0.115 0.182

1,000 1 0.015 0.024 — —

2 0.028 0.042 0.061 — 0.012

3 0.040 0.051 0.080 0.122

3,000 1 0.009 0.015 — —

2 0.016 0.025 0.037 — 0.006

3 0.023 0.034 0.051 0.074

prior distributions. Even if misspecified priors are adopted, it can
obtain satisfactory results.

Thus, the slice-within-Gibbs sampler not only has a relatively
high convergence rate, but also overcomes the dependence on
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the conjugate prior. Moreover, based on Theorem 7 in Mira and
Tierney (2002), it can easily be shown that the slice-within-Gibbs
sampler when used with CDMs is uniformly ergodic because
fij is bounded by 1. However, it should be noted that a few
other MCMC algorithms exhibit this robust property (Mira and
Tierney, 1997; Roberts and Rosenthal, 1999).

4. SIMULATION STUDY

In this section, two simulation studies were conducted to evaluate
the performance of the slice-within-Gibbs sampler in the CDM
context. Simulation 1 was designed mainly to examine the
extent the slice-within-Gibbs sampler can accurately recover the
parameters of the DINA model and G-DINAmodels; Simulation
2 was designed to document the advantages of the slice-within-
Gibbs sampler over the MH algorithm and Gibbs sampling in
estimating the DINA model.

4.1. Simulation Study 1
4.1.1. Design

In Simulation Study 1, the number of attributes for the DINA
and G-DINAmodels was fixed to K = 5 and K = 3, respectively,
whereas the number of items was set to J = 30. The Q-matrices
for the DINA model given in Figures 1, 2 and for the G-DINA
model given in Table 1 were designed to ensure the identifiability
of restricted latent class models.

In this context, the number of examinees I is set as 500,
1000, 3000. As for item parameters of DINA model, five
different conditions were considered. Following Huebner and
Wang (2011) and Culpepper (2015), four noise levels (i.e.,
item qualities) were considered: (1) a low noise level - sj =

gj = 0.1; (2) a high noise level - sj = gj = 0.2; (3)
the slip parameter was higher than the guessing parameter -
sj = 0.2, gj = 0.1; and (4) the guessing parameter was
higher than the slip parameter - sj = 0.1, gj = 0.2. A
fifth condition was considered, where, as in Zhan et al. (2018),
the negative correlation between the item parameters based
on the empirical data was taken into account. Specifically, the

FIGURE 3 | Trace Plots of R̂ under G-DINA model for I = 1, 000.

guessing and slip parameters were generated from the following:

(logit(gj), logit(sj)) ∼ N(

(
-2.564
-1.995

)
,

(
1.233 -0.415
-0.415 0.571

)
). Under

this distribution, the mean guessing and slip parameters were
0.096 and 0.103, respectively; the corresponding maxima were
0.365 and 0.484, respectively. The true parameters of the G-DINA
model are listed in Table 2. Finally, the latent class membership
probabilities π were set to be equal for the different latent classes.

In this simulation study, all priors were set to be non-
informative. With respect to the item parameters, priors of the
slip and guessing parameters to the DINA model were set to be
Uniform(0, 1), whereas P(δ) ∝ 1 in the support set was assumed
for the G-DINA model.

Two criteria were used to evaluate quality of the parameter
recovery, namely, the bias and root mean squared error (RMSE)
of s, g, δ, π across 25 replications. In both simulation studies,
the slice-within-Gibbs sampler was iterated 20,000 times for
each replication, where the first 10,000 iterations were discarded
as burn-in.

To evaluate the convergence, four chains started at
overdispersed starting values were run. The potential scale
reduction factor (PSRF) R̂ (Brooks and Gelman, 1998) was
computed using the R package “coda” (Plummer et al., 2006). A
value of R̂ less than 1.1 (Brooks and Gelman, 1998) was used as
the criterion for chain convergence.

4.1.2. Results

It was verified that the number of iterations and burn-in were
sufficient for the chain to converge. For example, Figure 3 shows
the R̂ in G-DINA model for sample size I = 1000 that all the
parameters came down to 1.1 at the 7266th iteration.

Table 3 shows the parameter recovery results of the slice-
within-Gibbs sampler under the DINA model, Table 4 shows
the parameter recovery under the condition with negatively
correlated item parameters, and Tables 5, 6 the results under the
G-DINA model across different sample sizes and item qualities.

For the smallest sample size (i.e., I = 500), the maximum
absolute bias of the item parameter estimates was 0.011 and
0.053 for the DINA and G-DINA models; the RMSE was below
0.044 and 0.182 for the DINA and G-DINA models, respectively.
With the exception of the higher-order interaction terms when
K∗
j = 3, these results indicate that satisfactory estimates can

be obtained for the DINA and G-DINA models using the slice-
within-Gibbs sampler even with sample size as small as I = 500.
As the table shows, the performance of the slice-within-Gibbs
sampler improved as the number of examinees increased. When
I = 3, 000, the absolute bias and RMSE of all the item parameters

TABLE 7 | Bias and RMSE of the slice-within-Gibbs sampler and MH algorithm.

Slice sampler MH - Case 1 MH - case 2

Bias RMSE Bias RMSE Bias RMSE

s 0.005 0.027 0.006 0.026 0.013 0.035

g 0.002 0.016 0.004 0.018 0.001 0.020

π 0.000 0.008 0.000 0.008 0.000 0.008
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were smaller, and their maximum values dropped to 0.003 and
0.019, respectively, for the DINA model, and to 0.003 and 0.074,
respectively, for the G-DINAmodel. For the condition where the
item parameters were negatively correlated, the average bias and
RMSE were comparable to those obtained under the low-noise
level condition. Finally, for the latent membership probabilities,
all the parameters can be estimated extremely accurately (i.e.,
bias is 0.00) for both models. Moreover, the maximum RMSEs at
I = 500 were 0.010 and 0.015 for the DINA and G-DINAmodels,
respectively, and improved with larger sample sizes.

To better understand the properties of the slice-within-Gibbs
sampler, Figures 1, 2 show the detailed results for I = 500 size
under DINA model. Consistent with the results in Culpepper
(2015) and de la Torre (2009), which were obtained using
different estimation algorithms, worse results were obtained for
items that required more attributes. The deterioration in the
quality of item parameter estimates as the number of required
attributes increased can be clearly observed in Figure 2, which
displays the RMSE of the estimates. It should be noted that
the guessing parameter estimates did in fact slightly improve
with more required attributes; however, the improvement did
not compensate for the stark deterioration in the slip parameter
estimates. These results underscore that fact that, given a fixed
same sample size, the quality of item parameter estimates of
the DINA model can affected by of the number of required
attributes. Finally, Figures 1, 2 indicate that item quality had only
a small impact on the recovery on the individual latent class
membership probabilities.

In sum, the results of Simulation Study 1 indicates that the
slice-within-Gibbs sampler can provide accurate estimates of
the DINA and G-DINA model parameter estimates. Moreover,
it can provide results consistent with those of previously
implemented algorithms.

4.2. Simulation Study 2
This simulation study had two-fold goals: (1) to compare
the efficiency of the slice-within-Gibbs sampler to that of
MH algorithm; and (2) to compare the slice-within-Gibbs
sampler and Gibbs sampler in terms their flexibility in
specifying the priors. For this study, the MH algorithm, Gibbs

sampling and slice sampler were compared in the context of
DINA model.

4.2.1. Design

The simulated data contained I = 500 examinees, J =

30 items and K = 5 attributes. All the slip and guessing
parameters were set to 0.1, and the Q-matrix given in Figure 1

was used.
For the MH algorithm, there exist infinite choices of

proposal distributions. For demonstration purposes, this
simulation study only considered the following two cases of the
proposal distributions.

• Case 1: A larger step between iterations, where sj ∼ N(s
(t)
j , 1),

and gj ∼ N(g
(t)
j , 1); and

• Case 2: A smaller step between iterations, where sj ∼

N(s
(t)
j , 0.001), a gj ∼ N(g

(t)
j , 0.001).

For the Gibbs sampling, the Beta family distributions were the
conjugate priors of the items parameters. Following Culpepper
(2015), only the conjugate prior Beta (1, 1) was considered.

For the slice-within-Gibbs sampler, both conjugate and
non-conjugate priors were considered. Below are the two cases
of the priors and their specific instances.

• Case 3: For conjugate priors, Beta (1, 1) , Beta (1, 2) and
Beta (2, 2) were used; and

• Case 4: For non-conjugate priors, N (0, 1) I(0,1)(x),
N (2, 1) I(0,1)(x), Uniform(0, 2) I(0,1)(x), and Exp (1) I(0,1)(x)
were used.

TABLE 8 | Bias and RMSE of the slice-within-Gibbs sampler and Gibbs algorithm.

Slice sampler - Case 3 Slice sampler - Case 4 Gibbs

Bias RMSE Bias RMSE Bias RMSE

s 0.009 0.031 0.008 0.030 0.009 0.031

g 0.002 0.017 0.002 0.017 0.002 0.017

π −0.000 0.008 0.000 0.008 0.000 0.008

FIGURE 4 | The trace Plots of R̂ for the slice-within-Gibbs sampler and MH algorithms in Simulation Study 2.
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As in Simulation Study 1, bias and RMSE were calculated to
evaluate the quality of the parameter estimates. Similarly the
PSRF was computed to evaluate convergence.

4.2.2. Results

Table 7 presents the recovery results of the slice-within-
Gibbs sampler with uniform prior and MH algorithm
under Cases 1 and Case 2. The results show that the
accuracy of the MH algorithm parameter estimates was

greatly influenced by the variance of proposal distribution.
Specifically, the parameter estimates under Case 2 were
worse than those under Case 1, which indicates that, for
this particular condition, a smaller step between iterations
was not a good as a larger step. It is also noteworthy that,
despite the use of a uniform prior, the slice-within-Gibbs
sampler provided estimates that were as good as, if not
better than estimates obtained using the MH algorithm
under Case 1.

FIGURE 5 | Bias and RMSE of slip, guessing, and the latent membership parameters based on different conjugate priors. Given on the X-axis are the Q-matrix and

αc, where a black square denotes the presence of the attribute.

FIGURE 6 | Bias and RMSE of slip, guessing and the latent membership parameters based on different non-conjugate priors. Given on the X-axis are the Q-matrix

and αc, where a black square denotes the presence of the attribute.
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Figure 4, which contains the R̂s for the slice-within-Gibbs
sampler and MH algorithms across different iterations, shows
the differing convergence rates of the two methods. As can be
seen from the figure, π converged at the fastest rate, followed by

TABLE 9 | Convergence rates of the Gibbs and slice samplers.

Convergence observed

Sampler Iterations Time (min)

Slice 1,573 6.006

Gibbs 258 4.654

TABLE 10 | The Q-matrix of the fraction subtraction data.

Item α1 α2 α3 α4 α5

1 1 0 0 0 0

2 1 1 1 1 0

3 1 0 0 0 0

4 1 1 1 1 1

5 0 0 1 0 0

6 1 1 1 1 0

7 1 1 1 1 0

8 1 1 0 0 0

9 1 0 1 0 0

10 1 0 1 1 1

11 1 0 1 0 0

12 1 0 1 1 0

13 1 1 1 1 0

14 1 1 1 1 1

15 1 1 1 1 0

g. For the MH algorithm, Case 1 converged faster than Case 2
- Case 1 reached convergence by the 1000th iteration, whereas
Case 2 did not even reach convergence for some parameters. This
indicates that the variance of the proposal distribution in Case 2
was too small to sufficiently explore the posterior distribution. In
comparison, all the parameters estimated using the slice-within-
Gibbs sampler reached convergence by the 2000th iteration.

Table 8 presents the recovery results of the slice-within-Gibbs
sampler with Beta (1, 2) prior under Case 3 and N (0, 1) I(0,1)(x)
prior under Case 4. Figure 5 shows the bias and RMSE of the
slice-within-Gibbs sampler under Case 3 (i.e., conjugate priors)
and the Gibbs sampler under Beta (1, 1). It can be seen that
the slice-within-Gibbs sampler performed similarly to the Gibbs
sampler, particularly for gj and πc. Although the estimates of sj
had a larger variability across the four priors, none of them was
uniformly the best across the 30 items. The figure also shows
that the slice-within-Gibbs sampler provided comparable results
under the family of beta priors. Finally, regardless of the Beta
priors used, the bias and RMSE of sj were always higher than
those of gj and πc, which is consistent with the previous results.

Figure 6 presents the recovery of the slice-within-Gibbs
sampler under Case 4. It should be noted that the Gibbs sampler
does not work under these specific priors. In contrast, the slice-
within-Gibbs sampler can also be applied with different non-
conjugate, even misspecified priors. The figures shows that the
biases of sj, gj, and πc were close to zero, and the corresponding
RMSEs were below 0.05. Despite the use of non-conjugate priors,
these results were almost the same those obtained using the Gibbs
sampler under Beta (1, 1).

Table 9 compares the convergence rate of the Gibbs and slice-
within-Gibbs samplers. Specifically, the simulated data based on
the DINA model used I = 500 examinees, J = 30 items,
K = 5 attributes and the Q-matrix in Figure 1. For comparison
purposes, two criteria were used to evaluate the convergence

TABLE 11 | The EAP of the latent class parameters under G-DINA model.

Latent classes π̂ Latent classes π̂

α1 α2 α3 α4 α5 EAP SE α1 α2 α3 α4 α5 EAP SE

0 0 0 0 0 0.005 0.004 1 1 1 0 0 0.138 0.011

1 0 0 0 0 0.005 0.003 1 1 0 1 0 0.014 0.006

0 1 0 0 0 0.004 0.003 1 1 0 0 1 0.003 0.003

0 0 1 0 0 0.079 0.011 1 0 1 1 0 0.001 0.003

0 0 0 1 0 0.110 0.010 1 0 1 0 1 0.006 0.003

0 0 0 0 1 0.004 0.004 1 0 0 1 1 0.013 0.005

1 1 0 0 0 0.006 0.004 0 1 1 1 0 0.003 0.002

1 0 1 0 0 0.035 0.007 0 1 1 0 1 0.001 0.001

1 0 0 1 0 0.009 0.006 0 1 0 1 1 0.006 0.001

1 0 0 0 1 0.003 0.002 0 0 1 1 1 0.001 0.001

0 1 1 0 0 0.006 0.006 1 1 1 1 0 0.118 0.013

0 1 0 1 0 0.002 0.002 1 1 1 0 1 0.083 0.008

0 1 0 0 1 0.002 0.002 1 1 0 1 1 0.001 0.001

0 0 1 1 0 0.003 0.002 1 0 1 1 1 0.001 0.001

0 0 1 0 1 0.001 0.001 0 1 1 1 1 0.001 0.001

0 0 0 1 1 0.002 0.002 1 1 1 1 1 0.335 0.015
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FIGURE 7 | Trace Plots of R̂ for the real data in the GDINA model.

FIGURE 8 | Trace Plots of R̂ for the real data in the DINA model.

rates, namely, the iterations at which all the parameters reached
convergence and the time to reach 20,000 iterations. Based on 100
replications, Table 11 shows that the Gibbs sampler converged
much earlier and was about 1.29 times faster than the slice-
within-Gibbs sampler.

Overall, the results of Simulation Study 2 indicate that,
depending on the proposal distribution, the slice-within-Gibbs
sampler can be dramaticallymore or slightly less efficient than the
MH algorithm. However, theMH algorithm is advantageous only
to the extent that the proposal distribution is optimal, whereas
the slice-within-Gibbs sampler can be implemented with a wide
range of prior distributions. Similarly, although the slice and
Gibbs samplers are comparable, the former, unlike the latter, is
not restricted to the use of conjugate priors.

5. EMPIRICAL EXAMPLE

5.1. Data
The empirical example involved fraction subtraction data
previously analyzed by Tatsuoka (1990), Tatsuoka (2002) and

de la Torre (2009). The data analyzed here consisted of responses
of 536 students to 15 fraction subtraction items. The five
attributes measured by the test were: α1 subtracting basic
fractions; α2 reducing and simplifying; α3 separating whole from
fraction; α4 borrowing one from whole; and α5 converting whole
to fraction. The corresponding Q-matrix is given in Table 10.

5.2. Methods and Results
The DINA and G-DINA models were fitted to the data
and the corresponding parameters estimated using the slice-
within-Gibbs sampler, with monotonicity constraints imposed
to stabilize the estimates due to the relatively small sample size.
Incidentally, the Gibbs sampler was not considered for these
data due to the difficulty in finding conjugate priors that can
also accommodate the monotonicity constraints. The estimates
based on the expected a posteriori (EAP) and the corresponding
standard errors (SEs) were computed for DINA and G-DINA
models. Finally, the deviance information criterion (DIC) was
employed to select between the two models. Figures 7, 8 show
the R̂ for the G-DINA and DINA analyses of the empirical data,
respectively. In addition to the convergence of the chains, the
figures also show that the DINA model converged faster than the
G-DINA model for these data.

In terms of DIC, a model with smaller DIC is to be preferred
(Spiegelhalter et al., 2002). In fitting the fraction subtraction data,
the DICs of the DINA and G-DINA models were 27719.86 and
27017.43, respectively, which indicates that the G-DINA model
provided a better fit to data. Thus, only results pertaining to the
G-DINA model are presented below.

Table 11 contains the EAP estimates of the latent membership
parameters, π̂c, and their corresponding SEs under the G-DINA
model. The eight latent classes with the largest memberships
were: π(1, 1, 1, 1, 1) = 0.335, π(1, 1, 1, 0, 0) = 0.138,
π(1, 1, 1, 1, 0) = 0.118, π(0, 0, 0, 1, 0) = 0.110, π(1, 1, 1, 0, 1) =

0.083, π(0, 0, 1, 0, 0) = 0.079, π(1, 0, 1, 0, 0) = 0.035, and
π(1, 1, 0, 1, 0) = 0.014. They accounted for over 91% of the latent
class memberships. In terms of individual attribute mastery, α1

through α5 had the following prevalences: 0.771, 0.723, 0.812,
0.620, and 0.463, which makes α3 and α5 the easiest and most
difficult attributes to master, respectively. It can be noted that
latent classes which showed mastery of all but one of the three
easiest attributes to master, as in (0,1,1,1,1), (1,0,1,1,1), and
(1,1,0,1,1), had the lowest latent class memberships. In this
example, it can be noted that latent classes with the largest class
memberships also had the larger SEs.

Table 12 gives the G-DINA model estimates of the fraction
subtraction items in term of the latent group success probability
P(α∗

ij). The item parameter estimates clearly show why the G-

DINA model was preferred over the DINA model. For the DINA
model to provide a satisfactory fit to the data, all parameters
and except the intercept and the highest-order interaction effect
must be equal to zero. This was not the case with, say, items that
require two attributes (i.e., items 8, 9, and 12). For these items,
P(00) < P(10) and P(00) < P(01) indicating that the main
effects are not equal to zero. The remaining multi-attribute items
also indicate that the conjunctive assumption of the DINAmodel
was not tenable. As a rough measure of item discrimination,
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TABLE 12 | Results of the fraction subtraction data analysis under G-DINA model using the slice-within-Gibbs sampler and EM algorithm.

P(α∗

ij )

0 1

00 10 01 11

000 100 010 001 110 101 011 111

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1011 1101 0111 1111

00000 10000 01000 00100 00010 00001 11000 10100 10010 10001 01100 01010 01001 00110 00101 00011

Method Item 11100 11010 11001 10110 10101 10011 01110 01101 01011 00111 11110 11101 11011 10111 01111 11111

1 0.103 0.877

2 0.029 0.170 0.054 0.064 0.353 0.301 0.530 0.527 0.110 0.426 0.496 0.655 0.650 0.823 0.632 0.922

3 0.511 0.969

4 0.003 0.026 0.008 0.009 0.017 0.069 0.064 0.148 0.058 0.400 0.025 0.045 0.151 0.072 0.140 0.144

0.315 0.126 0.533 0.277 0.513 0.484 0.189 0.291 0.280 0.275 0.549 0.718 0.674 0.673 0.498 0.939

5 0.370 0.853

6 0.003 0.056 0.009 0.009 0.037 0.237 0.217 0.409 0.024 0.167 0.156 0.425 0.676 0.630 0.353 0.840

7 0.011 0.043 0.036 0.045 0.073 0.118 0.453 0.643 0.099 0.155 0.328 0.547 0.723 0.908 0.419 0.963

8 0.119 0.823 0.857 0.957

The slice 9 0.060 0.904 0.755 0.964

sampler 10 0.006 0.097 0.027 0.031 0.147 0.332 0.202 0.561 0.326 0.335 0.253 0.716 0.736 0.700 0.584 0.952

11 0.055 0.828 0.757 0.940

12 0.006 0.060 0.061 0.023 0.236 0.662 0.735 0.935

13 0.006 0.324 0.047 0.046 0.023 0.451 0.494 0.657 0.110 0.204 0.254 0.605 0.747 0.783 0.388 0.863

14 0.001 0.012 0.006 0.006 0.007 0.011 0.050 0.058 0.046 0.069 0.017 0.042 0.056 0.051 0.060 0.063

0.182 0.130 0.213 0.174 0.227 0.268 0.166 0.186 0.221 0.220 0.433 0.457 0.523 0.564 0.474 0.891

15 0.002 0.011 0.012 0.009 0.017 0.074 0.067 0.301 0.032 0.354 0.324 0.278 0.660 0.677 0.597 0.910

1 0.088 0.880

2 0.000 0.000 0.000 0.096 0.298 0.000 0.419 0.811 0.096 0.298 0.318 0.433 0.871 0.811 0.366 0.908

3 0.513 0.970

4 0.000 0.000 0.000 0.000 0.031 0.000 0.014 0.000 0.031 0.235 0.000 0.031 0.000 0.031 0.000 0.031

0.587 0.031 0.819 0.319 0.396 0.908 0.031 0.000 0.345 0.031 0.908 0.823 0.908 0.908 0.346 0.908

5 0.327 0.839

6 0.000 0.000 0.000 0.000 0.025 0.100 0.104 0.025 0.000 0.025 0.025 0.300 0.641 0.833 0.025 0.833

7 0.000 0.000 0.000 0.019 0.051 0.000 0.019 0.335 0.110 0.066 0.051 0.586 0.972 0.768 0.332 0.972

8 0.000 0.853 0.953 0.953

EM 9 0.032 0.912 0.721 0.971

algorithm 10 0.000 0.000 0.000 0.000 0.000 0.000 0.168 0.751 0.215 0.000 0.945 0.712 0.945 0.945 0.945 0.945

11 0.011 0.783 0.770 0.952

12 0.000 0.052 0.039 0.000 0.052 0.641 0.930 0.930

13 0.000 0.000 0.054 0.047 0.000 0.647 0.248 0.362 0.090 0.066 0.047 0.857 0.837 0.857 0.457 0.857

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.265 0.098 0.000 0.000 0.301 0.245 0.000 0.000 0.000 0.000 0.879 0.740 0.245 0.497 0.001 0.879

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.122 0.000 0.000 0.704 0.630 0.914 0.914

1j = Pj(1) − Pj(0), was computed. All but two items had
1j > 0.70, and the average item discrimination was 1̄j = 0.829.
These results indicate that the fraction subtraction items are
highly discriminating.

For comparison purpo ses, the EM estimates of the same items
were also obtained using the R package “GDINA” (Ma and de la
Torre, 2020), and are given Table 12. It can be noted that for
one-attribute items (i.e., items 1 and 5), the slice-within-Gibbs
sampler and EM estimates are highly comparable. However,
for multi-attribute items, the estimates can be quite disparate,

except for Pj(1) was comparable across the two methods. The
difference could be due to the small sample size relative to the
complexity of the G-DINA model for the multi–attribute items.
To better understand the behavior of the slice-within-Gibbs
sampler and EM algorithm vis-a-vis the fraction subtraction data,
we conducted a simulation study where data were generated
based on the parameters obtained using the slice-within-Gibbs
sampler. Figure 9 shows the mean absolute error (MAE) of the
two estimates across 100 replications. The figure indicates that
the slice-within-Gibbs sampler had smaller mean absolute biases

Frontiers in Psychology | www.frontiersin.org 13 September 2020 | Volume 11 | Article 2260

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Xu et al. Estimating CDMs

FIGURE 9 | Mean absolute bias of the slice-within-Gibbs sampler and EM

estimates of data simulated based on the fraction subtraction data.

for most of the parameters, thus, a more reliable method for the
fraction subtraction data.

6. DISCUSSION

In this work, the slice-within-Gibbs sampler is introduced as
a method of estimating CDMs. Unlike the MH algorithm,
the slice-within-Gibbs sampler obviates the need to choosing
an optimal proposal distribution; unlike Gibbs sampler,
the slice-within-Gibbs sampler has the flexibility to work
with a wider range of prior distributions. As shown in
the simulation studies and empirical example, it can be
used to estimate complex CDMs, such as the G-DINA
model. Thus, the slice-within-Gibbs sampler provides an
alternative and viable estimation procedure in the context of
CDMs.

Based on the results of Table 9, additional work is needed to
speed up the implementation of the slice-within-Gibbs sampler
for researchers to be able to fully take advantage of the flexibility
of the sampler to estimate a wide range CDMs.

In the present work, only two CDMs (i.e., DINA and G-
DINAmodels) were employed to illustrate the slice-within-Gibbs
sampler. However, the slice-within-Gibbs sampler can be easily
extended to other CDMs (e.g., additive CDM, GDM), attribute
structure (e.g., higher-order CDMs; de la Torre and Douglas,
2004), and potentially to CDMs that incorporate various types
of covariates.

Finally, it should be noted that other MCMC sampling
procedures that use auxiliary variables are currently available.
One such procedure is the Hamiltonian Monte Carlo (Neal,
2011; Duane et al., 1987, HMC) algorithm. The HMC algorithm
is based on the Hamiltonian dynamics, and has a physical
interpretation and can provide useful intuitions. As an extension
of the MH algorithm, it exploits the gradient information to
draw samples from the posterior. Because HMC algorithm
often provides a large move with acceptance rates close to
one, its efficiency is higher than that of the MH algorithm.
Future research should systematically compare the performance
of the slice-within-Gibbs sampler and the HMC algorithm,
as well as other auxiliary-variable sampling procedures, in
estimating CDMs.
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