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ABSTRACT 
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a 
public health crisis, and the vaccines that can induce highly potent neutralizing antibodies are 
essential for ending the pandemic. The spike (S) protein on the viral envelope mediates 
human angiotensin-converting enzyme 2 (ACE2) binding and thus is the target of a variety of 
neutralizing antibodies. In this work, we built various S trimer-antibody complex structures on 
the basis of the fully glycosylated S protein models described in our previous work, and 
performed all-atom molecular dynamics simulations to get insight into the structural dynamics 
and interactions between S protein and antibodies. Investigation of the residues critical for S-
antibody binding allows us to predict the potential influence of mutations in SARS-CoV-2 
variants. Comparison of the glycan conformations between S-only and S-antibody systems 
reveals the roles of glycans in S-antibody binding. In addition, we explored the antibody 
binding modes, and the influences of antibody on the motion of S protein receptor binding 
domains. Overall, our analyses provide a better understanding of S-antibody interactions, 
and the simulation-based S-antibody interaction maps could be used to predict the influences 
of S mutation on S-antibody interactions, which will be useful for the development of vaccine 
and antibody-based therapy. 
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INTRODUCTION 
Since the outbreak of Coronavirus disease 2019 (COVID-19), the spread of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 150 million people and 
lead to 3.1 million deaths as of April, 2021. Due to the extremely high contagiousness of 
SARS-CoV-2 and lack of effective antiviral medicines, the neutralizing antibodies (NAbs) 
acquired through active or passive immunization have critical roles in preventing healthy 
individuals from infection and accelerating recovery of infected persons. Several SARS-CoV-
2 vaccines have been authorized for emergency use, and the preliminary data show that they 
provide high protection rate1-3. 

SARS-CoV-2 is an enveloped virus with a positive-sense single-stranded RNA genome4. The 
spike (S) trimer anchored in the viral envelope is a glycoprotein mediating the binding to 
human angiotensin-converting enzyme 2 (ACE2)5-7. S protein consists of multiple functional 
domains, including the receptor binding domain (RBD) that is responsible for interacting with 
ACE2. The RBDs on the top of S trimer are conformationally variable. In the so-called ‘closed 
state’, the RBDs lay flat with their receptor binding motifs (RBMs) occluded by the RBDs of 
neighboring protomers. The ‘open states’ are characterized by one or more uplifted RBDs, 
resulting in exposure of their RBMs (Figure 1A). Many NAbs have been isolated from the 
sera of recovered COVID-19 patients, and most of them target the RBD. The structures of S 
trimer in complex with various antibodies have been solved by cryogenic electron microscopy 
(cryo-EM), which provides valuable information of S-antibody interactions at near-atomic 
resolution8-12. However, such static structures may not include all the information that is 
necessary for understanding the mechanisms underlying antibody binding. In addition, many 
cryo-EM structures have missing residues in S RBDs and/or antibodies, and the glycans that 
can have significant influence on antibody binding are mostly not resolved. Therefore, 
molecular dynamics (MD) simulations based on well-refined initial structures with all missing 
portions properly modeled can provide a more comprehensive understanding of S-antibody 
interactions. As an RNA virus, SARS-CoV-2 has a relatively high mutation rate, which is a 
big challenge to the efficacy of antibodies and vaccines. In the past one and a half years, 
multiple variants of SARS-CoV-2 have appeared and are now circulating globally. For 
example, the B.1.1.7 variant that was initially detected in the UK has become a dominant 
strain in many countries13. By investigating the importance of each RBD residue in S-
antibody interactions, we can evaluate the influence of the virus mutations, which can help to 
predict the efficacy of antibody against variant strains. 

In this work, we present all-atom MD simulations of a fully glycosylated S protein trimer in 
complex with various antibodies. We have selected antibodies that target different epitopes 
on the RBD (Figure 1B), and modeled the structures of S trimer bound with these antibodies 
(Figure 1C). 13 systems consisting of different antibodies and S trimers with different RBD 
open/closed states have been built and simulated (Table 1). For convenience, a one-letter 
symbol “O” or “C” is used to represent an open- or closed-state RBD, and thus antibody 
C002 bound to S trimer with open-closed-closed RBDs is denoted as “C002_OCC”. Except 
for antibody C105 whose epitope is not exposed when RBD is closed, we modelled all three 
RBDs bound with antibodies if the specific epitopes are not occluded and the modelled 
antibodies do not result in significant steric hinderance. (Figure S1-S4) Note that the 
reference PDB structures contain some free RBDs without bound antibodies. Our results 
provide insight into the dynamics of antibodies, contributions of residues for binding 
interactions, and roles of glycans in antibody binding, which provides a better understanding 
of S-antibody interactions. 
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Figure 1. Overview of S RBD and various antibodies targeting different epitopes. (A) 
Open- and closed-state RBDs with epitopes marked by different colors. Three protomers of S 
protein are shown in white, gray, and yellow. (B) RBD epitopes and the corresponding 
antibodies studied in this work. The antibodies are arranged according to their binding sites. 
Antibodies C002, C119, and C121 share similar epitopes, and only one of them is shown in 
the figure. However, their epitope residues and binding poses are not completely identical. 
(C) A representative simulation system of S trimer with one open and two closed RBDs 
bound with three C119 antibodies (without water molecules and ions). All illustrations were 
created using Visual Molecular Dynamics (VMD)14. 

 

Table 1. Simulation system information.  

Antibody System Name Chain Aa Chain Ba Chain Ca PDB ID 

C105 
C105_OCC Openb Closed Closed N/A 
C105_OOC Open Open Closed 6XCM8 
C105_OOO Open Open Open 6XCN8 

C002 
C002_OCC Open Closed Closed 7K8T9 
C002_OOC Openb Openb Closed 7K8U9 

C119 
C119_CCC Closedb Closedb Closedb N/A 
C119_OCC Openb Closed Closed 7K8W9  
C119_OOC Openb Openb Closedb N/A 

C121 
C121_OCC Openb Closed Closed 7K8X9 
C121_OOC Openb Openb Closed 7K8Y9 

S309 
S309_CCC Closed Closed Closed 6WPS15 
S309_OCC Openb Closed Closed 6WPT15 

EY6A EY6A_OOO Open Open Open 6ZDH10 
aThese columns show the open/closed-states of RBD in three protomers (i.e., chains A, B, 
and C) and the underline represents the free RBD (with no antibody bound). bThe RBD-
antibody interface is modeled as the corresponding RBD is not bound with the antibody in 
the reference PDB structure. 

 

METHODS 
Modeling of fully glycosylated SARS-CoV-2 S protein–antibody complex structures 
As reported in our previous work16-17, we have modeled a fully glycosylated full-length SARS-
CoV-2 S protein structure by using a combination of computational modeling tools including 
GALAXY protein modeling suite18-20 for building missing residues and domains, ISOLDE21 for 
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model refinement against experimental density maps, and CHARMM-GUI Glycan Reader & 
Modeler22-24 and Membrane Builder25-28 for building glycans and a viral membrane. In this 
study, we truncated the heptad repeat linker, transmembrane domain, and cytoplasmic 
domain built by ab initio structure prediction and only kept the S1 subunit and part of S2 
subunit. Before generating the S-antibody complex structures, we first removed all glycans to 
avoid bad contacts with antibodies. We extracted the portion of RBD-antibody from each 
cryo-EM structure of S trimer-antibody complex (Table 1), and superimposed it onto our S 
trimer structure by maximizing the overlap in RBD. For example, when building C121_OCC 
system, we used the cryo-EM structure (PDB id: 7K8X) as a reference. PDB 7K8X has two 
closed-state RBDs both bound with antibody C121, and one open-state unbound RBD. We 
simply extracted the portions of RBD-antibody from two closed chains in 7K8X and aligned 
them onto the closed chains in our S trimer structure. Since the open chain in 7K8X is 
unbound, we used the portion of RBD-antibody extracted from the closed chain to model the 
binding interface in the open chain with minor clashes. GALAXY protein modeling suite was 
then used to relax the structure to relieve the clashes. After the S trimer-antibody complex 
structure was generated, CHARMM-GUI Glycan Reader & Modeler was used to build 19 N-
linked and 1 O-linked glycans onto each protomer using the same glycoforms as those in our 
previous model. 

Simulation details 
In this study, the CHARMM36(m) force field was used for proteins29 and carbohydrates30-32. 
The TIP3P water model33 was utilized along with a 0.15 M KCl solution. The total number of 
atoms is approximately 1,250,000 (~400,000 water molecules, ~1,100 K+, and ~1,100 Cl-), 
but the exact numbers differ between various systems. The van der Waals interactions were 
smoothly switched off over 10–12 Å by a force-based switching function34 and the long-range 
electrostatic interactions were calculated using the particle-mesh Ewald method35 with a 
mesh size of ~1 Å. To avoid the overestimation of protein-protein interactions, a force field 
adjustment was made to enhance protein-water interactions36-37. 

All simulations were performed using the input files generated by CHARMM-GUI38-40, and we 
used GROMACS 2018.641 for both equilibration and production with the LINCS algorithm42. 
The temperature was maintained using a Nosé-Hoover temperature coupling method43-44 
with a 𝜏t of 1 ps. For pressure coupling (1 bar), a semi-isotropic Parrinello–Rahman method45-

46 with a 𝜏p of 5 ps and a compressibility of 4.5×10–5 bar–1 was used. During the equilibration 
run, NVT (constant particle number, volume, and temperature) dynamics was first applied 
with a 1 fs time step for 250 ps. Subsequently, the NPT (constant particle number, pressure, 
and temperature) ensemble was applied with a 1-fs time step (for 125 ps) and with a 2-fs 
time step (for 1.5 ns). During the equilibration, positional and dihedral restraint potentials 
were applied, and their force constants were gradually reduced. The production run was 
performed with a 4 fs time step using the hydrogen mass repartitioning technique47 without 
any restraint potential. Each system shown in Table 1 ran for 500 ns production time with 
about 20 ns/day using 768 CPU cores on NURION in the Korea Institute of Science and 
Technology Information. For comparison, we also ran 500 ns production of 12 S-only 
systems (3 for each of CCC, OCC, OOC, and OOO) with the same simulation protocols. All 4 
S-only and 13 S-antibody simulation systems and trajectories are available in CHARMM-GUI 
COVID-19 archive (https://www.charmm-gui.org/docs/archive/covid19). 

 
RESULTS AND DISCUSSION 
Critical residues for antibody binding and potential influence of mutant variants 
To identify critical residues for S-antibody interactions, we searched for all residue pairs 
consisting of one residue from S and the other from antibody, which make favorable 
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interactions including hydrophobic interaction, 𝜋-𝜋 stacking interaction, hydrogen bond, and 
salt bridge. We processed 500 snapshots (every 1 ns) from the 500-ns simulation trajectory 
of each system, and calculated the frequency of interacting residue pairs. 

Figure 2 shows two representative cases of the antibodies bound to the RBDs. The first one 
is the interface of C105 bound to chain A in C105_OOC. There are 30 residues of RBD_A 
(RBD of chain A) that interact with the antibody in at least 10% of snapshots, and more than 
10 of them keep their interactions with the antibody in at least 75% of snapshots (Figure 2A). 
Two of these critical residues are mutated in COVID-19 variants, which are K417N in South 
Africa variant (lineage B.1.351), K417T in Brazil variant (lineage P.1), and N501Y in 
UK/South Africa/Brazil variants. K417 has high frequency of interactions with Y33, Y52, and 
E96 from C105 VH (variable domain of antibody heavy chain). As shown in Figure 2C, the 
positively-charged side chain of K417 can make a salt bridge with E96 or cation-𝜋 interaction 
with Y33 or Y52 depending on the conformation of these four residues, and such interactions 
are lost with K417N or K417T mutation. This implies that K417N/K417T will have significant 
effects on the interaction with C105, which is likely to reduce the efficacy of C105. N501 has 
high frequency of interactions with several residues from C105 VL (variable domain of 
antibody light chain). Different from K417, N501 mostly interacts with C105 by the backbone 
atoms, and the side chain points toward the RBD itself. If a mutation does not significantly 
change the structure and dynamic of this local backbone, it should not be harmful to the 
binding of C105. However, N501Y introduces a new side chain with a larger size and the 
local backbone is a flexible loop. It is possible that the backbone conformational change is 
required to accommodate the side chain of Tyr. Therefore, it is possible that N501Y can be 
harmful to antibody binding. 
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Figure 2. Frequency of interacting residue pairs between S RBD and antibody. Two 
representative examples are shown: (A) C105 bound to RBD_A in C105_OOC, and (B) C119 
bound to RBD_C in C119_OCC. The x-axis labels the interacting residues of antibody, and 
the y-axis labels those of S protein. The color bar represents the frequency of interacting 
pairs observed in the simulation trajectory. We mark the point mutations occurring in COVID-
19 variants and their interacting residues from antibodies by the dots with different colors if 
the residue pairs make favorable interactions in more than 60% of snapshots. Two 
snapshots with these residues highlighted are shown for (C) C105_OOC and (D) 
C119_OCC. 

 

The second representative case is the interface of C119 bound to chain C in C119_OCC. 
There are more than 10 residues of RBD_C that continuously interact with C119 VH and/or VL 
in the simulation trajectory (Figure 2B). Two critical residues involved in COVID-19 variants, 
L452R and E484K, occur simultaneously as a double mutation in India variant (lineage 
B.1.617). E484K also appears in South Africa and Brazil variants as well as some sequences 
but not all in UK variant, and L452R appears in California variant (lineages B.1.427/B.1.429). 
As shown in Figure 2D, the hydrophobic side chain of L452 continuously interacts with the 
aromatic side chain of Y29 from C119 VL. With the L452R mutation, the positively charged 
side chain can still interact with the aromatic ring (i.e., cation-π interaction), hence it may not 
disturb the binding of C119. In contrast, E484 has a salt bridge with K30 from C119 VL. The 
E484K mutation not only breaks the salt bridge but also forms an unfavorable contact of two 
positively charged groups. Therefore, E484K may seriously impair the efficacy of antibody 
C119. 

The interacting residue pairs of the all systems are shown in Figure S5-S10. In summary, 
antibody C105 is likely to be sensitive to mutation K417N/K417T as salt bridge and cation-𝜋 
interaction involving K417 is frequently observed in all cases except chain A of C105_OOO. 
However, the influence of N501Y is uncertain and the interaction between N501 and 
antibody is only observed in chain A of C105_OOC. Antibodies C002, C119, and C121 have 
frequent interactions with L452 and/or E484, which is observed in all cases except chain A of 
C121_OCC. Since all variants of current concern contain at least one of two mutations, it 
remains a question whether these three antibodies are effective enough to the variants. 
Antibodies S309 and EY6A target different epitopes that do not contain the mutant residues, 
and hopefully, they would not be affected by the mutations in COVID-19 variants. The maps 
of interacting pairs derived from our simulation results highlight the critical residues from 
RBD and their interacting residues from antibodies. By considering the physicochemical 
properties of wild-type and mutant amino acids as well as their possible interactions with the 
antibody residues, we are able to predict the potential impacts of S mutations on antibody 
binding. 

 

Antibodies can have two binding interfaces with RBDs from different protomers 
The antibodies C002, C119, and C121 bind to similar but not identical epitopes, located 
around the green region shown in Figure 1, with different interaction patterns. When these 
antibodies bind to a closed-state RBD (e.g., RBD_C), they can also have a secondary 
binding interface with the next RBD in the anti-clockwise direction from top view (e.g., 
RBD_A). To examine the existence of such a secondary binding interface for other systems, 
we performed the analysis of interacting residue pairs with consideration of both RBD 
containing the primary interface and the neighboring RBD that may contain the secondary 
interface (Figure S5-S10). Except for C002, C119, and C121, all other antibodies have only 
one primary binding interface. C002, C119, and C121 have a secondary binding interface 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443519doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443519
http://creativecommons.org/licenses/by-nd/4.0/


 8 

regardless of whether the neighboring RBD is open or closed, but the secondary interface 
has more extensive interacting residue pairs when the neighboring RBD is open (Figure S6-
S8). 

Figure 3 shows two representative cases of the antibodies interacting with two RBDs. The 
first is C121 bound to closed-state RBD_C in C121_OCC. C121 has a secondary binding 
interface with the neighboring open-state RBD_A. Figure 3A shows that VH makes the major 
contribution to RBD_C binding. In addition, there are multiple residues from both C121 VH 
and VL that continuously interact with the residues from RBD_A. This suggests that C121 
binds to S protein through multivalent interactions which can lead to enhancement of binding 
affinity. As shown in Figure 3C, both complementarity-determining region 3 (CDR3) of VH 
(red circle) and CDR1/CRD2 of VL (purple circle) are involved in the secondary binding 
interface. When C121 binds to RBD_B (primary) and RBD_C (secondary) that are both 
closed, the secondary interface consists of only a couple of residues from CDR3 of VH, but 
two of them (V106 and L107) continuously interact with RBD_C (Figure S8A middle). 

The second representative case is C002 bound to closed-state RBD_C (primary) and open-
state RBD_A (secondary) in C002_OCC. Although multiple residues from VL are involved in 
the secondary interface, none of the interacting residue pairs has a frequency over 60%, 
indicating that the residue contacts in the secondary interface keep varying with the 
movements of VL and RBD_A (Figure 3B). As shown in Figure 3D, the antibody residues 
involved in the secondary interface (orange circle) are not within any CDR of VL. Therefore, 
the binding interaction between C002 and RBD_C/RBD_A is not multivalent, and the 
secondary interface appears to exist simply because the binding pose of C002 in the primary 
interface and the relative position of two RBDs leads to such fortuitous contacts. 
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Figure 3. Frequency of interacting residue pairs in both primary and secondary 
binding interfaces. Two representative examples are shown: (A) C121 bound to RBD_C 
(primary) and RBD_A (secondary) in C121_OCC, and (B) C002 bound to RBD_C (primary) 
and RBD_A (secondary) in C002_OCC. The x-axis labels the interacting residues of 
antibody, and the y-axis labels those of S protein. The color bar represents the frequency of 
interacting pairs observed in the simulation trajectory. We also mark the point mutations 
occurring in COVID-19 variants and their interacting residues from antibodies by the dots 
with different colors if the residue pairs make favorable interactions in more than 60% of 
snapshots. Two snapshots illustrating the binding poses of two interfaces are shown for (C) 
C121_OCC and (D) C002_OCC. The antibody residues involved in the secondary interfaces 
are encircled. 

 

RBD-antibody interfaces are stable in all systems 
Although there exist cryo-EM structures for each antibody, many of them have only one or 
two antibodies bound to RBD(s). In this study, we aimed to build the S-antibody complex 
systems with all three RBDs bound with antibodies, except for C105 whose epitope is not 
exposed when RBD is closed. Therefore, we needed to check whether binding interfaces are 
stable considering the mutual influence between multiple antibodies. For each system, we 
measured the minimum distance from VH/VL to RBD, and number of interacting residue pairs 
between VH/VL and RBD (Figure S11-S16). For the antibodies with primary and secondary 
interfaces, we considered only the primary interfaces. All antibodies stably stay in the binding 
sites and continuously interact with the epitopes on RBDs (at least during the current 
simulation time). We observed three different binding modes; (i) both VH and VL make similar 
contributions to RBD binding (Figure 4A), (ii) VH makes the major contribution to RBD 
binding, but VL continuously has contacts with RBD (Figure 4B), and (iii) VH makes the major 
contribution to RBD binding and VL can move away from the RBD (Figure 4C). A summary 
of binding modes in each system is shown in Table 2. Clearly, S-antibody binding modes are 
versatile and specific to individual antibodies and RBD’s open/closed states. 

 

 
Figure 4. RBD-antibody minimum distance and contact residue number in 
representative binding interfaces. (A) C119 bound to RBD_C in C119_OCC, (B) C002 
bound to RBD_C in C002_OCC, and (C) C121 bound to RBD_C in C121_OCC. 

 
Table 2. Antibody binding modea.  
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Antibody System Name Chain A Chain B Chain C 

C105 
C105_OCC 3 N/A N/A 
C105_OOC 2 3 N/A 
C105_OOO 3 2 2 

C002 C002_OCC 2 2 2 
C002_OOC 2 2 3 

C119 
C119_CCC 1 1 1 
C119_OCC 1 1 1 
C119_OOC 1 1 1 

C121 C121_OCC 1 2 3 
C121_OOC 3 3 3 

S309 S309_CCC 2 2 2 
S309_OCC 3 2 2 

EY6A EY6A_OOO 1 1 1 
aThree different binding modes are observed; (1) Both VH and VL make similar contributions 
to RBD binding, (2) VH makes the major contribution to RBD binding, but VL continuously has 
contacts with RBD, and (3) VH makes the major contribution to RBD binding and VL can 
move away from the RBD. 

 

Glycan flexibility and its roles in antibody binding 
S protein is highly glycosylated and it has been shown that the glycans can have important 
roles in protein stability, RBD open-closed state transition, and interactions with ACE2 and 
antibodies48-50. In our previous work17, we aligned the PDB structures of RBD-antibody 
complexes onto the simulation trajectories of fully-glycosylated S trimers, and investigated 
the influences of glycans on antibody binding by measuring the extent of clashes between 
glycans and superimposed antibodies. In this work, we explored the same question by 
comparing the glycan flexibility in S-only and S-antibody complex systems. Four glycans 
attached to N122, N165, N331, and N343 are close to the epitopes marked with green and 
orange in Figure 1. All of them could possibly influence antibody binding depending on the 
glycan conformation and open/closed state of RBD. Among these four glycans, N343 glycan 
is attached to the residue within the orange epitope, and N165 glycan continuously interacts 
with the green epitope, hence they are more likely to be involved in antibody binding activity. 
We measured the φ/ψ angles of the first three glycosidic linkages from the reducing terminal 
(i.e., the linkages in Manβ1-4GlcNAcβ1-4 GlcNAcβ1-Asn) for N343 in S309_CCC and N165 
glycan in C119_CCC, as well as these two glycans in the S-only system with three closed-
state RBDs. The dihedral angles of GlcNAcβ1-Asn linkage are defined by φ: O5(1)-C1(1)-
Nδ(2)-Cγ(2) and ψ: C1(1)-Nδ(2)-Cγ(2)-Cβ(2), where (1) is GlcNAc and (2) is Asn. The dihedral 
angles of Manβ1-4GlcNAc and 4GlcNAcβ1-4 GlcNAc linkages are defined by φ: O5(1)-C1(1)-
O4(2)-C4(2) and ψ: C1(1)-O4(2)-C4(2)-C3(2), where (1) is the non-reducing terminal unit and 
(2) is the reducing terminal unit. 

For illustration, we superimposed the N343 glycan in each snapshot onto the initial structures 
and the resulting structures of S-only and S-antibody systems are shown in Figure 5A. 
Figure 5B shows the distributions of dihedral angles in N343 glycosidic linkages, and the 
glycans attached to RBD_A, RBD_B, and RBD_C are shown in different colors. By 
comparing two rows, it becomes evident that the conformational space explored by N343 
glycan in the S-only system is similar to that in the S-antibody system. Only two minor 
regions that are explored in the S-only systems (labeled by red arrows) are not explored in 
the S-antibody systems. In the S-only system, N343 glycan interacts with the closed-state 
RBD on the neighboring chain in most of the simulation time. This interaction keeps N343 
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glycan pointing towards the left direction (Figure 5A), which does not disturb the binding of 
antibody S309. On the contrary, the core portion of the glycan can interact with the antibody, 
serving as part of the epitope. Only very occasionally, it switches to the other direction and 
shields the binding interface for the antibody. Therefore, N343 glycan facilitates the binding 
of antibody S309 rather than blocking such interaction, which is consistent with the 
conclusion from our previous work. 

 

 
Figure 5. Glycan flexibility in S-only and S-antibody complex systems. The distributions 
of N-glycan structures are shown for (A) N343 glycan in S309_CCC and (C) N165 glycan in 
C119_CCC, where the glycan (red) in each snapshot is superimposed onto the initial 
structure by aligning the local backbone consisting of the glycosylation site and two 
neighboring residues. The corresponding distributions of φ/ψ angles in the first three 
glycosidic linkages from the reducing terminus are plotted for (B) N343 glycan and (D) N165 
glycan. The glycans attached to three protomers (chains A, B, and C) are shown in blue, 
orange, and green, respectively. 

 

Figure 5D shows the comparison of dihedral distributions of N165 glycan in S-only and S-
antibody systems. There are two major regions (labeled by purple arrows) that are explored 
in the S-only system but not in S-antibody system. As shown in the superimposed glycan 
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conformations (Figure 5C), when the antibody exists, the glycan is forced to point towards 
the left direction. Note that we built the S-antibody system by first generating S trimer-
antibody complex and then modeling the glycans, and consequently we observed that the 
antibody restricted the glycan motion. However, if we compare this with the simulation of the 
unbound S glycoprotein, it becomes clear that N165 glycan occupied the binding interface for 
antibody C119 in about half of the simulation time and moved out of that region in the 
remaining time. These indicate that N165 glycan does not always block the antibody binding, 
but the existence of this glycan makes it more difficult for the antibody to get access to the 
epitope. 

 

Effects of antibody binding on RBD motion and flexibility 
To investigate whether antibody binding has significant influences on RBD motion, we 
measured two structural features: the RBD-NTD (N-terminal domain) distance (d) defined by 
the minimum distance between RBD and NTD, and the RBD orientation angle (θ) defined by 
three points on RBD and S-trimer central axis (Figure S17). θ reflects the open/closed state 
of RBD, and d reflects the size of U-shape pocket that accommodates the neighboring 
closed-state RBD. It is expected that antibody binding could stabilize the S trimer and make 
the RBD open/closed state transition more difficult, particularly for the antibodies having two 
interfaces with different protomers. For all-closed and one-open S trimer, the RBDs are 
generally stable and show very limited motions even in the S-only systems, hence antibody 
binding has generally no influence on RBD orientation and motion (during the current 
simulation time). Additionally, it becomes evident that it would require a much longer 
simulation time to explore the RBD open-closed state transition in S-only and S-antibody 
systems. For two-open and all-open S trimer, the open-state RBDs move freely and exhibit 
huge motions even on the 500-ns simulation time scale, which is not affected by antibody 
binding either. 

In addition to RBD motion, we also measured the root-mean-square fluctuation (RMSF) of 
RBD in S-only and S-antibody systems (Figure S18-S21). Though there exist differences 
between different protomers, the open-state RBDs generally have higher RMSF than the 
closed-state RBDs. The antibodies target both highly-flexible regions and stable regions. 
There are two large peaks around residues 445 and 480, which are two loops on the top of 
RBD. They become much more stable upon antibody binding, particularly when these 
regions are within the epitopes of antibodies (i.e., C002, C119, and C121). 
 

CONCLUSIONS 
In this work, we have presented a modeling and simulation study of fully glycosylated S 
protein in complex with various antibodies. The frequency of interacting residue pairs 
between S and antibody reveals the interaction patterns and the critical S protein residues 
contributing to antibody binding, which enables us to predict possible effects of mutations in 
SARS-CoV-2 variants. Such analyses also made it possible to identify the antibodies that 
bind the S trimer through multivalent interactions. Comparison of glycan conformational 
flexibility in S-only and S-antibody complex systems reveals whether a specific glycan 
disturbs antibody binding. During the current limited simulation time, we could not observe 
that antibodies had any significant influence on RBD open-closed state transition, but the 
RMSF of RBD is reduced due to antibody binding. Together, this study provides richer insight 
into the S-antibody interactions that is not available from the static cryo-EM structures, and 
we hope that our findings are useful for the development of vaccines and antibody-based 
therapeutic agents. 
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