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International Iberian Nanotechnology
Laboratory (INL), Portugal

*CORRESPONDENCE

Yingchun He
heyingchun@hnucm.edu.cn

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 15 June 2022
ACCEPTED 27 July 2022

PUBLISHED 12 August 2022

CITATION

Yang X, Gao M, Xu R, Tao Y, Luo W,
Wang B, Zhong W, He L and He Y
(2022) Hyperthermia combined with
immune checkpoint inhibitor therapy
in the treatment of primary and
metastatic tumors.
Front. Immunol. 13:969447.
doi: 10.3389/fimmu.2022.969447

COPYRIGHT

© 2022 Yang, Gao, Xu, Tao, Luo, Wang,
Zhong, He and He. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 12 August 2022

DOI 10.3389/fimmu.2022.969447
Hyperthermia combined with
immune checkpoint inhibitor
therapy in the treatment of
primary and metastatic tumors

Ximing Yang1, Miaozhi Gao1, Runshi Xu1, Yangyang Tao1,
Wang Luo1, Binya Wang1, Wenliang Zhong1,2,
Lan He3,4 and Yingchun He1,2,3*

1Medical School, Hunan University of Chinese Medicine, Changsha, China, 2Hunan Provincial
Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese
Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha,
China, 3Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and
Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China, 4The First Hospital of
Hunan University of Chinese Medicine, Changsha, China
According to the difference in temperature, thermotherapy can be divided into

thermal ablation and mild hyperthermia. The main advantage of thermal

ablation is that it can efficiently target tumors in situ, while mild hyperthermia

has a good inhibitory effect on distant metastasis. There are some similarities

and differences between the two therapies with respect to inducing anti-tumor

immune responses, but neither of them results in sustained systemic immunity.

Malignant tumors (such as breast cancer, pancreatic cancer, nasopharyngeal

carcinoma, and brain cancer) are recurrent, highly metastatic, and highly

invasive even after treatment, hence a single therapy rarely resolves the

clinical issues. A more effective and comprehensive treatment strategy using

a combination of hyperthermia and immune checkpoint inhibitor (ICI)

therapies has gained attention. This paper summarizes the relevant

preclinical and clinical studies on hyperthermia combined with ICI therapies

and compares the efficacy of two types of hyperthermia combined with ICIs, in

order to provide a better treatment for the recurrence and metastasis of

clinically malignant tumors.

KEYWORDS

thermal ablation, mild hyperthermia, immune checkpoint inhibitor, malignant tumor,
combined therapy
Introduction

Hyperthermia (HT) appears more and more in the clinical comprehensive treatment

strategy of tumor. There are many clinical benefits of hyperthermia, especially its ability to

regulate immune responses. Immunotherapy has shed light on a new form of tumor therapy.

New immune checkpoint inhibitors (ICIs) have been developed as treatment strategies to
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target the immune evasion characteristics of tumors (1).

Immunotherapy, especially PD-1 and anti-PD-L1 antagonists,

has shown therapeutic effects on many malignant tumors.

However, the response rate of immunotherapy is still not high,

and the most lasting immune response is only observed in a small

number of patients. The activation and maintenance of anti-tumor

immune response depends on immune cells, such as dendritic cell

(DC), natural killer cell (NK), T lymphocytes, B lymphocytes. First,

tumor-associated antigens are recognized by DCs, with the latter

becoming mature and activated; then, mature DCs present

antigens to the initial T cells, which are activated into effector T

cells, especially cytotoxic CD8+T cells, infiltrating distant tumors

and kill the remaining tumor cells (2–4). NK cells are activated in a

manner similar to that of CD8+T cells by releasing cytotoxic

particles containing perforin and granzyme to directly lyse tumor

cells. At the same time, NK cells are important in regulating

adaptive immune response because of their ability to release

interferon-g (IFN–g) and tumor necrosis factor-a (TNF–a) (5–
7). In addition, some studies have shown that the expression of B

cell-related genes, such as MZB1, JCHAIN and IGLL5, is

significantly increased in patients who respond to ICI therapy,

suggesting the potential of B cells in improving anti-tumor

immune response (8). However, Tumor cells evade immunity

through the expression of programmed cell death ligand (pdl-1)

and similar inhibitory gene products, such as indoleamine 2 and 3

dioxygenase (Ido), transforming growth factor-b (TGF-b) and

interleukin-10 (IL-10) (9). One of the important mechanisms of

tumor immune escape is the inactivation or silencing of effector T

cells. the depletion of T cells is closely related to inhibitory

receptors, such as programmedcelldeathprotein-1 (PD-1), TIM-3

(mucin3) and LAG-3 (Lymphocyteactivationgeneprotein-3) (10,

11). Therefore, these receptors and their corresponding ligands

form new immune checkpoints. At present, the treatment strategy

of ICIs is mainly targeted at T cells, but the response rate of patients

to ICIs is often not high. Based on the low response rate of

immunotherapy, combination therapy has been proposed to

provide a lasting systemic anti-tumor immune response. Among

these combined strategies, it is surprising to find that the

combination of HT and ICIs may enhance the anti-tumor

immune response (2). Therefore, at present, the research on the

combination of them in the treatment of malignant tumors is a

hot spot.

In 1927, Wagner-Jauregg won the Nobel Prize in Physiology

and Medicine for the use of hyperthermia. He found that the

high fever associated with malaria hindered the infectious factor

and, through this study, he was able to identify the preliminary

role of hyperthermia. Previously, hyperthermia was defined as a

core body temperature greater than 41 °C for more than 60

minutes (12). Currently, according to the temperature,

hyperthermia therapy can be further divided into two sub

treatments: thermal ablation and mild hyperthermia (13).

Thermal ablation causes direct necrosis in the central area of the

tumor by increasing the temperature in the tumor tomore than 55 °
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C. However, the temperature during mild hyperthermia is relatively

low, and tumor cell damage is often induced in the range of 41 to

45 °C (14). The temperature difference between the two types of

hyperthermia and their different effects often lead to different

therapeutic outcomes. At the same time, thermal ablation is

similar to surgical treatment, mostly disposable treatment; mild

hyperthermia, due to the low energy input, usually requires

repeated, longer heating time (> 30 min) to achieve any effect

(15). Mild hyperthermia presents a more tedious regimen, and the

killing effect on tumor needs to be studied. However, like thermal

ablation, mild hyperthermia also can elicit immune responses, and

several studies demonstrate that the immune responses to thermal

ablation may have been induced by mild hyperthermia. The

connection between the immune responses to thermal ablation

and mild hyperthermia have garnered interest and further

investigation is warranted. Current literature lacks studies on the

intersection and comparison of the two therapies in anti-tumor

treatment; hence, this paper provides a reference for the better use

of the combination of hyperthermia and ICI therapy by comparing

the different immune responses brought by various

hyperthermia methods.

Effects of thermal ablation and
mild hyperthermia on the
immune response

Both thermal ablation and mild hyperthermia use heat to

destroy tumor tissue, but the effects of the two treatments on the

immune response may vary. After thermal ablation, the tumor

tissue can be divided into the central area (> 55 °C), transitional

zone (41 °C-45 °C), and normal tissue area (16). Coagulative

necrosis often occurs in the central area, leading to the release of

new antigens in tumor cells, which is called tumor in situ

vaccination, while the transition zone is easily affected by residual

temperature, resulting in secondary effects such as immune

activation (17). However, the latest research shows that thermal

ablation not only irreversibly denatures the newly released antigens

in the central area of tumor tissues but may also upregulate some

carcinogenic factors (such as interleukin-6(IL-6) and vascular

endothelial growth factor(VEGF)), aggravating the progression of

tumor metastasis (18, 19). However, thermal ablation still has some

positive immunomodulatory effects, such as the release of positive

immunomodulatory factors, initiation of a local inflammatory

response, and recruitment of immune cells (18, 20). Compared

with thermal ablation, the main effect of mild hyperthermia is not

necrosis, but apoptosis, vascular permeability, and immune effect.

Among them, the effect of mild hyperthermia on tumor immune

response is mainly seen via an increase in immunogenicity,

promotion of innate immune cell infiltration, and improvement

in the tumor microenvironment (TME) (21–23).

The above processes involve all aspects of an immune

response. Thermal ablation and mild hyperthermia can
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respectively induce a series of immune-related factors to

enhance the immunogenicity and immunoreactivity of ICIs in

the TME (24–26). Next, we will explore the complementary

effects of hyperthermia on ICIs from several angles, namely, the

effects on immunogenicity, on immune cell activation, and on

the immunosuppressive TME.
Effect on immunogenicity

Immunogenicity is the basis of an anti-tumor immune

response, which requires two aspects in order to be initiated:

the existence of antigen library and the occurrence of an

immunogenic reaction (27). According to the consensus

guidelines for immunogenic cell death (ICD), the presence of

antigens alone is not sufficient to initiate an anti-tumor immune

response, which requires the presence of ICD (28).

On the one hand, in many preclinical studies, thermal ablation

has been proved to have the ability to release tumor associated

antigens (TAAs). Ghanamah et al. and Leibovici et al. observed

transient increases in carcinoembryonic antigen (CEA) and prostate

specific antigen (PSA) levels in colorectal cancer and pancreatic

cancer, respectively (29, 30). Among them, 59% of colorectal cancer

patients (10/17) had a rapid increase in CEA levels 1 day after

thermal ablation, suggesting that thermal ablation accelerated the

tumor immune cycle. However, too high of a temperature during

thermal ablation often leads to degeneration of new tumor antigens.

Mild hyperthermia has an advantage in this respect, because a

temperature range of 41 to 45 °C is insufficient to cause antigenic

degeneration. Ruoping et al. reported a method of inducing mild

hyperthermia based on copper sulfide nanoparticles (CuSNPs),

which enhanced the capture of tumor antigens released during

hyperthermia and induced the tumor immunogenic

microenvironment, suggesting the potential of mild hyperthermia

in improving immunogenicity (31).

On the other hand, thermal ablation mainly caused cell

necrosis, while mild hyperthermia mainly caused apoptosis (32,

33). The advantage of inducing apoptosis over direct necrosis is

that more damage-related molecules (DAMPs) are released

during apoptosis to induce ICD (34). Studies have shown that

mild hyperthermia induces ICD in a ROS-dependent manner,

which is evidenced by the occurrence of a key ICD event:

phosphorylation of eIF2 a (35, 36). Currently, there is no

direct evidence of ICD induction by thermal ablation, but the

effects on immune cell activation are clear.
Effect on the activation and action
of immune cells

Previously, it was believed that the efficacy of thermal

ablation primarily depended on its ability to ablate the tumor
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in situ (37). In fact, thermal ablation has been increasingly used

in the treatment of metastatic tumors depending on its

secondary effects, such as activating anti-tumor immune

responses. Mature dendritic cells (DCs) play a key role before

T cells are recruited, recognize tumor cells, and infiltrate the

tumor site. After thermoablation, DC and natural killer (NK)

cells are recruited to the tumor site, while regulatory T cells

(Tregs) are significantly downregulated (38). Muxin et al.

confirmed that hyperthermia inhibits the progression of

primary and pulmonary metastasis of breast cancer by

activating the macrophage/IL-15/NK cell axis (39). However,

Muxin et al. and other researchers have not observed significant

T cell immune response (40, 41), suggesting that Tregs may play

a key role in the efficacy of thermal ablation, but the role of other

T cells in it is still worthy of attention.

It is well known that mild hyperthermia can improve vascular

permeability, which provides a good platform for the passage of

innate immune cells and lays a foundation for inhibiting distant

metastasis of tumors (42, 43). Yuefei et al. found that mild

hyperthermia not only activated macrophages and DCs in

tumors but also improved the structure of tumor vessels by

reducing the levels of transforming growth factor-b (TGF-b) and
hypoxia-inducible factor-1 a (HIF-1a) and significantly increased

the proportion of CD8+IFN- g + T cells (44). In breast cancer,Wan

et al. found a significant increase and infiltration of DC, NK, B and

CD8+T cells after mild hyperthermia (45), while Muxin et al. did

not observe a significant T cell response induced by hyperthermia

(39). Thus, at least in breast cancer, mild hyperthermia may lead to

more effective immune stimulation and longer-lasting immune

memory than thermal ablation.
Influence on the
immunosuppressive TME

The efficacy of ICIs in the treatment of malignant tumors

depends, to a large extent, on the immune status of the TME (46,

47). According to the immune status of the TME, tumors can be

divided into “cold” and “hot” tumors. The characteristics of “cold”

tumors include less tumor infiltrating T cells (TIL), low expression

of PD-L1, enrichment of immunosuppressive cells, and decrease in

tumormutation, so the response rate to PD-1/PD-L1mAb is usually

low (48). In other words, if thermal ablation or mild hyperthermia

changed some of the characteristics of “cold” tumors, it could

increase the sensitivity of ICIs, which would help improve the

efficacy of this therapy in conjunction with ICIs.

The infiltration of TILs and the reduction of immunosuppressive

cells (such as Tregs) are often considered to be a temperature-

sensitive event. Liping et al. designed a mild hyperthermia method

combined with PD-L1 inhibitors for the “cold” TME of breast

cancer mouse models (4T1 and B16F10). The results showed that

the CD8+T and CD4+T cell populations in the treatment group
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were 11.8 and 8.2 times higher than those in the PBS group,

respectively, promoting the differentiation of immature T cells

(49). More importantly, the infiltration of CD8+T cells was also

significantly increased, and the number of Tregs and the level of

Treg surface markers such as CD4, CD25, and Foxp3 were

significantly decreased. Interestingly, they found that the

expression of PD-L1 on the surface of tumor cells increased

with the increase in temperature in the range of 37–45°C,

suggesting the sensitizing effect of mild hyperthermia on ICIs.

In addition to these, Changdong et al. also found that whole body

hyperthermia (WBH) has a good effect on a4b1 or a4b7 integrin-
mediated T cell adhesion andmigration (50), which may be one of

the mechanisms by which hyperthermia inhibits distant

tumor metastasis.
Magnetic nanoparticles as thermal
effectors and drug carriers

Modified nanoparticles play a key role in the combined

treatment strategy of cancer based on magnetic hyperthermia

(MHT) and immunotherapy. Superparamagnetic iron oxide

nanoparticles (SPIONs) smaller than 20-25 nm have attracted

much attention because of their good superparamagnetism,

chemical stability, high saturation magnetization and proper

biocompatibility (51). Based on the above characteristics, the

coupling of SPION with drugs can better maintain the retention

time of drugs in the blood, control the degradation rate of drugs

and reduce toxicity, suggesting that this coupling is helpful for

better targeted delivery of drugs to tumor sites, and provides the

possibility for the combination of magnetic hyperthermia and

immunotherapy (52). However, it is worth noting that this

targeted transport often depends on monoclonal antibodies to

recognize the receptors overexpressed on the cell surface, in

which SPIONmainly plays the role of a carrier, in other words, it

is difficult to target nanoparticles at low-specific tumor locations.

The combination of magnetic nanoparticles (MNPs) and

alternating magnetic field (AMF) is called MHT, which is

essentially a kind of thermotherapy with magnetic induction

characteristics (53). SPIONs belongs to a kind of MNP, Tetsuya.

After coupling SPION with anti-HER2 antibody trastuzumab, it

was found that anti-HER2SPIONS selectively targeted HER2-

expressing cancer cells and induced apoptosis only in cancer

cells expressing HER2, suggesting the specificity of this coupling

against cancer (53). Not only that, SPION also performs well in

high intensity focused ultrasound (HIFU). Compared with HIFU

therapy alone, Haiyan et al. invented a kind of nanoparticles with

superparamagnetic iron oxide (SPIO,Fe3O4NPs) as shell and poly

(lactide-glycolide) nanoparticles (Fe3O4@PLGA/LANPs) as core,

which showed synergistic inhibitory effect on breast cancer, which

was related to the accumulation and long-term retention of

SPION in tumor site (54). Many MNP are evolved on the basis
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of SPION, other MNP including CoFe2O4@MnFe2O4,

PEGylatedFeNP, etc., can also provide magnetic targeting

efficacy, but compared with SPION, some nanoparticles that are

too large or too small cannot avoid liver uptake (55).

However, some questions about the efficacy of hyperthermia

are also emerging. For example, tumor cells often produce heat

resistance during or after hyperthermia, which is characterized by

resistance and regenerative response to high temperature (51). The

reason behind this phenomenon is closely related to the

enhancement of heat shock protein synthesis (56). Although

HSP70 and many other HSPs have immunostimulatory effects,

there is considerable evidence that some HSPs inhibit the anti-

tumor immune response (57, 58). The targets of SPIONs include

hsp70 and hsp90, which may help to prevent the production of heat

tolerance and restore the anti-tumor immune response.
Role of exosomes as mediators
in the hyperthermia-induced
immune response

Exosome, a small membrane vesicle derived from endocytosis,

mediates cellular communication between tumor cells and

immune cells by wrapping and transmitting signal molecules

such as mRNA, miRNA and other non-coding RNA and

proteins. Among them, HSP has attracted much attention

because of its diverse mechanisms of expression and regulation

of tumorigenesis and development. During hyperthermia, cells

under heat stress enhance immune response by promoting the

release of more exosomes rich in tumor antigens, chemokines

(including CCL2, CCL3, CCL4, CCL5 and CCL20, etc.) and HSP

to APC to identify and destroy tumor cells (59). The contents of

TEX (HS-TEX) under heat stress play an important role in its

function in TME. Compared with apoptotic fragments and HSP-

70 knockout exosomes, HSP-70-rich exosomes recruit more NK

cells and promote the killing of NK cells (60). In addition, recent

studies have found that exosomes extracted from heat-stressed

tumor cells (HS-TEX) can reverse immunosuppressive TME from

the following four aspects, including: ① activation of DCs;② as a

cancer vaccine promotes IL-6;③ secretion by cells to reduce the

proportion of Treg and MDSCs, while increasing the proportion

of Th1 and Th17;④ promote the differentiation of CD8+T cells

(60–62).

However, exosomes can also produce immunosuppressive

activity. Some TEX have been shown to contain ligands such as

FasL and TRAIL, which can induce apoptosis of activated T cells.

Exosomes can also contain NKG2D ligands, which can block

NKG2D receptors and inhibit the cytotoxicity of NK cells and

CD8+T cells. One study also showed that HS-TEX can induce a

bystander effect (BE) in tumor cells and promote the survival of

stress-free cells (63). In addition, PD-L1 can be expressed in TEX

to evade immunity (64).
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It is worth noting that recently, it has been found that

exosomes not only participate in the regulation of immune

response, but also promote the survival of thermostable cells.

The survival of thermostable cells is inseparable from a

mechanism called “Anastasis”, through which cells can recover

from apoptotic lesions and have their previous functional state,

which is closely related to the role of HSP released by TEX in the

fight against apoptosis and lethal stimuli. The increase of Hsp70

and Hsp90, a common feature of thermostable cells, also confirms

this point. A recent study also reported that HSP70, HSP90 and

HSP60 are secreted by cancer cells through exocytosis and may

play a key role in inhibiting the host’s anti-tumor immune

response (65). Moreover, this heat tolerance mediated by TEX

may be achieved by inhibiting apoptosis by HSP, including

inhibition of cascade activation of caspase and splicing of t-BID

fragments, which is antagonistic to apoptosis induced by mild

hyperthermia. However, TEX rich in HSPs can also induce anti-

tumor immunity. For example, studies have suggested that

exosome from heat-treated malignant ascites from gastric cancer

patients are rich in HSP70 and HSP60, which promote DC

maturation and induce tumor-specific CTL response (62).

Generally speaking, the key to find a breakthrough between

immune stimulation and immunosuppression and the

emergence or disappearance of heat tolerance may lie in the

role of exosome contents, especially the complex role of HSPs

remains to be further studied. In summary, the above data suggest

that hyperthermia can be used as an adjuvant therapy for ICIs to

temporarily activate the anti-tumor immune response (66).

Therefore, several studies propose a therapeutic strategy of TILs

infiltration in tumor microenvironment (60), up-regulated

expression of PD-L1 and combined with ICIs after thermal

ablation or mild hyperthermia, to investigate whether these

therapies could elicit stronger and more lasting systemic

immunity in tumor patients to resolve recurrence and distant

metastasis after hyperthermia (Figure 1).
Thermal ablation or mild
hyperthermia combined with ICIs:
A preclinical study

The earlier section was only meant to be a general

introduction to the immune effects of hyperthermia. Here, we

compared the combined effects of each hyperthermia technique

in more detail, in order to investigate which one was more

efficacious. Thermal ablation mainly included microwave

ablation (MWA), radiofrequency ablation (RFA), cryoablation

(CA),high intensity focused ultrasound (HIFU) and laser

ablation (67, 68). Mild hyperthermia therapies were mainly

photothermal therapy (PTT) and magnetothermotherapy

(MHT) (69). PTT uses near infrared (NIR) light in the range

between 700nm and 900nm to generate thermal energy,
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including gold, copper, graphene, polymer nanoparticles and

carbon nanotubes under study (70–74). This characteristic of

near-infrared light determines that PTT can maintain a

penetration depth of approximately 1 cm, therefore PTT is

more suitable for subcutaneous tumors, surgical exposures, or

catheters. MHT uses magnetic nanoparticles (mainly iron oxide

(Fe2O3) nanoparticles and its derivatives) to create alternating

magnetic fields to generate heat. Compared with PTT, MHT is

advantageous because it has excellent tissue penetration for deep

tumors using hyperthermia induced by alternating magnetic

fields. However, this may also lead to nanoparticles not being

located in tumors to unnecessarily heat healthy tissue (75, 76).

Currently, the commonly used immune checkpoint

inhibitors approved by FDA included anti-PD-1/PD-L1

inhibitors and anti-CTLA-4 inhibitors (77). Malignant tumors

often use the inhibitory PD-1/PD-L1 or CTLA-4 pathway to

escape the immune system. The principle of this biological

behavior is that the PD-L1 molecule located on the surface of

tumor cells binds to the transmembrane protein PD-1 expressed

on T cells, B cells and natural killer cells (NK cells), which

depletes T cells and promotes immune escape (78). On the other

hand, CTLA-4 molecules block the binding of B7 ligands to T

cell costimulatory molecules by binding to CD80 and CD86,

thus blocking intracellular signal transmission and ultimately

specifically preventing T cell activation and proliferation.

Therefore, PD-1/PD-L1 blockers and CTLA-4 inhibitors play

different roles by blocking parallel but different pathways on

tumor cells (9). Common PD-1 antagonists include nivolumab

and pembrolizumab, PD-L1 antagonists include atezolizumab

and durvalumab, and CTLA-4 antagonists include ipilimumab,

temlimumab (79, 80). A single antagonist is not frequently used

because of the low patients’ response rate. The combination of

two checkpoint inhibitors, such as CTLA and PD-1, has shown

some efficacy in melanoma, renal cell carcinoma, non-small cell

lung cancer and other malignant tumors. However, treatment of

metastatic tumors, which is the real cause of death in most

clinical tumor patients, is still not effective, so researchers have

shifted their attention from the sequential treatment of single or

multiple ICIs to the combination of ICIs and other treatments

(11). The combination of ICIs and hyperthermia has performed

well in some preclinical studies and may be used as a potential

combination therapy to improve the response rate and survival

rate in the clinical setting. Next, combined with the

characteristics of each tumor, this paper will specifically

describe the combined effect of thermal ablation or mild

hyperthermia and ICIs, especially in the treatment of

metastatic tumors.
Breast cancer

Triple negative breast cancer (TNBC) is a special subtype of

breast cancer, accounting for 15%-20% of all breast cancers. It
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has strong invasive clinical characteristics and an early high

recurrence rate (81). Chemotherapy is the standard treatment

for TNBC, but the overall prognosis is poor, with a median

overall survival time (OS) of only 12-18 months, while

hyperthermia combined with immunotherapy seems to

provide better prognosis in the preclinical model of TNBC

(82). The tumor formed by 4T1 cells in BALB/c mice is highly

similar to the one found in human breast cancer in terms of

growth and metastasis, so it is often used as an animal model for

the study of human stage IV breast cancer. At the same time, it is

also a highly invasive and metastatic model, often with lung,

liver, and lymph node metastasis, in line with the characteristics

of TNBC (83).

The main advantage of thermal ablation is that it has a

strong in situ tumor ablation ability. When HIFU is combined

with anti-PD-1, tumor proliferation-related genes such as

Wnt7b,S100a14 and Erbb2 are significantly downregulated,

and newly released tumor-specific antigens, cytokines, and cell

fragments act as agonists of innate immunity (84). However, the

disadvantage of thermal ablation is that it may enhance the

immunosuppressive effect of distant Tregs (84).
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Compared with thermal ablation, mild hyperthermia showed

a better inhibitory effect on distant metastasis (49, 85). A study by

Hongwei et al. reported that PTT combined with anti-CTLA-4

therapy can effectively inhibit the growth and lung metastasis of

invasive 4T1 tumors, which could not be achieved by using PTT

or anti-CTLA-4 inhibitors alone (86). Interestingly, only one

combination of PTT and sequential PTT alone did not cause

significant inhibitory effect, or even immune rejection, while the

inhibitory effect of sequential PTT combined with anti-CTLA-4

therapy was significant. The reason behind this phenomenon

may be explained by a short treatment window after the second

dose of PTT treatment. Most of the Treg cells were eliminated

and the activated cytotoxic T lymphocytes (CTL) had not

infiltrated the tumor tissue. Combined anti-CTLA-4 therapy

could accelerate this process and produce stronger TAA-

specific CD8+T cells and immune memory than sequential

PTT alone. However, when MHT was added to the

combination of radiotherapy and anti-PD-1 or anti-CTLA-4,

only CD3+T lymphocyte infiltration was observed, which helped

reduce the lung metastasis of 4T1 breast cancer but did not

improve the overall survival time. Moreover, the combination of
FIGURE 1

Partial mechanism diagram of hyperthermia combined with ICIs on tumor microenvironment. Created with BioRender.com.
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MHT and anti-PD-1 or anti-CTLA-4 even showed the possibility

of increasing lung metastasis (83). In summary, PTT could be the

first to show more potent inhibitory effect than MHT in distant

metastasis of breast cancer, suggesting the possibility of a

photothermal vaccine (55).
Pancreatic cancer

Pancreatic cancer is generally considered to be a “cold”

malignant tumor of the digestive tract, mainly due to its

immunosuppressive “cold” TME (87). At the same time, it is

highly metastatic in the early stage because of its incomplete

capsule, rich lymphatic and blood circulation, and highly

invasive capability (88, 89).

The combination of thermal ablation and mild hyperthermia

with ICIs seems to make this “cold” tumor “hot”. PetrosX et al.

developed a pulsed high-intensity focused ultrasound (pHIFU)

technique based on HIFU. Mechanical damage induced by

pHIFU leads to a sustained increase in the level of CD8+ tumor-

infiltrating T cells (TILs) in tumors (90). When pHIFU was used in

combination with anti-PD-1, the immunosuppression of the PD-1/

PD-L1 axis of pancreatic cancer KPC cells was relieved, and the

survival rate of the treatment group was significantly increased. In

addition, one of the key findings of PetrosX et al., who investigated

the combination of thermal ablation and ICIs, was that this

combination of therapies induces a local tumor pro-inflammatory

microenvironment, which is evidenced by the increased infiltration

and proportion of several types of inflammatory cells (CD8+TIL,

CD8+ IFN g + TIL, and CD4+T cells) 48 hours after treatment.

From a cellular structural point of view, the “cold” tumors in

pancreatic cancers comprised of dense connective tissue

stroma and extracellular matrix, which set up barriers that

prevented immune cells from infiltrating to the tumor site (91).

Recently, mild hyperthermia has been shown to alter the dense

structure of tumor tissue (92). Qianwen et al. designed a PTT

therapy based on nanoparticles BMS-202 (a small molecular

inhibitor of PD-1/PD-L1). It was found that PTT can dilate

tumor vascular morphology and enhance tumor vascular

permeability compared to the untreated group, suggesting that

this PTT therapy could be beneficial in reshaping the

immunosuppressive microenvironment in pancreatic cancer (93).

Unsurprisingly, this PTT therapy not only decreased the expression

of HIF-1 a and effectively reduced the hypoxia of TME but also

promoted the maturation of DC in the spleen of tumor-bearing

mice and reactivated the immunosuppressive microenvironment.

When combined with nanoparticles BMS-202, the lung and liver

metastatic nodules of pancreatic cancer were significantly reduced.

In short, when combined with ICIs, thermal ablation and

mild hyperthermia could enhance the therapeutic effect of ICIs

and make pancreatic cancer “hot” again by inducing local tumor

pro-inflammatory microenvironment and activating tumor
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worth mentioning that PTT therapy based on nanoparticles

BMS-202 could also inhibit the metastasis of cancer cells

through blood vessels to distant organs.
Nasopharyngeal carcinoma

Nasopharyngeal carcinoma (NPC) is a malignant tumor that

often occurs at the top of the nasopharynx. Although it is

sensitive to radiotherapy, and simultaneous radiotherapy and

chemotherapy are often used in clinics, 30% to 40% of patients

die of local recurrence and metastasis, which may be related to

radiation resistance (94, 95). At the same time, patients often

suffer from many adverse reactions (such as radionecrosis,

dysphagia, and vomiting) (96, 97). Hyperthermia can solve the

problem of radiation resistance and adverse reactions to some

extent, which may be helpful to inhibit the recurrence and

metastasis of nasopharyngeal carcinoma.

Recent studies have found that PTT had a good effect in the

treatment of nasopharyngeal carcinoma. Qinmin et al. invented

a USPIO-PEG-sLex nanoparticle as a photothermal agent for

PTT, which proved that it could effectively inhibit the growth

and promote apoptosis of nasopharyngeal carcinoma in vivo and

in vitro, and there was no metastasis or invasion in the

xenotransplantation model (98). This has also been well

established by Naveen et al., and the role of PTT in inducing

apoptosis could be related to the surge in ROS level (99).

However, after objectively evaluating this method, it might not

be possible to use PTT alone for antineoplastic therapy. Hence,

to address the question of whether a combination of

hyperthermia and other treatments might benefit NPC

patients, a retrospective analysis found that the 5-year overall

survival rate (OS) of patients treated with whole body

hyperthermia (WBH) combined with CRT increased from

65.2% to 80.3% (100) compared with advanced NPC patients

who received only radiotherapy and chemotherapy (CRT). More

importantly, there was no significant toxicity in these patients,

suggesting that WBH helps to improve radiation resistance and

reduce therapeutic toxicity in patients with NPC. The effect of

the combination of WBH and CRT is gratifying, therefore there

are studies on the combination of mild hyperthermia and CRT

plus cetuximab to test the efficacy of this triple therapy. The

results showed that the apoptosis rate of nasopharyngeal

carcinoma CNE induced by triple therapy was further

increased on the basis of mild hyperthermia and CRT, and the

curative effect was stronger than that of other groups. The

mechanism may be related to the synergistic effect of blocking

the binding of EGFR and its ligands and the increase of the Bax/

Bcl-2 ratio (101). At the same time, this triple therapy has been

implemented in pancreatic cancer, and its feasibility has been

confirmed, but its safety has yet to be evaluated.
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Brain cancer

Glioblastoma (GBM) is a highly invasive and destructive brain

tumor characterized by poor prognosis and high recurrence rate

(102). As a result of the tumor microenvironment of restricted

blood-brain barrier (BBB) and GBM immunosuppression,

immunotherapy, such as ICIs, is ineffective in the treatment of

intracranial malignant tumors (103). On the one hand, the lack of

TILs and the formation of immunosuppressive mechanism make

GBM become a kind of “cold” tumor. On the other hand,

monoclonal antibodies are difficult to enter the brain through

BBB because of their largemolecular size and low BBB permeability.

Laser interstitial thermotherapy (LITT) is a common method

for the treatment of recurrent or deep brain tumors. The

combination of LITT and ICIs may hopefully change the “cold”

state of GBM immunosuppression into a “hot” state that is more

sensitive to ICIs. Some studies have generated gold nanoparticles

that have a therapeutic action similar to LITT, amplifying the effect

of light-based photothermal ablation. When combined with anti-

PD-L1, the tumor of GBM model mice reduces in size and the

survival rate increases, showing long-lasting anti-tumor immunity

(104). At the same time, solving effectively the problem of

monoclonal antibody penetrating BBB is the key to improve the

efficacy of monoclonal antibody in the treatment of GBM. Recently,

MHT has shown good potential, with its mechanism potentially

being related to the nanoparticle-encapsulated monoclonal

antibodies passing through BBB. The combination of FeNP-based

MHT with local injection of nano-adjuvants and systemic injection

of anti-CTLA4 can lead to systemic therapeutic responses to inhibit

tumor metastasis (75). In addition, nano-drugs, especially NPs

combined with hyperthermia, are being studied as potential ways

to enhance tumor drug delivery in patients with GBM (105).

In addition to GBM, studies have shown that a common,

refractory pediatric cancer called neuroblastoma is sensitive to a

combination of Prussian blue nanoparticles (PBNP)

photothermotherapy (PTT) and anti-CTLA-4 checkpoint

inhibitors. Compared with the group treated with PTT or anti-

CTLA-4 checkpoint inhibitor alone, mice treated with this

photothermal immunotherapy not only increased the survival

rate by 43% or 55.5%, respectively, but also showed protection

against neuroblastoma re-attack, suggesting the potential of PTT

and ICIs in the treatment of brain tumors (106).
Thermal ablation or mild
hyperthermia combined with ICIs: A
clinical study

It has been established that the immune response mediated by

T cells released by ICIs is non-specific (107), and thermal ablation

may be able to correct this. In a clinical trial to evaluate the efficacy

of RFA, patients with liver metastasis from colorectal cancer
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(108). Although RFA does not ablate tumor cells, it offers the

possibility of therapy involving a combination of hyperthermia

and ICIs. RFA may also make up for the deficiency of nonspecific

T cell response induced by ICI (109). Secondly, ICIs therapy often

causes adverse reactions. For instance, in patients with advanced

melanoma, 96.8% of patients treated with ipilimumab and

nivolumab had immune-related adverse events (irAE), and 59%

of patients developed grade 3 or 4 irAE. A retrospective study of

131 patients with stage IV melanoma found that when combined

with systemic or local hyperthermia, the incidence of grade 3 and

grade 4 irAE in these patients decreased to 6.11% and 2.29%

respectively, suggesting that mild hyperthermia combined with

ICIs is safer (110). This has also been confirmed by a prospective

phase I clinical trial. Guoliang et al. found that HT combined with

adoptive cell therapy (ACT) and anti-PD-1 therapy was safe and

feasible, but this combination of therapies also enriched the TCR

library of clinical immune responders and promoted favorable

changes in serum IL-2, IL-4, TNF- a and IFN- g levels (111).
In short, combined with the current evidence, hyperthermia

has an advantage in providing a tumor antigen-specific T cell

response, while mild hyperthermia combined with ICIs can

ensure safety while having anticancer efficacy, and the safety is

easy to be ignored (Table 1).
Conclusions and future perspectives

Previous studies have mostly focused on the immune effect

of hyperthermia, and the combination therapy of hyperthermia

and ICIs has been a new field of investigation. This paper first

compares the different effects of thermal ablation and mild

hyperthermia on immune response, then summarizes the

recent examples of preclinical and clinical studies of

hyperthermia combined with ICIs, and analyzes the

underlying reasons combined with the mechanism of

hyperthermia, in order to provide theoretical and experimental

basis for research on hyperthermia and ICI combined therapy.

This paper presents some limitations, such as a limited

description of the methods and materials used in hyperthermia,

whereby there is regular, rapid development of this technique. At

the same time, due to the lack of clinical research on the

combination of hyperthermia and ICIs, some key questions

remain unanswered, such as: how can we better induce anti-

tumor immune response with ICIs combined with thermal

ablation or mild hyperthermia; at which temperature range does

the body have the strongest immunity; what the immune-related

factors that affect the efficacy of both are; how safe both techniques

are; and how the combined therapy affects the survival rate of

patients. These issues need to be addressed in order to greatly

improve the outcome of combined therapy with HT and ICIs.

However, combined with the existing evidence, we can still

draw some new key conclusions (1): CD8+T cell group is one of
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the important mechanisms of antitumor immunity in mild

hyperthermia, but it may not be as crucial in thermal ablation

(2); both thermal ablation and mild hyperthermia can partially

improve the immunosuppressive TME and increase the

sensitivity of tumor cells to ICIs (112) (3); mild hyperthermia

showed a better inhibitory effect on the high metastasis of some

tumors, which may be related to the improvement of distant

vascular permeability and the promotion of immune cell

infiltration (113); and (4) thermal ablationcan provide tumor

antigen specific T cell response to ICIs, while mild hyperthermia

combined with ICIs can provide safety. However, there are some

limitations in thermal ablation, mild hyperthermia or ICIs. The

main issue of using thermal ablation or mild hyperthermia itself

is the unnecessary heating of healthy tissue and heat tolerance of
Frontiers in Immunology 09
cells. ICIs has the ability to specifically target cancer cells, which

can help some nanoparticles reach the tumor site during

hyperthermia, accurately identify and kill cancer cells while

protecting normal cells as much as possible. In the clinical

treatment of ICIs, treatment-related irAE events often occur,

including nausea, diarrhea, loss of appetite, weakness, metabolic

abnormalities. Mild hyperthermia reduces the incidence of irAE

events, especially for grade 3-4 irAE reaction, which ensures

safety while enhances their therapeutic effect. For example, in the

clinical application of HIFU, coagulation necrosis caused by

excessive ultrasound energy destroys the structure and blood

vessels of the tumor to a great extent, thus limiting the ability of

immune cells to reach and interact with the tumor. Therefore,

some researchers invented p-HIFU technology to reduce
TABLE 1 Examples of ongoing clinical studies combining ICIs with hyperthermia therapy.

Trail Status Phase Hyperthermia specifications Type of neoplasm Involving meta-
static tumors

Treatment Endpoints

NCT02833233 Active Pilot CA Breast cancer No anti-PD-1+anti-
CTLA-4+CA

Safety

NCT03237572 Recruiting I HIFU, target 50% of the tumor, up to
3 cubic centimeters

Breast cancer Yes anti-PD-1+HIFU Immune
response, Safety

NCT04116320 Recruiting I Focused ultrasound ablation (FUSA) Advanced tumor No anti-PD-1+HIFU Immune
response, Safety

NCT04156087 Recruiting II Minimally Invasive Surgical
Microwave Ablation (MIS-MWA)

PC No anti-PD-1+MWA
+Gemcitabine

PFS

NCT04220944 Recruiting I MWA(covered at least two thirds the
size of the nodules)

HCC No anti-PD-1+MWA/
TACE

PFS, ORR, TTP,
OS, Safety

NCT03864211 Active I/II MWA/RFA under CT or ultrasound
guidance

HCC No anti-PD-1+MWA/
RFA

PFS, OS, Safety

NCT01853618 Completed I/II RFA/TACE/CA HCC No anti-CTLA-4
+RFA/TACE/CA

Safety, feasibility,
RR, TTP, OS

NCT03939975 Completed II MWA/RFA HCC No anti-PD-1+MWA/
RFA

Safety, RR, PFS,
OS

NCT03753659 Recruiting II MWA/RFA under CT or ultrasound
guidance

HCC No anti-PD-1+MWA/
RFA

ORR, OS, Safety

NCT04150744 Recruiting II RFA HCC No anti-PD-1+RFA PFS, ORR, OS,
TTP

NCT03337841 Unknown II RFA HCC No anti-CTLA-4
+RFA/Surgery

PFS, OS, ORR,
Safety

NCT02821754 Active II RFA/CA HCC、BTC No anti-PD-L1+RFA/
TACE/CA

PFS, Safety

NCT02469701 Completed II CA NSCLC Yes anti-PD-1+CA RR

NCT02437071 Active II RFA CRC Yes anti-PD-1+RFA Safety, RR

NCT03101475 Completed II RFA CRLM Yes anti-PD-L1+RFA
+SBRT

Immune
response, OS,
Safety

NCT03393858 Unknown I/II Thermotron RF-8EX,
Hyperthermia for 40 minutes on 42°C
± 0.5°C

MM No anti-PD-1+MH
+DC-CIK

PFS, OS, Safety

NCT03757858 Unknown I/II Thermotron RF-8, Hyperthermia for
40 minutes on 42°C ± 0.5°C

Abdominal and pelvic
malignant tumor

Yes anti-PD-1+MH
+CAR-T

Safety, ORR, PFS
CA, Cryoablation; HIFU, High intensity focused ultrasound; MWA, Microwave ablation; TACE, Transcatheter arterial chemoembolization; RFA, Radiofrequency ablation; SBRT, Systems
Biology Research Tool; MH, Mild hyperthermia; PC, Pancreatic cancer; HCC, Hepatocellular carcinoma; BTC, Biliary Tract Carcinomas; NSCLC, non-small cell lung cancer; CRC,
colorectal cancer; CRLM, colorectal cancer liver metastases; MM,Malignant mesothelioma; PFS, Progression-Free-Survival; ORR, Overall Response Rate; TTP, Time to Progression; OS,
Overall Survival; RR,response rate.
Note: the data in this table is quoted from clinicaltrials.gov.
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ultrasound energy and found that the combination of p-HIFU

and anti-PD-1 can promote immune cells to reach the tumor site

and induce a local tumor pro-inflammatory microenvironment

more effectively. Compared with RFA, MWA and laser, the

release of TAA, cytokines and cell fragments caused by HIFU

combined with anti-PD-1 acts as an agonist of innate immunity

and takes the lead in showing advantages in thermal ablation. At

the same time, more research on the combination of CA and

ICIs is also needed. The opposite extreme temperature of CA can

also cause a stronger immunostimulatory response, which is

characterized by a significant increase in the levels of serum IL-1,

IL-6, nuclear factor-kappa b and tumor necrosis factor-a after

ablation. A preliminary study of patients with breast cancer

receiving CA and anti-CTLA-4mAb has shown promising

efficacy and good tolerance (114).

Therefore, in the future, hyperthermia and ICIs should be

combined as a method to enhance local immune response and

avoid systemic immunotoxicity. The goal of the combination of

hyperthermia and ICIs will not simply transform the patient’s

immunosuppressive state into an activated state but can induce

the body’s own immunity. This is beneficial to the low-dose use

of ICIs to reduce the occurrence of irAE events, as expected by

Edward Jenner (110). In addition, whether hyperthermia and

ICIs can make up for each other’s shortcomings and exert

synergistic effect also depends on a key question-whether a

TME characterized by PD-L1 overexpression and TIL

enrichment can be produced (60). The enrichment of TILs by

hyperthermia has been confirmed (115, 116), but there are

limited studies on the expression of PD-L1 or other immune

checkpoints during hyperthermia. If hyperthermia can

upregulate the expression of PD-1, PD-L1 or CTLA-4, it could

be used as an ICIs sensitizer to bring improved efficacy to clinical

malignant tumor patients while explaining the mechanism

behind it, which is very important.
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