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Therapeutic antibodies that block the programmed death-ligand 1 (PD-L1)/programmed death-1 

(PD-1) pathway can induce robust and durable responses in patients with various cancers, 

including metastatic urothelial cancer (mUC)1–5. However, these responses only occur in a subset 

of patients. Elucidating the determinants of response and resistance is key to improving outcomes 

and developing new treatment strategies. Here, we examined tumours from a large cohort of mUC 

patients treated with an anti–PD-L1 agent (atezolizumab) and identified major determinants of 

clinical outcome. Response was associated with CD8+ T-effector cell phenotype and, to an even 

greater extent, high neoantigen or tumour mutation burden (TMB). Lack of response was 

associated with a signature of transforming growth factor β (TGF-β) signalling in fibroblasts, 

particularly in patients with CD8+ T cells that were excluded from the tumour parenchyma and 

instead found in the fibroblast- and collagen-rich peritumoural stroma—a common phenotype 

among patients with mUC. Using a mouse model that recapitulates this immune excluded 

phenotype, we found that therapeutic administration of a TGF-β blocking antibody together with 

anti–PD-L1 reduced TGF-β signalling in stromal cells, facilitated T cell penetration into the centre 

of the tumour, and provoked vigorous anti-tumour immunity and tumour regression. Integration of 

these three independent biological features provides the best basis for understanding outcome in 

this setting and suggests that TGF-β shapes the tumour microenvironment to restrain anti-tumour 

immunity by restricting T cell infiltration.

Pre-treatment tumour samples from a large phase 2 trial (IMvigor210) investigating the 

clinical activity of PD-L1 blockade with atezolizumab in mUC were used for an integrated 

biomarker evaluation (Extended Data Fig. 1a; Supplemental Discussion). Here, patients who 

achieved a complete response (CR) or partial response (PR) were categorised as responders 

and compared with non-responders, who displayed stable (SD) or progressive disease (PD). 

As found previously2,4, PD-L1 expression on IC (>5% of cells with SP142 antibody) was 

significantly associated with response (Fig. 1a). In contrast, PD-L1 expression on tumour 

cells (TC) was not associated with response (Extended Data Fig. 1b). We next performed 

transcriptome RNA sequencing in 298 tissue samples and assessed correlation with PD-L1 

expression on IC and with response. A gene set associated with CD8+ T-effector (Teff) 

cells4,5 was highly correlated with IC (Extended Data Fig. 1c,d; Supplemental Discussion). 

It was also significantly associated with response, particularly with CR, and with overall 

survival (Fig. 1b,c).

mUC is characterised by one of the highest somatic mutation rates6,7. In mUC, TMB 

correlates with response to immune checkpoint inhibitors4,5. We confirmed these findings 

(Fig. 1d,e) and showed that computationally predicted tumour neoantigen burden behaved 

similarly (Extended Data Fig. 1e,f), suggesting that the relevance of TMB reflects an 

increased potential for immunogenicity8–11. We next assessed the transcriptional and 

mutational correlates of TMB in mUC. The pathways most significantly associated with 

TMB were those involved in cell cycle, DNA replication and DNA damage response (DDR, 

Extended Data Fig. 1g, Supplementary Table S1). Signatures for these pathways were 

correlated with MKI67 and thus with proliferation (Extended Data Fig. 1h). Expression 

levels for APOBEC3A and APOBEC3B, two cytidine deaminases up-regulated in urothelial 

and other cancers12,13, were also correlated with TMB and response (Extended Data Fig. 

1i,j; Supplementary Tables S2 and S3). Finally, tumours with one or more mutations in DDR 
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or cell cycle regulator gene sets gene set had significantly higher TMB and response rates 

(Fig. 1f,g; Extended Data Fig. 1k,l; Supplementary Tables S4,S5).

Next, we sought features beyond CD8+ T-cell immunity and TMB that associated with 

response. Gene set enrichment analysis identified the cytokine-cytokine receptor gene set as 

the sole feature associated with non-response (Extended Data Fig. 2a, Supplementary Table 

S6). The most significantly associated genes within this pathway were IFNGR1 and genes 

involved in the TGF-β signalling pathway: TGFB1, ACVR1 and TGFBR2 (Supplementary 

Table S3). While IFN-γ is known to have favourable effects on anti-tumour immunity, 

persistent signalling by to this cytokine has been associated with adaptive resistance to 

checkpoint therapy14–17. We observed significantly enhanced expression of IFN-γ in 

responders, whereas IFNGR1 expression was significantly higher in non-responders 

(Extended Data Fig. 2b,c). TGF-β is a pleiotropic cytokine associated with poor prognosis in 

multiple tumour types18–20, and it is thought to play a pro-tumorigenic role in advanced 

cancers by promoting immunosuppression, angiogenesis, metastasis, tumour cell epithelial 

to mesenchymal transition (EMT), fibroblast activation and desmoplasia19,21–23. In our data, 

the two top-scoring TGF-β pathway genes represent a TGF-β ligand, TGFB1, and a TGF-β 
receptor, TGFBR2. Both showed increased mean expression in non-responders and 

association with reduced overall survival (Fig. 1h,i; Extended Data Fig. 2d,e). Taken 

together, these results suggest that the impact of checkpoint inhibition on patient outcome in 

mUC is dictated by three core biological pathways: (i) pre-existing T-cell immunity and (ii) 

TMB are positively associated with outcome, whereas (iii) TGF-β is associated with lack of 

response and reduced survival (Fig. 1j).

Most human solid tumours exhibit one of three distinct immunological phenotypes: immune 
inflamed, immune excluded, or immune desert1,24. Data, largely from melanoma, have 

suggested that inflamed tumours are most responsive to checkpoint blockade24,25, but the 

relevance of tumour-immune phenotype to mUC response was previously unknown. In our 

mUC cohort, a significant proportion of tumours (47%) exhibited the excluded phenotype, 

whereas desert and inflamed tumours comprised only 27% and 26% (Extended Data Fig. 2f; 

Fig. 2a,b). Average signal for the CD8+ Teff signature was lowest in desert, intermediate in 

excluded, and highest in inflamed tumours (Fig. 2c), and was significantly associated with 

response in inflamed tumours only, consistent with a model in which the absence of CD8+ T 

cells, or their spatial separation from tumour cells, makes the signature irrelevant.

The observed proximity of CD8+ T cells to desmoplastic stroma in immune excluded 

tumours (Extended Data Fig. 2f; Fig. 2a) suggests that the relevance of TGF-β in this 

phenotype may be driven by its impact on stromal cells. To measure TGF-β pathway activity 

specifically in fibroblasts, we generated a pan-fibroblast TGF-β response signature (Pan-F-

TBRS). Average expression for this signature was low in immune deserts but significantly 

higher in inflamed and excluded tumours. Consistent with a role for TGF-β pathway 

activation in TME fibroblasts, the Pan-F-TBRS was significantly associated with non-

response in excluded tumours only (Fig. 2d). TMB was significantly associated with 

response in both excluded and inflamed tumours (Fig. 2e).

Mariathasan et al. Page 3

Nature. Author manuscript; available in PMC 2018 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To better understand how the three core pathways relate to one another and to reveal their 

relative strengths of association with outcome, a statistical analysis of competing models 

was performed. Logistic regression pseudo-R2 was used as a measure of “explained 

variance” in patient response26.

In immune desert tumours, the pathways showed negligible explanatory power (Fig. 2f). For 

excluded tumours, both the Pan-F-TBRS signature and TMB were significantly associated 

with response, and combining the two provided a significant improvement over either term 

alone. For inflamed tumours, on the other hand, the CD8+ Teff signature combined with 

TMB gave the strongest correlation with response. In an analysis using all samples together, 

a model incorporating each core pathway significantly improved on all singleton and two-

pathway models (Fig. 2f, Extended Data Fig. 2g), demonstrating that the information 

provided by each pathway is at least partially independent.

The Cancer Genome Atlas (TCGA) molecular subtype taxonomy12 has been widely 

investigated in mUC, but with inconsistent results. Here we contrast the TCGA taxonomy 

with the Lund taxonomy, which includes a genomically unstable (GU) subtype27,28 

(Extended Data Fig. 3). Consistent with the importance of TMB, we observed that the GU 

subtype was significantly enriched for response (Fig. 3). This effect could not, however, be 

attributed to TMB alone, as the TCGA luminal II subtype was similarly enriched for high-

TMB tumours (Extended Data Fig. 4a,b). Instead, we identified the source of the difference 

by separately evaluating patients classified as TCGA luminal II only, Lund GU only, or both 

(Extended Data Fig. 4c). GU-only tumours had the lowest CD8+ Teff signature scores and 

lowest TMB but responded favourably; in contrast, luminal II-only tumours showed sharply 

elevated Pan-F-TBRS scores and responded poorly (Extended Data Fig. 4d,e). These results 

demonstrate the importance of interplay between the three core pathways in determining 

response. Further discussion of the Lund subtypes is provided as Supplemental Discussion.

In light of our hypothesis that physical exclusion of T cells by the stromal barrier limits 

response to atezolizumab in immune excluded tumours, we studied the EMT6 mouse 

mammary carcinoma model to determine if there was a role for TGF-β–activated stroma in 

this context. The EMT6 model exhibits the immune excluded phenotype (Extended Data 

Fig. 5a–d) and also expresses all TGF-β isoforms as well as PD-L1 (Extended Data Fig. 

5e,f). Although therapeutic blockade of PD-L1 or TGF-β alone had little or no effect, mice 

treated with both antibodies exhibited a significant reduction in tumour burden (Fig. 4a,b; 

Extended Data Fig. 5g,h). Regression of EMT6 tumours in these studies was wholly 

dependent on CD8+ T cells (Extended Data Fig. 5i). These findings were reproduced in a 

second relevant mouse tumour model, MC38 (Extended Data Fig. 5j–n).

Dual antibody blockade also led to a significant increase in the abundance of tumour 

infiltrating T cells (Extended Data Fig. 6a), particularly CD8+ Teff cells (Fig. 4c,d; Extended 

Data Fig. 6b). Blockade of TGF-β, alone or in combination with anti-PD-L1, had no effect 

on CD4+ T regulatory (Treg) cells in the tumour (Extended Data Fig. 6c–e). RNA 

sequencing data revealed that the CD8+ Teff signature was elevated in mouse tumours 

treated with a combination of anti–PD-L1 plus anti–TGF-β (Fig. 4e). Quantitative 

histopathology demonstrated that T cell distribution significantly changed following 
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combination therapy, with mean distance from stromal border increasing, and from tumour 

centre decreasing. However, T cell localization did not change with either single antibody 

treatment (Fig. 4f–h, Extended Data Fig. 6f). Together these results suggest that TGF-β 
inhibition potentiated the ability of anti–PD-L1 to enhance anti-tumour immunity, resulting 

in optimal T cell positioning and ensuing tumour regression.

Anti-TGF-β treatment significantly reduced TGF-β receptor signalling (i.e. pSMAD2/3) in 

EMT6 tumours, particularly in non-immune cells (Extended Data Fig. 6g,h). Given that 

TGF-β is associated with fibroblast differentiation and EMT22, we asked whether the 

benefits of dual antibody blockade could be attributed to direct effects on tumour cells or 

effects on stromal compartments. While single-agent inhibition of TGF-β reduced one of the 

three EMT signatures we considered, dual antibody treatment had no significant impact 

(Extended Data Fig. 6i). In contrast, the Pan-F-TBRS score and canonical fibroblast genes 

associated with matrix remodelling were significantly reduced in the combination treatment 

(Fig. 4i–l). Consistent with the phospho-flow analysis showing no change in pSMAD2/3 in 

hematopoietic cells, no reduction was observed in two alternate TBRS signatures associated 

with T cells or macrophages (Extended Data Fig. 6j,k)20. Blockade of TGF-β can thus 

synergise with anti–PD-L1 in the EMT6 model to reprogram peritumoral stromal fibroblasts 

and increase CD8+ Teff cell counts in the tumour bed, leading to robust anti-tumour 

immunity. Interestingly, although TGF-β inhibition might also be expected to diminish Treg 

cells, diminished Treg numbers were not observed and thus did not appear to contribute to 

combination efficacy.

The comprehensive evaluation of molecular, cellular and genetic factors associated with 

response and resistance to checkpoint blockade (atezolizumab) in this large cohort of mUC 

patients has yielded several important conclusions. Three non-redundant factors were found 

to contribute: (i) pre-existing immunity, as represented by PD-L1 gene expression on IC, 

IFNγ-expression, and histological correlates of CD8+ Teff activity; (ii) TMB, measured 

directly (Extended Data Fig. 7) but also reflected in signatures of proliferation and DNA 

damage response; and (iii) TGF-β pathway signalling, reflected by a distinct gene 

expression signature and by pSMAD2/3. These tightly connected findings have not been 

described previously, and their interrelationship may partially explain why predicting 

outcome from PD-L1 expression alone is challenging. The enrichment of the fibroblast 

TGF-β response signature in non-responding immune-excluded tumours, combined with 

results from Lund molecular subtyping and with preclinical models showing that co-

inhibition of TGF-β and PD-L1 converted tumours from an excluded to an inflamed 

phenotype, support a model in which TGF-β signalling may counteract anti-tumour 

immunity by restricting the T-cells in the TME. The observed multifactorial basis of 

response to immunotherapy may be applicable to other tumour types beyond mUC. Work in 

this area, across multiple tumour types and therapies, is still in its infancy, but these results 

open new avenues for disease-agnostic exploration of the mechanisms underlying response 

to and primary immune escape from cancer immunotherapy.

Methods

A full description of all methods is provided as Supplementary Information.
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Extended Data

Extended Data Figure 1. Molecular correlates of outcome and tumour mutation burden (TMB)
a, Overlap of the efficacy-evaluable patient populations with assays used in this study (n = 

326 for one or more of these assays). For gene expression analyses with respect to response, 

the complete RNAseq data set was used (n = 298). For gene expression analyses in the 

context of TMB or immune phenotype, the intersect between RNAseq and FMOne (n = 237) 

or immune phenotype (n = 244) was used, respectively. For mutation analysis around 

immune phenotypes, the intersect between FMOne and immune phenotype was used (n = 

220). For associations between response or genes mutation status with TMB, the complete 
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FMOne data set was used (n = 251). b, PD-L1 protein expression on tumour cells (TC), in 

contrast to expression on immune cells (IC; Fig. 1a), was not associated with response to 

atezolizumab (two-sided Fisher exact test; p = 0.72). c–d, Transcriptional correlates of PD-

L1 protein expression on IC. c, Genes associated with PD-L1 immunohistochemistry (IHC) 

positivity on IC. Normalized log2-transformed gene expression was compared with PD-L1 

IC protein expression. Interferon-stimulated genes29 and previously reported CD8 Teff and 

immune checkpoint molecule gene sets4,5 were among the most up-regulated (complete list 

of associated genes given in Supplementary Table S10). d, Association between CD8 Teff 

signature score and PD-L1 IC. There is a significant positive relationship between the 

signature score and PD-L1 IC staining (likelihood ratio test p = 4.2 × 10−35). e–f, Tumour 

neoantigen burden (TNB) is associated with outcome. e, Box plots showing the relationship 

between response status and TNB. Shown are number of mutations based on whole-exome 

sequencing, filtering for those mutations that are predicted to be expressed neoantigens. 

TNB is positively associated with response to atezolizumab (two-tailed t test p = 2.7 × 10−9). 

f, TNB, split into quartiles, is also associated with overall survival (OS; likelihood ratio test 

p = 0.00015). g, KEGG pathways enriched in genes whose expression is correlated with 

TMB. Shown are adjusted −log10 p values for enrichment of KEGG gene sets significantly 

(FDR < 0.05) enriched in genes that are correlated with TMB (272 samples analysed). Sets 

inferred to reflect key underlying biological processes are coloured. Only the top seven 

genes per set (ranked by single-gene p value) are shown. h, Relationship between different 

gene expression signatures as well as the single-gene expression values for MKI67, a marker 

for proliferation. In the left corner, correlation between signature scores/gene expression is 

visualized (348 samples analysed). In the right corner, Pearson correlation coefficients are 

given. Gene set membership is given in Supplementary Table S8. i–j, APOBEC3A and 

APOBEC3B gene expression and its association with response and tumour mutation burden 

(TMB). Both APOBEC3A (two-tailed t test p = 0.015; i) and APOBEC3B (two-tailed t test 

p = 0.0025; j) exhibit higher mean expression in responders. For TMB, Pearson correlation 

coefficients and p values are given. For j, the two extreme expression outliers were excluded 

when calculating correlation between gene expression and TMB. k, Mutations in cell cycle 

regulator genes are associated with TMB. Genes are plotted in rows and patients (n = 293) in 

columns, marking patients with a mutation with a black rectangle. The upper bar plot depicts 

TMB in each patient. The final rows represent the mutation status of the pathway with or 

without TP53. Percentages to the left of the plot indicate prevalence. Genes with significant 

single gene associations with TMB are marked by an asterisk. Mutations in cell cycle 

regulator genes are associated with TMB with inclusion of TP53 (two-tailed t test p = 4.01 × 

10−8), but not without inclusion of TP53 (two-tailed t test p = 0.0652156; Supplementary 

Table S4). l, Mutation status in cell cycle regulation (CCR) pathway by response. For each 

patient, it is determined whether they harbour any mutation in a gene belonging to the CCR 

pathway, except for TP53. Excluding TP53, there is no association between mutation status 

for the CCR pathway and response (two-sided Fisher test p = 0.31104; Supplementary Table 

S4). Sample sizes given in parentheses. Pan-F-TBRS: pan-fibroblast TGF-β response 

signature. CR, complete response; PD, progressive disease; PR, partial response; SD, stable 

disease; TMB, tumour mutation burden.
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Extended Data Figure 2. Pathways associated with response and cancer-immune phenotypes
a, KEGG pathways significantly associated with response to atezolizumab (adj. p < 0.10; 

comparing 68 responders to 230 non-responders). The top seven genes per set are shown; 

complete lists are given in Supplementary Table S6. b–c, IFNG (b) and IFNGR1 (c) gene 

expression (y-axis) is significantly associated with response (two-tailed t test p = 9.1 × 10−5) 

and non-response (two-tailed t test p = 0.00012), respectively. d–e, TGFBR2 gene 

expression (y-axis) is significantly associated with non-response (two-tailed t test p = 

0.00019, d) and, when split by quartiles, with reduced overall survival (likelihood ratio test p 

= 0.022, e). b–d: The numbers above the graphs specify sample numbers in each bin. CR, 
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complete response; PR, partial response; SD, stable disease; PD, progressive disease. e: 87 

samples per quartile. Q1: lowest quartile, Q4: highest quartile. f, Histology of tumour-

immune phenotypes: desert, excluded, and inflamed. g, Explained variance in patient 

response. Generalized linear models were fit to all efficacy-evaluable, immune phenotyped 

samples (n = 204) using binary response (CR/PR vs SD/PD) as the dependent variable and 

scores from single input or input combinations (x-axis) as independent variables. Percent 

explained variance of response is plotted on the y-axis. Comparisons between different 

models were made via likelihood ratio test. Horizontal bars describe likelihood ratio test 

results for two-biology vs. three-biology model comparisons. Stacked significance symbols 

for two-biology models show results of likelihood ratio test comparison to the first single-

biology model and separately to the second single-biology model, in the same order as given 

in bar label on x-axis. (E.g., The Teff, TMB model achieves three stars when compared to the 

Teff singleton, but an “n.s.” when compared to the TMB singleton—due to dilution of its 

inflamed-specific signal in this all-sample analysis.) A model that includes both DNA 

(TMB) and RNA markers (CD8+ Teff signature and Pan-F-TBRS) as well as interactions 

between the Pan-F-TBRS and both TMB and cancer-immune phenotype explains 50% of the 

variance observed in response, and it significantly improves on all singleton and two-biology 

models. This final bar is also given on the far right in Fig. 2f. n.s. p > 0.1; . p < 0.1; * p < 

0.05; ** p < 0.01 ; *** p < 0.001. Exact likelihood ratio test p values: “Teff,TBRS” versus 

“Teff”: 0.0026, “Teff,TBRS” versus “TBRS”: 0.0032, “Teff,TMB” versus “Teff”: 4.9 × 10−8, 

“Teff,TMB” versus “TMB”: 0.2, “TBRS,TMB” versus “TBRS”: 6.6 × 10−8, “TBRS,TMB” 

versus “TMB”: 0.014, “Teff,TBRS,TMB” versus “Teff,TBRS”: 1.9 × 10−7, 

“Teff,TBRS,TMB” versus “Teff,TMB”: 0.0028, “Teff,TBRS,TMB” versus “TBRS,TMB”: 

0.016. Teff: CD8 T effector gene signature, TMB: tumour mutation burden, (Pan-F-)TBRS: 

pan-tissue fibroblast TGF-β response genes.
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Extended Data Figure 3. Comparison between Lund and TCGA subtyping schemes
a, Heatmap representing all patients evaluated, except for patients without defined response, 

arranged in columns and sorted first by molecular subtype, then by response to 

atezolizumab. For the left-hand panel, patients were sorted based on a TCGA-based 

subtyping scheme, for the right-hand panel, patients were sorted by a Lund-based subtyping 

scheme (like Fig. 3a). Immune cell (IC) and tumour cell (TC) PD-L1 status are given. In 

addition, tumour mutation burden (TMB) and mutation status (either mutated, black, or not-

mutated; grey: patients without mutation data) for a few genes of interest are shown. The 

rows of the heatmap show expression (z-scores) of genes of interest, grouped into the 

following biologies/pathways: TCGA: TCGA subtyping genes, A: FGFR3 gene signature, 

B: CD8 T-effector signature, C: antigen processing machinery, D: Immune Checkpoint 

signature, E: MKI67 and cell cycle genes, F: DNA replication-dependent histones, G: DNA 

damage repair genes, H: TGF-β receptor and ligand, I: Pan-F-TBRS genes, J: angiogenesis 

signature, K: epithelial-mesenchymal transition (EMT) markers (for details on these 

signatures see Methods). CR, complete response; GU, genomically unstable; Inf, infiltrated; 

PD, progressive disease; PR, partial response; SCCL, basal/SCC-like; SD, stable disease; 

UroA, urothelial-like A; UroB, urothelial-like B, Pan-F-TBRS: pan-tissue fibroblast TGF-β 
response genes. b, FGFR3-related and WNT target genes30 as well as PPARG are 

significantly differentially expressed by Lund subtype (Wald p FGFR3-related: 2.7 × 10−43, 

WNT target: 1.3 × 10−15, PPARG: 1.2 × 10−53). Gene set membership is given in 
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Supplementary Table S8. c–d, Distribution of Lund subtypes by cancer-immune phenotypes 

and response status. c, The fraction of patients within the different Lund subtypes (y-axis) is 

plotted by tumour-immune phenotype. There is a significant difference in Lund subtype 

composition between cancer-immune phenotypes (Chi-squared test p = 1.2 × 10−7). d, For 

excluded tumours, the fraction of patients within the different Lund subtypes (y-axis) is 

plotted by response status [responders: complete and partial response (CR/PR), non-

responders: stable and progressive disease (SD/PD)]. There is a significant difference in 

Lund subtype composition between response groups (Chi-squared test p = 0.00061). The 

numbers above the graphs specify sample numbers in each bin. e, Assessment of MKI67 
expression and signatures of interest as well as TMB relative to molecular subtypes. 

Biologies of interest were scaled before medians were calculated across the Lund (left) and 

TCGA (right) molecular subtypes (columns). Red means high, blue means low. CR, 

complete response; DNA rep., DNA replication; GU, genomically unstable; Inf, infiltrated; 

PD, progressive disease; PR, partial response; SCCL, basal/SCC-like; SD, stable disease; 

TMB, tumour mutation burden; UroA, urothelial-like A; UroB, urothelial-like B, Pan-F-

TBRS: pan tissue fibroblast TGF-β response signature.
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Extended Data Figure 4. Contrasting Lund and TCGA molecular subtyping
a, Tumour mutation burden (TMB; y-axis) is plotted against Lund and TCGA subtypes (x-

axis). The Lund genomically unstable (two-tailed t test; p = 0.00018) and TCGA luminal II 

subtypes (p = 0.00024) have a higher median TMB. b, Patients are split into TMB low 

(grey) and high (black), based on median TMB, and the fraction of patients in these two 

groups is shown for the Lund and TCGA molecular subtypes. c–e, TGF-β as likely driver of 

differential response in Lund GU. c, Three patient subgroups: Lund GU but not TCGA 

luminal II, both GU and luminal II, or luminal II but not GU. d, CD8+ Teff, Pan-F-TBRS 

and TMB by subgroup. e, Response differs significantly by subgroups (two-tailed Fisher 
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exact p = 0.00062). The numbers above the graphs or in parentheses specify sample numbers 

in each bin. GU, genomically unstable; Inf, infiltrated; Pan-F-TBRS: pan-tissue fibroblast 

TGF-β response genes; SCCL, basal/SCC-like; Teff: CD8 T effector signature; TMB: 

tumour mutation burden; UroA, urothelial-like A; UroB, urothelial-like B.

Extended Data Figure 5. Efficacy data of anti–TGF-β + anti–PD-L1 treatment in EMT6 and 
MC38 immune excluded tumour models
a, Fibroblast (PDGFRa, left panel) and T cell (CD3, right panel) parametric maps. Left 

image shows PDGFRa density (% positive pixels) and right shows T-cell density (cells/

mm2). Scale bar: 1 millimetre. Representative images of eight biological replicates. b, 
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Collagen (green) and T cells (CD3, red) stained by immunofluorescence. Representative 

images of five biological replicates. c, Collagen (green), T cells (CD3, white) and PDGFRa 

(red) in EMT6 tumours stained by immunofluorescence. Scale bar: 200 microns. d, 
PDGFRa (red) in EMT6 tumours stained by immunofluorescence. Scale bar: 200 microns. 

Representative images of four biological replicates. e, Quantification of TGF-β and PD-L1 

RNA in whole EMT6 tumours by RNAseq. The tumours were inoculated orthotopically and 

collected when volume reached 300 mm3 (n = 5 mice; data from one experiment). f, 
Quantification of TGF-β protein within whole EMT6 tumours by ELISA. Tumours were 

collected 14 days after inoculation, flash frozen and lysed for protein quantification (n = 4 

mice; data from one experiment). g, Balbc mice were inoculated with EMT6 tumour cells 

orthotopically. When tumour volumes reached ≈ 160 mm3 approximately nine days after 

inoculation, mice were treated with isotype control, anti–PD-L1, anti–TGF-β, or a 

combination of anti–PD-L1 with anti–TGF-β. Tumours were measured two times per week 

for approximately eight weeks by calliper. When tumour volumes fell below 32 mm3 (lowest 

limit of detection), they were considered complete response. Percentage of complete 

regressions across 2–6 independent studies (10 mice/group per study). h, Tumour weights at 

day 7 after initiation of treatment (n = 28 mice per treatment group; data from three 

independent experiments). i, CD8 depletion experiment. CD8 T cells were depleted before 

initiation of treatment. j, Quantification of TGF-β and PD-L1 RNA in whole MC38 tumours 

by RNAseq. The tumours were inoculated subcutaneously and collected when volume 

reached 300 mm3 (n = 5 mice; data from one experiment). k, Quantification of CD8 T cells 

in the centre and in the periphery of EMT6 and MC38 tumours from IHC stains. Data 

expressed as number of cells per tissue area (periphery is defined as 400–600 micron from 

the tumour edge, centre is the remaining distance to centre point). EMT6: n = 5 mice, 

MC38: n = 4 mice. l, Collagen (green) and T cells (CD3, red) in MC38 tumours stained by 

immunofluorescence. Scale bar, 1mm (left); 0.1mm (right). m, C57BL6 mice were 

inoculated with MC38 tumour cells subcutaneously. When tumour volumes reached ≈ 180 

mm3 approximately eight days after inoculation, mice were treated with isotype control, 

anti–PD-L1, anti–TGF-β, or a combination of anti–PD-L1 with anti–TGF-β. Tumours were 

measured two times per week for approximately eight weeks by calliper. When tumour 

volumes fell below 32 mm3 (lowest limit of detection), they were considered complete 

response. Percentage of CR across 2 independent studies (1 for anti–TGF-β alone) shown 

with 10 mice per treatment group for each independent study. n, Tumour growth curves for 

each individual mouse are shown. The data are from one representative of two independent 

experiments with 10 mice per treatment group. All statistics are two-sided Mann-Whitney 

test compared to isotype group. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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Extended Data Figure 6. Changes in TME following anti–TGF-β + anti–PD-L1 treatment in 
EMT6 tumours
a, c, d, Cytofluorimetric analysis of T cells seven days after initiation of the treatment. The 

abundance of total T cells (a), total CD4+ cells (c) and the percentage of T regulatory cells 

(CD25+FOXP3+) in the CD4+ population (d) are shown. n = 15 mice for all treatment 

groups except for anti-TGF-β alone in which n = 10, data combined from three independent 

experiments expressed as fold change relative to the isotype cell/mg average. b, e, RNAseq 

analysis on whole tumours collected seven days after the initiation of treatment. Single-gene 

expression for IFNg, GzmB and Zap70 (b) Helios and Foxp3 (e) are shown (n = 8 mice per 

treatment group; data from one experiment). f, Distribution of tumour-infiltrating 
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lymphocytes in tumours (T) as assessed by immunohistochemistry and digital imaging seven 

days after the initiation of treatment as above. Representative CD3 staining (brown). Dashed 

line indicates tumour boundaries. (n = 19 for all groups except anti–PD-L1/anti–TGF-β, in 

which n = 20; three independent experiments). Scale bar, 500 micron. g, Phospho-SMAD2 

quantification by IHC at day 7 after initiation of treatment. (n = 9 or 10 mice per treatment 

groups; data from one experiment). h, Phosphoflow analysis of SMAD2/3 in tumours seven 

days after the initiation of treatment as above. Mean fluorescence intensity (MFI) of 

phospho-SMAD2/3 among total cells, CD45- or CD45+ cells are shown. Data are expressed 

as fold change (FC) relative to the isotype MFI average. 10 mice per treatment group from 

two independent experiments. i–k, RNAseq analysis on whole tumours collected seven days 

after the initiation of treatment. Three EMT signatures (i) as well as TGF-β response 

signatures for T cells (j) and macrophages (k) are also shown. (n = 8 mice per treatment 

group; data from one experiment). All statistics in the figure are two-sided Mann-Whitney 

test. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant compared to Isotype group.
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Extended Data Figure 7. Explained variance in patient response
Generalized linear models were fit using binary response (complete or partial response vs. 

stable or progressive disease) as the dependent variable and scores from single input or input 

combinations (x-axis) as independent variables (number of samples: 236). Percent explained 

variance of response is plotted on the y-axis. Comparisons between different models were 

made via likelihood ratio test; a significant p value means that the additional variable 

contributed some independent information to the model. TMB’s association with response is 

significantly stronger than that of its proxy measurements (APOBEC3B and MKI67 
expression or mutation in members of the DDR set). APOBEC3B and DDR gene set 

mutation provided no additional explanatory information independent of direct measurement 

of TMB. Combining TMB with MKI67 expression did marginally improve on TMB alone, 

possibly through MKI67’s negative association with TFG-β (Extended Data Fig. 1e,f). To 
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test this hypothesis, we added MKI67 to a two-pathway model based on TMB and the Pan-

F-TBRS, and confirmed that MKI67 does not add independent information to this two-

pathway model. Further, there was no benefit from adding MKI67 to our full three-pathway 

model, shown in Fig. 2f and Extended Data Fig. 2g. DDR: DNA damage repair; TBRS: pan-

tissue fibroblast TGF-β response genes; TMB, tumour mutation burden. n.s. p > 0.1; . p < 

0.1; * p < 0.05. Exact likelihood ratio test p values: “TMB,DDR” versus “TMB”: 0.38, 

“TMB,APOBEC3B” versus “TMB”: 0.26, “TMB,MKI67” versus “TMB”: 0.029, 

“TMB,TBRS,MKI67” versus “TMB,TBRS”: 0.064.
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Extended Data Figure 8. Relationship between different TGF-β related gene expression 
signatures and response
a, Correlation between different TGF-β related gene expression signatures. In the left corner, 

correlation between signature scores/gene expression is visualized, calculated based on the 

complete RNA sequencing data set of 348 samples. In the right corner, Pearson correlation 

coefficients are given. Gene set membership is given in Supplementary Table S8. See 

Methods for computation of signature scores. b, EMT signature expression is associated 

with response to atezolizumab in excluded tumours. Scores of three different EMT 

signatures—EMT131, EMT232 and EMT333—are significantly higher in non-responders 

(stable and progressive disease; SD/PD) than responders (complete and partial response; 

CR/PR) in excluded tumours (EMT1: p = 0.0102; EMT2: p = 0.0027: EMT3: p = 0.0063): 

there is no significant difference in signature scores in desert and inflamed tumours (all p = 

1; two-tailed t test p values for each signature are Bonferroni corrected for 3 tests). The 

numbers above the graphs specify sample numbers in each bin. c, Explained variance in 

patient response. Generalized linear models were fit using binary response (complete or 

partial response vs. stable or progressive disease) as the dependent variable and scores from 

single input or input combinations (x-axis) as independent variables (number of samples: 

233). Percent explained variance of response is plotted on the y-axis. Comparisons between 

different models were made via likelihood ratio test; a significant p value means that the 

additional variable contributed some independent information to the model. The Pan-F-

TBRS’s association with response is the strongest among its correlates, i.e., three different 

epithelial-to-mesenchymal transition (EMT) signatures. None of these signatures provided 

additional explanatory information independent of Pan-F-TBRS. (Pan-F-)TBRS: pan tissue 

fibroblast TGF-β response signature, EMT: epithelial-to-mesenchymal transition.
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Figure 1. Three core biological pathways are associated with response to atezolizumab
a, PD-L1 IC was associated with response (two-sided Fisher exact test p = 0.0038). IC2+ 

tumours had a significantly higher CR rate (p = 0.0006). b, CD8+ Teff signature score is 

positively associated with response (two-tailed t test p = 0.0087), with association driven by 

the CR group (CR vs PR p = 0.0388, CR vs SD p = 0.0668, CR vs PD p = 0.0003). c, CD8+ 

Teff signature quartiles (Q1: lowe are significantly associated with overall survival 

(likelihood ratio test p = 0.0092). d–e, TMB is positively associated with response to 

atezolizumab (two-tailed t test p = 6.9 × 10−7) and overall survival (likelihood ratio test p = 

2.0 × 10−5). A similar plot for tumour neoantigen burden is given in Extended Data Fig. 1e,f. 

f–g, There is a significant association between DDR mutation status and (f) response (two-

sided Fisher exact test p = 0.0117 excluding TP53) and (g) TMB, both with (two-sided 

Fisher exact test p = 6.01 × 10−8) and without inclusion of TP53 (p = 1.95 × 10−5) h–i, 
TGFB1 gene expression is significantly associated with non-response (two-tailed t test p = 

0.00011) and reduced overall survival (likelihood ratio test p = 0.0096). j, The relationship 

between response and three core biological pathways. . p < 0.10; * p < 0.05; ** p < 0.01; 

*** p < 0.001. Sample sizes given in parentheses. Q1: lowest quartile, Q4: highest quartile.
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Figure 2. TGF-β is associated with lack of response in the excluded tumour-immune phenotype
a, Combined CD8 IHC–trichrome stain. CD8+ T cells (DAB, brown) are primarily within 

collagenous stroma (blue). Rare CD8+ T cells are interspersed between tumour cells (green 

arrows). b, Distribution of tumour-immune phenotypes in IMvigor210. c, CD8+ Teff score is 

significantly associated with response only in the inflamed phenotype (two-tailed t test p = 

0.042). d, Pan-F-TBRS is significantly associated with response only in the excluded 

phenotype (two-tailed t test p = 0.0066). e, TMB is significantly associated with response in 

the excluded and inflamed phenotypes (two-tailed t test p = 0.00009 and 0.00258). f, 
Explained variance in patient response for generalized linear models fit using single core 
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pathways or pathway combinations. In immune desert tumours (n = 57), core pathways 

showed negligible explanatory power. For excluded tumours (n = 91), Pan-F-TBRS and 

TMB were associated with response as singletons; combining the two provided statistically 

significant improvement over single terms (likelihood ratio p = 6.23 × 10−5 and 0.02125, 

respectively). For inflamed tumours (n = 56), CD8+ Teff and TMB were associated with 

response as singletons; combining the two provided statistically significant improvement 

over single terms (likelihood ratio p = 0.00099 and 0.0557, respectively). Standard forward 

selection applied to all patients (grey) identified a three-pathway model as significantly 

better than all single- or two-pathway models (Extended Data Fig. 2g). n.s., nonsignificant; * 

p < 0.05; ** p < 0.01; *** p < 0.001. Sample sizes given in parentheses.
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Figure 3. Relationship between molecular subtypes (Lund scheme) and core biological pathways
Rows of the heat map show gene expression (z-scores) grouped by pathway. Inset: response 

vs. Lund molecular subtype, showing that the genomically unstable (GU) subtype has a 

significantly higher response rate (two-sided Fisher exact test p = 1.6 × 10−5). Sample sizes 

given in parentheses.
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Figure 4. Tumour regression and changes in TME following therapeutic anti–TGF-β + anti–PD-
L1 treatment in EMT6 tumours
a, Tumour growth curves. b, Change in tumour volume compared to baseline. (6 

independent experiments, 10 mice per group.) c–d, Fold change (FC) in total CD8+ T cell 

abundance (c) and CD8+ T cell GRANZYME B MFI by flow cytometry (d). (3 independent 

experiments, n = 15 for all groups except anti–TGF-β, where n = 10.) e, CD8+ Teff signature 

(1 experiment, n = 8 per group). f, TIL localisation quantification by immunohistochemistry 

(3 independent experiments, n = 19 for all groups except anti–PD-L1/anti–TGF-β, where n = 

20; Tukey HSD multiple comparison adjustment). g–h, Representative CD3 staining of 
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tumour periphery (g) and centre (h). Scale bar is 200 microns. i–l, Pan-F-TBRS signature (i) 

and expression of fibroblast genes (j–l). (1 experiment, n = 8 per group.) All data shown in 

c–l from tumours collected at day 7 after treatment initiation. All p values based on two-

sided Mann-Whitney tests unless otherwise indicated. * p < 0.05; ** p < 0.01; *** p < 

0.001; **** p < 0.0001.
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