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ABSTRACT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic has resulted in 92 million cases in a span of 1 year. The study focuses on
understanding population-specific variations attributing its high rate of infections in
specific geographical regions particularly in the United States. Rigorous phyloge-
nomic network analysis of complete SARS-CoV-2 genomes (245) inferred five central
clades named a (ancestral), b, c, d, and e (subtypes e1 and e2). Clade d and subclade
e2 were found exclusively comprised of U.S. strains. Clades were distinguished by 10
co-mutational combinations in Nsp3, ORF8, Nsp13, S, Nsp12, Nsp2, and Nsp6. Our
analysis revealed that only 67.46% of single nucleotide polymorphism (SNP) muta-
tions were at the amino acid level. T1103P mutation in Nsp3 was predicted to
increase protein stability in 238 strains except for 6 strains which were marked as an-
cestral type, whereas co-mutation (P409L and Y446C) in Nsp13 were found in 64
genomes from the United States highlighting its 100% co-occurrence. Docking high-
lighted mutation (D614G) caused reduction in binding of spike proteins with angio-
tensin-converting enzyme 2 (ACE2), but it also showed better interaction with the
TMPRSS2 receptor contributing to high transmissibility among U.S. strains. We also
found host proteins, MYO5A, MYO5B, and MYO5C, that had maximum interaction
with viral proteins (nucleocapsid [N], spike [S], and membrane [M] proteins). Thus,
blocking the internalization pathway by inhibiting MYO5 proteins which could be an
effective target for coronavirus disease 2019 (COVID-19) treatment. The functional
annotations of the host-pathogen interaction (HPI) network were found to be closely
associated with hypoxia and thrombotic conditions, confirming the vulnerability and
severity of infection. We also screened CpG islands in Nsp1 and N conferring the
ability of SARS-CoV-2 to enter and trigger zinc antiviral protein (ZAP) activity inside
the host cell.

IMPORTANCE In the current study, we presented a global view of mutational pattern
observed in SARS-CoV-2 virus transmission. This provided a who-infect-whom geo-
graphical model since the early pandemic. This is hitherto the most comprehensive
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comparative genomics analysis of full-length genomes for co-mutations at different
geographical regions especially in U.S. strains. Compositional structural biology
results suggested that mutations have a balance of opposing forces affecting patho-
genicity suggesting that only a few mutations are effective at the translation level.
Novel HPI analysis and CpG predictions elucidate the proof of concept of hypoxia
and thrombotic conditions in several patients. Thus, the current study focuses the
understanding of population-specific variations attributing a high rate of SARS-CoV-2
infections in specific geographical regions which may eventually be vital for the
most severely affected countries and regions for sharp development of custom-made
vindication strategies.

KEYWORDS comparative genomics, phylogenomics, phylogeny, SARS-CoV-2,
mutational studies, structural biology

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded
RNA virus with a genome size ranging from 29.8 kb to 29.9 kb (1). Most countries

are facing second waves and are on the verge of the next wave. So far more than 18
million deaths and 800 million active cases have been reported worldwide (https://
www.worldometers.info/coronavirus/). The genomic repertoire of SARS-CoV-2 com-
prises of 10 open reading frames (ORFs) encoding 27 proteins (2). ORF1ab encodes 16
nonstructural proteins (Nsp), whereas structural proteins include spike (S), envelope
(E), membrane (M), and nucleocapsid (N) proteins (3, 4). In addition, the genome
of SARS-CoV-2 is comprised of ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF9 genes
encoding six accessory proteins, flanked by 59 and 39 untranslated regions (UTRs) (1).
In our previous study (5), a higher mutational rate in the genomes from different geo-
graphical locations around the world by accumulation of single nucleotide polymor-
phisms (SNPs) was reported. Even during these early stages of the global pandemic,
genomic surveillance has been used to differentiate circulating strains into distinct,
geographically based lineages (6). However, the ongoing analysis of this global data
set suggests no consolidated significant links between SARS-CoV-2 genome sequence
variability, virus transmissibility and disease severity.

Although there are several studies that have appeared ever since the emergence of
SARS-Cov-2 (7, 8) and it has been reflected that the mutations at both the genomic
and protein level are in a “Hormonical Orchestra” (9) that drives the evolutionary
changes, demanding a detailed study of SARS-CoV-2 mutations to understand its suc-
cessful invasion and infection. To unveil this, we rendered and screened 18,775
genomes of SARS-CoV-2 and selected 245 genomic sequences deciphering the phylo-
genetic relationships, tracing them to SNPs at nucleotide and amino acid variation
(AAV) levels and performing structural remodeling. We specifically focused on the evo-
lutionary relationships among the strains predicting Nsp3 as a mutational hot spot for
SARS-CoV-2. We extended the study to understand the mechanism of host immunity
evasion by host-pathogen interaction (HPI) and confirming their interactions with host
proteins by docking studies. We identified sparsely distributed hubs which may inter-
fere and control network stability as well as other communities/modules. This indi-
cated the affinity to attract a large number of low-degree nodes toward each hub,
which is a strong evidence of controlling the topological properties of the network by
these few hubs (10). We also analyzed the transfer of genomic SNPs to amino acid lev-
els and associations of CpG dinucleotides contributing toward the pathogenicity of
SARS-CoV-2, since the CpG islands have always been linked with epigenetic regulation
and act as the hot spots for methylation in the case of viruses (11–13). However, for
RNA viral genomes, CpG nucleotides are the targets for zinc antiviral protein (ZAP), a
major factor of mammalian interferon-mediated immune response (14, 15). Here also,
the conservancy found in possession of CpG dinucleotides towards the extremities of
all the genomes considered in the present analysis indicate their importance in evad-
ing host immunity.
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RESULTS AND DISCUSSION
Phylogenetic relationship between different SARS-CoV-2 strains. In our previ-

ous study, we reported a mosaic pattern of phylogenetic clustering of 95 genomes of
SARS-COV-2 isolated from different geographical locations (5). Strains belonging to
one country were found clustered with strains from distant countries, but not with
strains from the neighboring country. Taking clues from this study, we constructed
phylogenetic relatedness of 245 strains of SARS-COV-2 from the United States, China,
and several other countries, including Spain, Vietnam, Peru, Finland, and Pakistan, and
unravel the significant association of evolutionary patterns among SARS-CoV-2 based
on their geographical locations predicting their mosaic phylogenetic arrangements. It
was found that most strains from the United States were clustered together, but com-
paratively high divergence was found in strains isolated from China and Japan.
Japanese strains were found to be scattered and formed clusters with strains from
the United States, Pakistan, Vietnam, Taiwan, and China. Even a smaller number of ge-
nome sequences from Japan, Vietnam, and Peru revealed a highly scattered pattern,
and close associations with U.S. and Chinese strains were revealed. Strains were
reported from patients from Taiwan (MT192759), Australia (MT007544), South Korea
(MT039890), Nepal (MT072688), and Vietnam (MT192773, MT192772) who had traveled
to Wuhan, China (16). However, a strain from Pakistan (MT240479) which clustered
with the Japanese strains was found to be isolated from a patient having a travel his-
tory to Iran. Indian strains (MT050439 and MT012098) that were isolated from patients
who travelled from Dubai, clustered with Chinese strains. Later, reports confirmed
many cases of SARS-CoV-2 in Dubai from China (https://www.newsbytesapp.com/
timeline/India/58169/271167/coronavirus-2-positive-cases-detected-in-delhi-telangana).
Thus, a clear landscape of phylogenetic relationships could be obtained reflecting
mosaic clustering patterns in accordance with the travel history of patients (Fig. 1A).
However, results were in contradiction with the genomic analysis of SARS-COV-2 by
Forster et al. (6) where they predicted the linear/directive evolution from ancestral
node a to nodes b and c. We report here both divergent (from ancestral node a to b, c
and e) and directive (node c to d) evolution among the SARS-CoV-2 strains (Fig. 1B).

FIG 1 Phylogenetic network of 245 SARS-CoV-2 genomes. (A) Nucleotide-based phylogenetic analysis of SARS-CoV-2 isolates using the maximum likelihood
method based on the Tamura-Nei model. (B) Amino acid-based phylogenomic analysis. Circle areas are proportional to the number of taxa. The map is
diverged into five major clades (clades a to e) representing variation in the genomes at the amino acid level. The colored circle represents the country of
origin of each isolate.
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Since genome-based phylogeny did not highlight the amino acid level changes, to
ascertain the variations among the SARS-CoV-2 strains at the protein level, we con-
structed whole-proteome alignment-based phylogeny, clustered the 245 strains into
five major clades, clades a to e (Fig. 1B). The first cluster, clade a had maximum nodes
(46), including the reference node, and strains from Nepal (MT072688), Pakistan
(MT262993), Taiwan (MT192759) along with 15 strains from the United States and 27
strains from China. It also had the mutated daughter nodes radiating outwards,
belonging to China, Finland (MT020781), India (MT012098), Japan (LC534419 and
LC529905), Taiwan (MT066176), Vietnam (MT192772-3), Brazil (MT126808), Australia
(MT007544), South Korea (MT039890), and Sweden (MT093571) along with seven U.S.
strains (Fig. 1B). This clade represented the ancestral node, as it harbored the oldest
known SARS-CoV-2 strain from China and laid the foundation for the rest of the
mutated daughter strains worldwide, marking the onset of the divergence in SARS-
CoV-2. Three significantly diverged network nodes originated from the ancestral clade
a and were marked as clades b, c, and e (Fig. 1B). For clade b, the central node included
only four strains in which two were from the United States (MT184912 and MT276328)
and one each from Israel (MT276597) and Japan (LC528233). Its major descended radi-
ating nodes belonged to Japan (LC528232 and LC534418), Pakistan (MT240479),
United States (MT184913, MT184910, and MN997409), and China (MT049951 and
MT226610). It was observed that one of the Chinese strains in clade b (MT226610) had
the longest branch length, making the strain very distinct (harboring 25 other muta-
tions) by showing an exceptionally high rate of evolution. In the clade c lineage, the
small central node was comprised of Taiwan (MT066175), U.S. (MT246667, MT233526,
MT020881, MT985325, and MT020880) and Chinese (MN938384 and LR757995) strains.
Interestingly, one strain each from Spain (MT233523) and India (MT050493) were also
found radiating as daughter nodes from the central one. The clade d lineage, which
originated from the clade c lineage, consisted only of U.S. strains both in central nodes
and radiations. Importantly, two strains (MT263416 and MT246471) were found most
divergent with varied mutations, suggesting the high rate of evolution among U.S.
strains, which might be linked to the high pathogenicity among the strains. Clade e bi-
furcated into two subclades (e1 and e2) by a significant set of mutations. Subclade 1
includes six strains from the United States, one from Israel (MT276598) with radiating
nodes from Peru (MT263074) and the United States (MT276327), whereas subclade 2
had 32 strains belonging to the United States. The effects of amino acid mutations
were further checked on another subset of 12,299 SARS-CoV-2 genomes (screened
from 18,775) for validation. The random explosion of evolutionary clades were seen
(see Fig. S1 in the supplemental material). There were other nodes progressing from e
(e1-e2) to f (exclusive U.S. strains), g (g1), h, i, and j (exclusive Australian strains), and k
subclades. This divergence supported the random evolution of SARS-CoV-2 suggesting
network expansion in multiple clades contradicting the earlier directed evolution pro-
posed by Forster et al. (6). Also, the mutational counts (see Data Set S3 in the supple-
mental material) observed by 12,299 genomes were almost similar to those identified
in 245 representative genomes (Fig. S1). Thus, formation of five major evolutionary
clades and subclades based on the amino acid phylogeny needs attention for identify-
ing the assessment of divergence among SARS-CoV-2 strains.

Genotyping and variation estimation. To understand the implication of mosaic
pattern of transmissions and evolutionary lineage clustering (clades a to e), we studied
the SNP genotyping from the 245 genome sequences as mutation counts along with
their frequency at specific genomic locations. Mutational changes at protein/amino
acid levels were also weighed by assessing amino acid variation (AAV). Interpolations
of the SNP/AAV data were made by assessing their frequency, genomic positions, and
type of SNPs/AAVs (Fig. 2B) and highlighted a large mutational diversity among the vi-
rus isolates. We identified a total of 12 SNP types (A!G, A!C, A!T, C!A, C!G, C!T,
G!A, G!C, G!T, T!A, T!C, and T!G) accounting for mutations at 297 genomic
locations (Fig. 2A and B). The overall pattern of SNPs suggested C!T transition as the
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most common mutation in the entire genomic sets (Fig. 2A); however, the highest fre-
quency was recorded for T!C transitions (Fig. 2B). Based on the genomic arbitrators
SNP frequencies, we analyzed 14 major locations inside the genomes of SARS-CoV-2
for potential mutation generating different allelic forms for genes (Table 1). The SNP of
C!T was first observed at position 67 in the 59 UTR region of leader sequence with a
frequency of 45 followed by Nsp2 at two locations (885 and 2863) with the frequencies
of 29 and 44, respectively. Nsp3/PL-PRO and Nsp8 marked the highest frequency of
238 SNP counts of T!C at positions 5852 and 12299. Another T!C SNP was observed
in ORF8 with frequency of 88 at position 27973. The C!T SNP transformation was
found in Nsp4 and Nsp12 with the frequency of 88 and 44 at positions 8608 and
14234, respectively. Nonstructural protein Nsp13 was strangely found to harbor two
different SNPs (C!T and A!G) at three different locations (positions 17573, 17684,
and 17886; Fig. 2B) with relatively high frequencies of 68, 63, and 63, respectively.
A!G SNP conversion in S (spike) protein was found with a frequency of 43. A low SNP
count of G!T transitions were falling in the ORF3a and Nsp6 with frequency of 32 and
21, respectively (Table 1). However, all SNP counts do not reflect the change at protein
level and therefore must be estimated at the translation levels for their significant
effect. A total of 297 genomic locations harbored SNPs, but their corresponding AAVs
were found only in 200 genomic locations accounting for 67.34% conversion efficiency.
Out of 14 high-frequency SNPs, only 9 mutations (Nsp2 [T85I], Nsp3 [S1103P], Nsp6

FIG 2 Distribution of SNP (A and B) and AAV (C and D) mutations of SARS-CoV-2 isolates from the globe. (A) Frequency-based plot of 12 possible SNP
mutations across 245 genomes. (B) Frequencies of the single SNP mutations with locations on the genome. (C) AAV-based mutations across the genomes.
(D) Top 9 AAV mutations holding highest frequencies among 245 genomes and their respective positions. The nucleotide and amino acid positions are
based on the reference genome of SARS-CoV-2.
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[L37F], Nsp12 [P324L], Nsp13 [P409L and Y446C], S [D614G], Orf3a [Q577H], and Orf8
[L84S]) were found to be reflected at the protein level with the highest frequency of
238 in Nsp3 (Table 1).

These mutated proteins are known to play various regulatory roles, and therefore,
mutations at amino acid level can modulate their catalytic activity drastically.
Specifically, Nsp3 is the largest and essential component of replication complex in the
SARS-CoV-2 genome (18), and along with Nsp2, it forms a transcriptional complex in
the endosome of the infected host cell (19). Nsp6 is a multiple-spanning transmem-
brane protein located into the endoplasmic reticulum where they induce autophago-
somes via an omegasome intermediate (20). Interestingly, the mutation of L37F caused
stiffness in the secondary structure of Nsp6 and leads to low stability of the protein
structure as observed in most recent strains isolated from Asia, America, Oceania, and
Europe (17). Nsp12 and Nsp13 are the key replicative enzymes, which require Nsp6,
Nsp7, and Nsp10 as cofactors. Nsp12, a RNA-dependent RNA polymerase (RdRp) with
the presence of the bulkier leucine side chain at position 324, is likely to create a
greater stringency for base pairing to the templating nucleotide, thus modulating po-
lymerase fidelity (21). Nsp13 contains a helicase domain, allowing efficient strand sepa-
ration of extended regions of double-stranded RNA and DNA (22). Dual mutations in
Nsp13 were reported with profound effect on its activity specifically in the Pacific
Northwest of the United States (23). The P409L mutation leads to increased affinity of
helicase RNA interaction, whereas Y446C is a destabilizing mutation increasing the mo-
lecular flexibility and leading to decreased affinity of helicase binding with RNA (24).
Therefore, both the mutations were antagonistic in nature. Thus, ORF1ab polyprotein
of SARS-CoV-2 encompasses mutational spectra where signature mutations for Nsp2,
Nsp3, Nsp6, Nsp12, and Nsp13 have been predicted.

Amino acid mutations in structural proteins S, ORF3a, and ORF8 have also been
observed with varied frequencies of 45, 34, and 89, respectively. The mutation in spike
protein (D614G) has been reported to outcompete other preexisting subtypes, includ-
ing the ancestral one. This mutation generates an additional serine protease (elastase)
cleavage site in the spike protein (25) which is discussed in more details in later sec-
tions. The ORF3a mutation (Q57H) is located near tumor necrosis factor (TNF) receptor-
associated factor 3 (TRAF-3) regions and has been reported as molecular difference
marker in many genomes, including Indian SARS-CoV-2 genomes (26) for their delinea-
tion. Mutation in ORF8 sequence (L84S) was found conserved (27); therefore, to predict
its effect, it was critical to examine its biological function in SARS-CoV-2 interaction
with human proteins.

Our results showed that the mutations (SNPs and AAV) in the virus were not

TABLE 1 Common SNP and AAV mutations occurring in SARS CoV-2 genomesa

CDS
Point
mutation Position Frequency

Amino
acid-R Variant Position Frequency

59UTR C!T 67 45
Nsp2 C!T 885 29 T I 85 31
Nsp2 C!T 2863 44
Nsp3/PL-PRO T!C 5852 238 S P 1103 238
Nsp4 C!T 8608 88
Nsp6 G!T 10909 21 L F 37 21
Nsp8 T!C 12299 238
Nsp12 (RdRp) C!T 14234 44 P L 324 46
Nsp13 (Hel) C!T 17573 63 P L 409 64
Nsp13 (Hel) A!G 17684 63 Y C 446 64
Nsp13 (Hel) C!T 17886 68
S A!G 23232 43 D G 614 45
Orf3a G!T 25392 32 Q H 57 34
Orf8 T!C 27973 88 L S 84 89
aCDS, coding sequence; Amino acid-R, amino acid residue.
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uniformly distributed. Genotyping study annotated few mutations in the SARS-CoV-2
genomes at certain specific locations with high frequency predicting their high selec-
tive pressure. Thus, mutations can be predicted as location specific but not type spe-
cific by SNP count. Highly frequent AAV might be associated with the changes in trans-
missibility and virulence behavior of the SARS-CoV-2. Therefore, high-frequency AAV
mutations in spike protein, RdRp, helicase, and ORF3a are important factors to consider
while developing vaccines against the fast-evolving strains of SARS-CoV-2.

Prevalence of co-mutation in SARS-COV-2 evolution. Interestingly, we observed
co-mutations in Nsp13 at positions 446 (Nsp13_1) and 409 (Nsp13_2) that were preva-
lent in common 64 genomes, all belonging to the United States. The AAV reported
above (Table 1) were further analyzed and found occurring in 10 different permuta-
tions varying from single to multiple mutated protein combinations. Complete details
of these co-mutations combinations are given in Table 2 and Data Set S2. These co-
mutations were mapped over the divergent phylogeny for indicating the evolutionary
divergence among the 245 strains. The phylogram (Fig. 1B) showed clear divergence
of strains from the parent strain due to accumulation of mutations at different levels
of human-to-human transmission. We found co-mutations in Nsp3, ORF8, Nsp13, S,
Nsp12, Nsp2, and Nsp6 were responsible for the above divergence.

These co-mutations were found linked with lineage clades a to e, highlighting their
prevalence of delineation among them (Fig. 1B). In clade a, 40 genomes harbored
mutations at only Nsp3 protein, while six isolates belonging to the United States
(MT262993, MT044258, MT159716, MT259248, and MT259267) and Pakistan (MT263424)
showed no mutation, confirming that their lineage was the same as that of the refer-
ence/ancestral genome from China. The presence of the Nsp3 mutation (S1103P) in 238
strains underlined the origin of mutation from the reference strain highlighting the first
mutation- induced divergence in SARS-CoV-2 strains. Therefore, Nsp3 was marked as the
first mutational hot spot for accumulating amino acid mutations in SARS-CoV-2. Strains
from Brazil (MT126808) and the United States (MT276331) form the descendant from
clade a harboring Nsp3/Nsp6 as the first mutational combination directing the common
evolutionary lineages. Clade b had an additional mutation of ORF8 along with Nsp3 and
Nsp6 with three descendant strains from the United States and China. We observed the
most distant Chinese strain (MT226610) clustered in clade b, and it harbored additional
25 AAV, making it the highly pathogenic strain in the network (Fig. 1B). Clade c
descended from clade a had a different set of co-mutations with Nsp3-ORF8 proteins,
while clade d descended further from clade c had two mutations in Nsp13 (P409L/
Y446C) in addition to Nsp3/ORF8 proteins. Two strains from the United States in the clus-
ter radiating from clade d harbored an additional Nsp6 mutation, making them more di-
vergent with scope for further possible evolution. The next subclade, e1, was found to
possess another new set of co-mutations of Nsp3/S/Nsp12. The highest number of co-

TABLE 2 Co-mutation combinations and genomic locations identified in different proteins of
SARS-CoV-2

Variation(s) (Co)mutation(s)

No. of
mutated
proteins

No. of
descendants

S!P Nsp3 1 87
Y!C/P!L/S!P/L!S Nsp13_1/Nsp13_2/Nsp3/ORF8 4 62
S!P/L!S Nsp3-ORF8 1 22
P!L/D!G/Q!H/S!P/T!I nsp12/S/ORF3a/Nsp3/Nsp2 5 30
P!L/Q!H/S!P/T!I Nsp12/ORF3a/Nsp3/Nsp2 4 1
P!L/D!G/Q!H/S!P Nsp12/S/ORF3a/Nsp3 4 3
L!F/S!P Nsp6/Nsp3 2 16
L!F/S!P/L!S Nsp6/Nsp3/ORF8 3 3
Y!C/P!L/L!F/S!P/L!S Nsp13_1/Nsp13_2/Nsp6/Nsp3/ORF8 5 2
P!L/D!G/S!P Nsp12/S/Nsp3 3 12
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mutations was found in subclade e2 with the Nsp3/Nsp2/Nsp12/S/ORF3a combination
prevalent in 30 genomes belonging to the United States, predicting these genomes as
an active carrier of evolutionary force for SARS-CoV-2 divergence (Fig. 3). In future, addi-
tion of more and more genome may indicate the evolutionary relationships among
these co-mutations. Our result suggested that co-mutations are the major evolutionary
force that drives the pathogenicity among the different geographical isolated strains
and may be responsible for the higher and lower degrees of virulence among these
strains.

Assessment of mutations in SARS-CoV-2 proteins. Amino acid variations were
predicted in eight (Nsp2, Nsp3, Nsp6, Nsp12, Nsp13, S, Orf3a, and Orf8) SARS-CoV-2
proteins (Table 1). To identify their potential functional role, we carried out the struc-
tural analysis of the proteins. Pairwise sequence alignment of wild-type and mutant
proteins provided the exact location and changes in amino acids. The GMQE (Global
Model Quality Estimation) and QMEAN (Qualitative Model Energy ANalysis) values
ranged from 0.45 to 0.72 and 21.43 to 22.81, respectively. The sequence identity
ranged from 34% to 99%, which suggested that models were constructed with high
value of confidence (Fig. 4). The I-Mutant DDG tool predicts whether a mutation can
largely destabilize the protein (DDG , 20.5 Kcal/mol), largely stabilize (DDG . 0.5
Kcal/mol), or have a weak effect (20.5 # DDG # 0.5 kcal/mol). The protein stability
analysis showed that all the identified mutations decreased the stability of seven pro-
teins (Nsp2, Nsp6, Nsp12, Nsp13, S, Orf3a, and Orf8) except Nsp3 (T1103P) which was
predicted to increase protein stability (Fig. 4). Further, to explore the role of mutations
in SARS-CoV-2 proteins, we carried out HOPE analysis. A D614G mutation in the S-pro-
tein could disturb the rigidity of the protein, and due to glycine, hydrophobicity will
affect the intra-hydrogen bond formation with G594. In ORF8 and Nsp3, the mutation
location was not conserved; hence, it did not affect or damage the protein function.
The mutation (P409L) in Nsp13 was present in the RNA virus helicase C-terminal do-
main. Since proline is a very rigid amino acid and therefore induces a particular back-
bone conformation that might be required at this position, this mutation could disturb
the domain and abolishd its function. Mutation L37F (Nsp6) and T85I (Nsp2) were also
highly conserved and thus could profoundly damage the function of the respective
protein. The P324L (Nsp12) mutation was in the RNA binding domain located on the
surface of the protein; modification of this residue could disturb interactions with other
molecules or other parts of the protein. Conclusively, the Nsp3 mutation, which
appeared in all co-mutation combinations, contributed to increased protein stability
among 238 strains could be assigned to their increased pathogenicity. Thus, we
attempted to highlight the effects of these mutations in host-pathogen interactions.

Modeling of host-pathogen interaction network and its functional analysis. The
HPI network of SARS-CoV-2 (HPIN-SARS-CoV-2) contained 159 edges and 81 nodes,
including 21 viral and 60 host proteins (Fig. 5A). The significant existence of a few main
gene hubs, namely, N, S, and M in the network and the attraction of a large number of
low-degree nodes toward each hub showed strong evidence of control of the topolog-
ical properties of the network by a few hub proteins; N with 37 degrees and S and M
with 17 and 8 degrees, respectively. These viral proteins are the main hubs in the net-
work, which regulate the network. Based on degree distribution, the viral protein N
showed highest pathogenicity, followed by S and M. N is a highly conserved major
structural component of SARS-CoV-2 virion involved in pathogenesis and used as a
marker for diagnostic assays (28). Another structural protein, S (spike glycoprotein),
attaches the virion to the cell membrane by interacting with host receptor, initiating
the infection (29). The M protein, component of the viral envelope played a central
role in virus morphogenesis and assembly via its interactions with other viral proteins
(30). Interestingly, we found four host proteins, MYO5A, MYO5B, MYO5C and T, had a
maximum interaction with viral hub proteins. MYO5A, MYO5B, and MYO5C interacting
with all three proteins (N, S, and M), whereas T with two (S and M) viral hub proteins,
showed a significant relationship with persistent infections caused by the SARS-CoV-2.
Other host proteins showing the highest degree in the network, namely, ATP6V1G1
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FIG 3 AAV-based phylogenetic map of 245 SARS-CoV-2 genomes. Node color represents co-mutational combinations. The formation
of each clade is well correlated with the mutational combinations (n= 10). Clad-e2, clade e2.
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and RPS6, were found interacting with all the NSPs and polyprotein of ORF1a,
respectively.

MYO5A, MYO5B, and MYO5C proteins are class V myosin (myosin-5) molecular
motor that functions as an organelle transporter (31, 32). The presence of myosin pro-
tein played a crucial role in coronavirus assembly and budding in the infected cells
(33). These cytoskeletal proteins are of importance during internalization and subse-
quent intracellular transport of viral proteins. It was found that inhibition of MYO5A,
MYO5B, and MYO5C was efficient in blocking the internalization pathway; thus, this
target can be used for the development of a new treatment for SARS-CoV-2 (34).
Patients suffering from coronavirus disease 2019 (COVID-19) undergo two major condi-
tions in the severe stage, thrombotic phenomenon and hypoxia, that are acting as
silent killers (35, 36). Hypoxia, the condition where the oxygen level of the body is dras-
tically reduced results in the elevated expression of T protein in the body (37). T pro-
tein (Brachyury/TBXT) is a transcription factor involved in regulating genes required for
mesoderm formation and differentiation, thus playing an important role in pathogene-
sis. ATP6V1G1 (catalytic subunit of the peripheral V1 complex of vacuolar ATPase) is re-
sponsible for acidifying a variety of intracellular compartments in eukaryotic cells. It is
reported that Nsp5 may cleave host ATP6V1G1, thereby modifying the host vacuole’s
intracellular pH (38). RPS6 plays an important role in controlling cell growth and prolif-
eration through the selective translation of particular classes of mRNA. Reports have
shown downregulation of RPS6 during severe infections (39). The detailed functional
analysis of HPIN-SARS-CoV-2 was mapped onto radiological findings from the COVID-
19 severely infected patients and nonsurvivors. It was reported that the levels of fibrin-
degrading proteins, fibrinogen and D-dimer protein were three- to fourfold higher than
those of healthy individuals, thereby reflecting coagulation activation from infection/
sepsis, cytokine storm, and impending multiple organ failure (40–43). In our network,
we found 47 proteins (SUMO1, T, SMAD1-9, AGO1-4, HNRNPA1, PHB, TNN, TNR, TNXB,
CXCL10, SVEP1, ANGPT1-2, ANGPT4, ANGPTL1-7, MYO5A, MYO5B, MYO5C, FGL1-2,
FCN1-3, ACE2, TMPRSS2, CLEC4M, CD209, FGA, FGB, and FGG) are associated with the
above etiology (Fig. 5B). We also found the interaction of SMAD family proteins and
SUMO1 with N protein, which may result in inhibition of apoptosis of infected lung
cells. The interactome study reveals a significant role of identified host proteins in viral
budding and related symptoms of COVID-19.

FIG 4 3D structure prediction of SARS-CoV-2 proteins harboring mutations at different locations to
check for its stability in the cell. The structures were predicted using SwissModel and Phyre2 servers.
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The mutation in SARS-CoV-2 proteins inhibit viral penetration into host. To vali-
date the effect of amino acid variation (AAV), significant host protein interactions from
HPIN-SARS-CoV-2 were considered for in silico docking studies. Docking of S-protein
(wild type and mutant) with ACE2, TMPRSS2, and one of the myosin proteins (MYO5C)
was analyzed. Recent studies have shown that SARS-CoV-2 uses angiotensin-convert-
ing enzyme 2 (ACE2) for entry and the serine protease TMPRSS2 for S-protein priming
(44). The polyproteins (Nsp12, Nsp13, Nsp2, Nsp3, and Nsp6) of ORF1A and ORF1AB
were docked with RPS6 and ATP6V1G1 host proteins. The docking results showed that
mutant S-protein could not bind efficiently with ACE2 and MYO5C, whereas mutation
slightly promotes the binding with TMPRSS2 (Table 3, Fig. 6, and Fig. 5B). TMPRSS2 has
been detected in both nasal and bronchial epithelium by immunohistochemistry (45),
reported to occur largely in alveolar epithelial type II cells which are central to SARS-
CoV-2 pathogenesis (46). The wild-type S-protein forms 16 hydrogen bonds and 1,058

FIG 5 (A) Host-pathogen interaction of SARS-CoV-2 and human proteins. Nodes represent proteins, while lines/edges represent interaction. Triangles (red)
represent viral proteins found to be directly interacting with the human proteins (blue). The hubs (MYO5A, MYO5B, MYO5C, T, RPS6, and ATP6V1G1)
(green) were found interacting with maximum viral proteins. (B) Gene ontology (GO) analysis was performed for host proteins using the ClueGo Cytoscape
app against database KEGG, the Gene Ontology—biological function database, and Reactome pathways. ClueGo parameters were set as follows: Go Term
Fusion selected; P values of #0.05; GO tree interval, all levels; kappa score of 0.42.

TABLE 3 In silico docking analysis of SARS-CoV-2 proteins with human proteins

SARS-CoV-2 Host protein Wild-type score Mutant score Differencea

S protein ACE2 18296 17722 574
S protein TRMPSS2 20284 21180 2896
S protein MYO5C 18538 17390 1148
Nsp13 RPS6 17772 15750 2022
Nsp13 ATP6V1G1 14432 20242 25810
Nsp12 RPS6 16570 15750 820
Nsp12 ATP6V1G1 17150 20242 23092
Nsp6 RPS6 19336 17736 1600
Nsp6 ATP6V1G1 17614 16022 1592
Nsp3 RPS6 22888 21866 1022
Nsp3 ATP6V1G1 20760 21070 2310
Nsp2 RPS6 22584 19540 3044
Nsp2 ATP6V1G1 18402 18592 2190
aDifference between the wild-type and mutant scores.
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nonbonded contacts with ACE2, whereas the mutant protein forms 12 hydrogen
bonds and 738 nonbonded contacts (Fig. 6). This result suggests that the D614G muta-
tion in S-protein could affect viral entry into the host. Similarly, mutations present in
the Nsp12, Nsp13, Nsp2, Nsp3, and Nsp6 of SARS-CoV-2 could inhibit the interaction
with RPS6, but these mutations promote the binding with ATP6V1G1 except Nsp6
(L37F). RPS6 contributes to control cell growth and proliferation (47), so a loss of inter-
action with RPS6 could probably inhibit the production of viruses. Overall, the results
of structural and interactome analyses suggest that the identified mutations (Nsp2
[T85I], Nsp3 [S1103P], Nsp6 [L37F], Nsp12 [P324L], Nsp13 [P409L and Y446C], and S
[D614G]) in SARS-CoV-2 might play an important role in modifying the efficacy of viral
entry and its pathogenesis. However, these observations required critical revaluation
as well as experimental work to confirm the in silico results.

Regulation of SARS-CoV-2 pathogenicity by CpG islands. The genotyping analy-
sis that we performed showed high frequency rate (20) of SNPs at the 59 UTR region
(Table 1), and a recent study also suggested that suppression of GC content could play
a vital role in specific antiviral activities (28). As seen in SNP analysis, the common tran-
sitions of C!T and G!A that alter the GC content of the SARS-CoV-2 (Table 1) directed
the prediction of CpG dinucleotides which are involved in silencing of transcription
and downregulation of viral replication (48). In RNA viruses, CpG dinucleotides are

FIG 6 (A) In silico receptor-ligand docking analysis for mutated S-protein (D614G) from SARS-CoV-2 and ACE2 protein present in human. (B and C) Amino
acid interactions between wild-type (Wt) and mutated spike protein with ACE2 receptor.
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targeted by zinc antiviral protein (ZAP), an intracellular broad-spectrum antiviral
restriction factor which plays a vital role in generating innate immune response against
a wide range of RNA viruses in vertebrates (49, 50). ZAP-mediated antiviral restriction
has been already demonstrated against different RNA viruses, including flaviviruses,
filoviruses, influenza viruses, alphaviruses, and retroviruses (51–57). ZAP directly binds
to viral RNA through CCCH (Cys-Cys-Cys-His) type zinc finger motifs present at the N-
terminal region and recruits RNA processing exosome for viral RNA degradation (49,
58). In association with TRIM25, ZAP binds specifically to viral RNA regions with ele-
vated CpG dinucleotide frequencies, leading to inhibition of replication and translation
of viral RNA (14, 59–61).

Thus, CpG dinucleotide motif profiling and studying their importance in SARS-CoV-
2 genomes was carried out. We found that CpG islands were consistently present in
two regions of the genome at 285 to 385 nucleotides (101 bp) and 28,324 to 28,425 nu-
cleotides (102 bp). The results were consistent in all 245 genomes analyzed in the pres-
ent study with 100% conservancy in 237 genome sequences (Fig. 7).

In the remaining eight genomes, five genomes (MT246474.1 [G-to-A substitution at
position 354 with respect to the reference genome], MT276329.1, MT276330.1, and
MT276598.1 [C-to-T substitution at position 313], and MT246455.1 [G-to-T substitution
at position 332]) showed point mutations in the 59 CpG island, whereas three genomes
(MT159718.1 [C-to-T substitution at position 2840] and MT159717.1 and MT184911.1
[G-to-T substitution at position 28378]) showed point mutations in the 39 CpG end.
Interestingly, all these sequences belong to the United States. On further locating CpG

FIG 7 Detection of two CpG islands in Wuhan_Hu-1 complete genome sequence (accession number MT121215.1), marked by blue arrows. One of the CpG
islands was found to be located toward the 59 end of the genome, in ORF1ab. Another CpG island was found toward the 39 end of the genome, located in
ORF9 coding for N protein. nt, nucleotides.
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island positions with respect to proteins, it was found that these two CpG islands were
located at two prime locations within the genome, one in Nsp1, and another within N
protein. Previously, it was reported that both the proteins interacted with the 59 UTR
region playing crucial roles in viral replication and gene expression (4, 62, 63). The
most pivotal role of the N protein revolves around encapsulation of viral genome RNA
(gRNA) which leads to formation of ribonucleoprotein complex (RNP), which is a vital
step in assembly of viral particles (64).

Nsp1 protein in coronaviruses plays a regulatory role in transcription and viral repli-
cation (64). It is known to interact with 59 UTR of host cell mRNA to induce its endonu-
cleolytic cleavage (65, 66), thus inhibiting host gene expression (67). It also plays an im-
portant role in blocking interferon (IFN)-dependent antiviral signaling pathways
leading to dysregulation of host immune system (68–70). CpG sites can be targeted by
zinc finger antiviral proteins which can mediate antiviral restriction through CpG motif
detection (51, 56, 57). Apart from this, CpG oligodeoxynucleotides (ODNs) are known
to act as adjuvants and are already established as a potent stimulator for host immune
system (71–74). Moreover, recent studies conducted on influenza A and Zika virus ge-
nome has shown that by increasing the CpG dinucleotides in viral genome, impair-
ment of viral infection is observed (75, 76). Our result showed that the presence of con-
served CpG islands in Nsp1 and N protein across all genomes of SARS-CoV-2 indicated
their role in pathogenesis and can be targeted by zinc finger antiviral proteins or
exploited to design CpG-recoded vaccines.

Conclusions. The genomic and proteomic survey of SARS-CoV-2 strains reported
from subsets of populations of different countries reflected global transmission during
the outbreak of COVID-19. The viral phylogenetic network with five clades (a to e) pro-
vided a landscape of the current stage of epidemic where major divergence was
observed in U.S. strains. From this, we propose genotypes linked to geographic clades
in which signature SNPs can be used to track and monitor the epidemic. Demarcation
of co-mutation in the SARS-CoV-2 strains by assessing co-mutations also highlighted
the evolutionary relationships among the viral proteins. Our results suggested that co-
mutations are indicative of AAV-based induced pathogenicity leading to multiple
mutations embedded in a few genomes. It was also seen that just increasing the
genomic sample size by 50 times did not led to prediction of significant mutations or
co-mutations that were leading to strain variation in SARS-CoV-2 virus. Thus, sample
size of SARS-CoV-2 genome does not have a direct relation with variation to be pre-
dicted in amino acids. However, co-mutations are still in evolutionary process, and
more combinations can be predicted with a large data set. High-frequency AAV muta-
tions were present in the critical proteins, including the Nsp2, Nsp3, Nsp6, Nsp12,
Nsp13, S, Orf3a, and Orf8 which could be considered for designing a vaccine.
Comparative analysis of proteins from wild and mutated strains showed positive selec-
tion of mutation in Nsp3 but not in the rest of the mutants. The HPI model can be
used as the fundamental basis for the structure-guided pathogenesis process inside
the host cell. The interactome study showed MYO-5 proteins as a key host partner and
highlighted the key role of N, S, and M viral proteins for conferring SARS-CoV-2 patho-
genicity. The mutation in the S-protein could affect the viral entry by loose binding
with ACE2. The presence of CpG dinucleotides in N and Nsp1 protein could play a criti-
cal role in pathogenesis regulation. Based on our multi-omics approach, genomics,
proteomics, interactomics, and systems and structural biology provided an opportunity
for better understanding of COVID-19 strains and its mutational variants.

MATERIALS ANDMETHODS
Selection of genomes, annotations, and phylogeny construction. Publicly available genomes of

SARS-CoV-2 viruses were obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/genbank/sars
-cov-2-seqs/). Until 31 March 2020, only 447 SARS-CoV-2 genomes (see Data Set S1, sheet 1, in the sup-
plemental material) were available in the databases (supplemental material). The data were screened for
unwanted ambiguous bases using N-analysis program, based on which 245 (Data Set S1, sheet 2) com-
plete and clean genomes of SARS-CoV-2 were selected for further analysis (supplemental material). A
manually annotated reference database was generated using GenBank file of severe acute respiratory
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syndrome coronavirus 2 isolate SARS-CoV-2/SH01/human/2020/CHN (accession number MT121215.1)
and open reading frames (ORFs) were predicted against the formatted database using prokka (-gcode 1)
(77). Genomic sequences included in the analysis belong to different countries, namely, the United
States (168), China (53), Pakistan (2), Australia (1), Brazil (1), Finland (1), India (2), Israel (2), Japan (5),
Vietnam (2), Nepal (1), Peru (1), South Korea (1), Spain (1), and Sweden (1). Whole-genome nucleotide
and protein sequences were aligned using mafft (78) at 1,000 iterations. The alignments so obtained
were processed for phylogeny construction using BioEdit software (79). The nucleotide-based phylogeny
was annotated and visualized on the iTOL server (80), while amino acid-based phylogeny was visualized
and annotated using GrapeTree (81).

Genotyping based on SNP/AAV. To detect nucleotide and amino acid variations (AAV) among 245
genomes of SARS-CoV-2, sequence alignment of nucleotide and amino acid, respectively, were per-
formed against the reference genome. The nucleotide and amino acid changes were calculated as point
variations and recorded. The interpolation and visualization were plotted using computer programs in
Python. Co-mutations were predicted, and clustering was performed using MicroReact (82). For valida-
tion we selected 18,775 (Data Set S1, sheet 3) complete genomes available in the NCBI virus database
(see “Data availability” below) last accessed in September 2020. After the genomes containing sequenc-
ing errors and unidentified base pairs “N.” were removed, the remaining 12,299 genomes were used
(Data Set S1, sheet 4).

Data and computer programs. The genomic analytics is performed using programs in Python and
Biopython libraries (83). The computer programs and the updated SNP profiles of SARS-CoV-2 isolates
are available upon request.

Construction of the host-pathogen interaction network of SARS-CoV-2. The interactions between
viral and host proteins are responsible for all aspects of the viral life cycle; from infection of the host cell
to replication of the viral genome and assembly of new viral particles (84). To find the host-pathogen
interaction (HPI), we subjected SARS-CoV-2 proteins sequence to host-pathogen interaction databases
such as Viruses STRING v10.5 (85) and HPIDB3.0 (86) to predict their direct interaction with humans as
the principal host. In these databases, the virus-host interaction was imported from different PPI data-
bases like MintAct (87), IntAct (87), HPIDB (86), and VirusMentha (88). It searches protein sequences
using BLASTP to retrieve homologous host/pathogen sequences. For high-throughput analysis, it
searches multiple protein sequences at a time using BLASTp and obtains results in tabular and sequence
alignment formats (89). The HPI network was constructed and visualized using Cytoscape v3.7.2 (90). It
is an open-source software platform for visualizing molecular interaction networks which involve various
biological pathways and integrating these networks with annotations, gene expression profiles, and
other state data. In the constructed network, proteins with the highest degrees, which interact with sev-
eral other signaling proteins in the network, indicate a key regulatory role as a hub. In our study, using
Network Analyzer (91), a plugin of Cytoscape v3.7.2, we identified the hub protein. Further, the human
proteins interacting with individual viral proteins were subjected to functional annotation. Gene ontol-
ogy (GO) analysis was performed using ClueGo (92), selecting the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (93), Gene Ontology—biological function database, and Reactome Pathways (94) data-
bases. The ClueGo parameters were as follows: Go Term Fusion selected; pathways or terms of the asso-
ciated genes, ranked based on the P value corrected with Bonferroni stepdown (P values of ,0.05); GO
tree interval, all levels; GO term minimum number of genes, 3; threshold, 4% of genes per pathway;
kappa score, 0.42. Gene ontology terms are presented as nodes and clustered together based on the
similarity of genes corresponding to each term or pathway.

Computational structural analysis on wild-type and mutant SARS-CoV-2 proteins. SARS-CoV-2
protein sequences were retrieved from the NCBI genome database, and pairwise sequence alignment of
wild-type and mutant proteins were carried out by the Clustal Omega tool (95). The wild-type and mu-
tant homology model of S-protein, Nsp12, and Nsp13 were constructed using the SWISSMODEL (96),
whereas the three-dimensional (3D) structure of ORF8, ORF3A, Nsp2, Nsp3, and Nsp6 were predicted
using Phyre2 server (97). The crucial host proteins (TMPRSS2, RPS6, ATP6V1G1, and MYO5C) 3D struc-
tures were generated using the SWISSMODEL and ACE2 structure retrieved from the PDB database (PDB
identifier [ID] 6M17). These structures were energy minimized by the Chiron energy minimization server
(98). The effect of the mutation was analyzed using HOPE (99) and I-mutant (100). The I-mutant method
allows us to predict the stability of the protein due to mutation. The docking studies for wild and mutant
SARS-CoV-2 proteins with host proteins were carried out using PatchDock Server (101). Structural visual-
izations and analysis were carried out using pyMOL2.3.5 (102).

Analysis of CpG regions. SARS-CoV-2 genomes were analyzed for the presence of CpG regions. To
locate the CpG regions, meth primer 2.0 (http://www.urogene.org/methprimer2/) and the CpG Plot
(http://www.ebi.ac.uk/Tools/emboss/cpgplot/) programs were used, although some variations were
found in both the programs. Both the programs were run on default parameters of a sequence window
longer than 100bp, a GC content of $50%, and an observed/expected CpG dinucleotide ratio of $0.60.
The presence of common CpG islands was confirmed by performing BLAST using the above reference
strain.

Data availability. Complete set of sequences for full-length genomes and proteomes of SARS CoV-2
virus used in the study are available at https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=
Nucleotide%20seafood=%20market=%20pneumonia=%20virus,=%20taxid:2697049=&VirusLineage_ss=Severe
%20acute%20respiratory%20syndrome%20coronavirus%202%20(SARS-CoV-2),%20taxid:2697049.
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