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Glossary
Acute respiratory distress syndrome (ARDS): a
serious lung condition characterized by fluid
accumulation in alveoli of the lung, accompanied by
severe shortness of breath, low blood oxygen, and
mortality.
Cytokine release syndrome (CRS): a clinical
condition caused by the rapid release of inflammatory
cytokines from different cell populations into the
circulation; CRS can be triggered by infections and
some therapeutic agents such as chimeric antigen
receptor T cells.
Endotoxemia: exemplified by high levels of
lipopolysaccharide (LPS) in the blood. LPS is a
pathogen-associated molecular pattern that
stimulates systemic inflammatory responses.
Exhausted effector PD-1+TIM3+LAG3+CD8+

T cells: these display functional deterioration and
lack full capacity to execute cytotoxicity. They express
the inhibitory receptors PD-1, TIM3, and LAG3, but
can be reinvigorated by immune-activating cytokines
or blockade of immune checkpoint signaling
pathways.
Interleukin 10 (IL-10): has many different and
sometimes contradictory functions. It suppresses
and promotes inflammation as well as innate and
adaptive immune responses in a context- and
dose-dependent manner.
Negative feedback loop: a host reaction that
causes a specific decrease in function. For example,
induction of immunosuppressive cytokines during a
cytokine storm might be necessary to prevent
hyperinflammation.
Neopterin: catabolic product of GTP belonging
to the chemical group of pteridines; it is
synthesized by human macrophages and can be
indicative of the proinflammatory status of the
immune system.
Secondary hemophagocytic
lymphohistiocytosis: a clinical syndrome that
includes fever, hepatosplenomegaly, cytopenia,
and progressive organ failure; can be caused
by infections, cancer, and autoimmune
disease.
Viral sepsis: virus infection that causes
life-threatening organ dysfunction produced by
systemic host responses and direct pathogenic
effects of viruses.
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A unique feature of the cytokine
storm in coronavirus disease 2019
(COVID-19) is the dramatic eleva-
tion of interleukin 10 (IL-10). This
was thought to be a negative feed-
back mechanism to suppress in-
flammation. However, several lines
of clinical evidence suggest that
dramatic early proinflammatory IL-
10 elevation may play a pathological
role in COVID-19 severity.

Cytokine Storm in COVID-19
Patients
Severe acute respiratory syndrome corona-
virus (SARS-CoV)-2 infection has caused
>1.1 million deaths and >42 million
COVID-19 cases globally as of 24
October 2020 (Johns Hopkins
Coronavirus Resource Center, https://
coronavirus.jhu.edu). Severe and criti-
cally ill COVID-19 patients develop
a pathological state termed cytokine
release syndrome (CRS; see Glossary)
that is characterized by rapid and prolonged
systemic elevation of >20 inflammatory
cytokines and chemokines [1]. CRS induces
acute respiratory distress syndrome
(ARDS) and secondary hemophagocytic
lymphohistiocytosis, which often lead to
multiorgan failure and death. Chief among
the >20 elevated inflammatory cytokines/
chemokines is IL-6, a key cytokine in
CRS-induced mortality in blood cancer
patients receiving engineered T cell therapy.
Previous clinical experience in treating
cellular immunotherapy-induced CRS
suggests that blocking IL-6/IL-6R signal-
ing might potentially reduce COVID-19
mortality. However, a recent randomized,
double-blind Phase III COVACTA trial
(NCT04320615; clinicaltrials.gov) testing
the clinical efficacy of the anti-IL-6R anti-
body tocilizumab in COVID-19 patients
failed to demonstrate a significant reduc-
tion in mortality [2].

Although CRS in COVID-19 patients is
similar to that previously seen in SARS
patients infected by SARS-CoV, a unique
feature of the COVID-19 cytokine storm
is the dramatic elevation of interleukin
10 (IL-10) in severe/critically ill patients
[1,3–6]. Peripheral IL-10 concentrations
were significantly higher in intensive care
unit (ICU) COVID-19 patients compared
to non-ICU patients [1,5]. Furthermore,
IL-10 concentrations strongly correlated
with those of IL-6 and other inflammatory
markers such as C-reactive protein [3].
How SARS-CoV-2 infection differs from
SARS-CoV in its capacity to stimulate
IL-10 expression is currently unknown.
However, the importance of IL-10 as a
putative immune biomarker in surveying
COVID-19 disease severity has emerged.
Similarly to IL-6, high IL-10 expression
can predict poor outcomes in COVID-19
patients [3,4]. Recent meta-analysis of
1242 non-severe and 915 severe COVID-
19 patients from 18 clinical studies identi-
fied IL-6 and IL-10 as covariates that
accurately predicted disease severity [7].
Furthermore, IL-10 is elevated earlier than
IL-6 in COVID-19 patients [4]. Given the
long-recognized pathological role of IL-6
in CRS and resulting mortality, many clini-
cal trials have been undertaken to test
the efficacy of blocking IL-6/IL-6R in po-
tential COVID-19 treatments. By contrast,
the clinical significance of highly elevated
IL-10 amounts in the serum of COVID-19
patients has been generally regarded as
an anti-inflammatory or immune-inhibitory
mechanism (and hence biomarker), stim-
ulated by the rapid accumulation of pro-
inflammatory cytokines as a negative
feedback loop [4,5]. Furthermore, re-
combinant IL-10 has been proposed by
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some investigators for treating ARDS in
COVID-19 patients based on its immu-
noregulatory and antifibrotic functions
[8]. However, several lines of clinical
evidence from human studies suggest
that the early and dramatic IL-10 eleva-
tion upon SARS-CoV-2 infection might
instead play a detrimental pathological
role in COVID-19 severity.

https://orcid.org/0000-0002-8983-2684
https://coronavirus.jhu.edu
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http://clinicaltrials.gov
http://crossmark.crossref.org/dialog/?doi=10.1016/j.it.2020.10.012&domain=pdf
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Figure 1. The Proinflammatory and Immune-Activating Role of IL-10 in Humans. Recombinant (r)IL-10
or elevated endogenous systemic IL-10 stimulates inflammatory cytokine production and directly activates and
promotes effector CD8+ T cell proliferation. The combined effect may play a detrimental role in COVID-19
pathogenesis. Abbreviations: CD4/CD8, CD4+/CD8+ T cells; DC, dendritic cell; MHC, major histocompatibility
complex; NK cell, natural killer cell; TCR, T cell receptor.
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Proinflammatory and Immune-
Activating Effects of IL-10 in
Patients with Autoimmunity or
Cancer
Frequently labeled as an immunosuppres-
sive or anti-inflammatory cytokine, pleio-
tropic IL-10 can be an immune-activating
and proinflammatory cytokine in some
autoimmune diseases and cancers in
human patients [9–11]. For example, in a
placebo-controlled double-blind study,
chronically active Crohn’s disease patients
treated with recombinant human IL-10
(rIL-10) exhibited enhanced serum pro-
duction of proinflammatory neopterin, as
well as ex vivo phytohemagglutinin (PHA)-
induced IFN-γ production from whole
blood cells [9], suggesting that IL-10 pro-
motes inflammatory cytokine production
in humans. Moreover, administration of
polyethylene glycol-modified (PEGylated)
rIL-10 at high dose (20 μg/kg) into ad-
vanced solid tumor patients induced sys-
temic immune activation, as evidenced
by circulating cytokine production and
T lymphocyte activation and proliferation,
in addition to exhibiting encouraging clini-
cal efficacy in tumor control [10,11]. In a
Phase I, non-randomized, single group
(51 participants), patients with advanced
renal cell carcinoma (RCC) treated with
rIL-10 alone achieved a 27% overall
response (OR) (NCT02009449) [10].
Furthermore, the combination of rIL-10
and anti-PD-1 antibody treatment of
patients with advanced melanoma, RCC,
or non-small cell lung cancer exhibited an
impressive 42% OR (eight of 42 patients)
(NCT02009449, NCT03267732) [11].
Three major features of immune activation
were observed in these cancer patients.
First, rIL-10 induced sustained systemic
elevation of inflammatory and immune-
activating cytokines/mediators, including
IL-2Rα, IL-4, IL-7, IL-18, IFN-γ, GM-CSF,
and TNF-α, in patient serum [10,11].
Second, rIL-10 stimulated extensive clonal
expansion of effector IFN-γ+CD8+ T cells
in both the periphery and tumors of the
treated cancer patients [11]. Third, rIL-10
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drove peripheral exhausted effector
PD-1+TIM3+LAG3+CD8+ T cells into
active proliferation and expansion [11].
Consistent with these observations in
cancer patients, an older study reported
that administration of rIL-10 to healthy
human subjects who were rendered
endotoxemic via lipopolysaccharide (LPS)
intravenous injection resulted in enhanced
peripheral production of IFN-γ as well
of IFN-γ-inducible protein 10 (IP10) and
CXCL-9 chemokines [12]. These human
studies have demonstrated that rIL-10 has
a potent immune activating/proinflammatory
effect and can amplify endotoxemia-
induced inflammation (Figure 1).

Potential Roles of IL-10 in
COVID-19 Pathogenesis
Mortality of COVID-19 patients is caused
by severe pneumonia and vital organ
damage with the involvement of many pro-
inflammatory mediators. Thus far, no de-
finitive efficacy of reduced mortality in
COVID-19 patients has been established
in randomized placebo-controlled clinical
trials testing blockade of IL-6, IL-1, or
GM-CSF [13]. We propose that IL-10 is a
potential target for reducing COVID-19
mortality. As mentioned, severe/critically
ill COVID-19 patients present dramatically
elevated serum IL-10 concentrations that
correlate with disease severity [1,3–6].
Accordingly, recent studies also demon-
strate immune activation and inflammation
in COVID-19 patients [13], which supports
the hypothesis that IL-10 may play a pro-
inflammatory and immune-activating role
in COVID-19 pathogenesis.

In support of this hypothesis, first, the
inflammatory/immune-stimulating cytokines
discussed in the previous text (IL-2Rα, IL-4,
IL-7, IL-18, IFN-γ, GM-CSF, TNF-α, and
chemokines IP-10 andCXCL9) are elevated
in peripheral blood in severe/critically
ill COVID-19 patients [1,3,4]. Second,
severe/critically ill COVID-19 patients
bear circulating hyperactivated and pro-
liferating cytotoxic CD8+ T cells despite a
total reduction in peripheral CD8+ T-cell
count [14]. Furthermore, correlating with
high serum IL-10 in severe/critically ill
COVID-19 patients, the percentages of
IFN-γ-producing effector CD4+ and CD8+

T cells can be increased in peripheral
blood [6]. Third, as COVID-19 disease
progresses, exhausted PD-1+TIM3+CD8+

T cells in the peripheral blood of patients
have been found to increase, and these
correlate with serum IL-10 concentrations
in COVID-19 patients, suggesting a role of

Image of Figure 1
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IL-10 in T cell exhaustion, presumably via
overactivation and proliferation [5]. Such im-
mune features in severe/critically ill COVID-
19 patients with highly elevated systemic
IL-10 have led us to speculate that IL-10
might play a pathological role in COVID-19
disease progression. However, this hypoth-
esis remains to be rigorously tested.

In this scenario, how might elevated IL-10
contribute to COVID-19 mortality – if at
all? The immunopathological pathway
leading to patient death following SARS-
CoV-2 infection can be divided into three
stages: initiation, amplification, and con-
summation [13]. We propose that early
induction of IL-10 upon SARS-CoV-2
infection during the initiation phase in the
lung might indeed represent a negative
feedback mechanism that serves as a
countermeasure to inflammation caused by
other proinflammatory mediators. However,
as endogenous IL-10 production increases,
we speculate that it might function as an
immune activating/proinflammatory agent
that stimulates the production of other
mediators of the cytokine storm (Figure 1).
As reported for human endotoxemia [12],
IL-10 might also amplify the viral sepsis-
related hyperinflammation observed in
some severe/critically ill COVID-19 patients
[15]. Because IL-10 directly expands cyto-
toxic effector CD8+ T cells in human studies,
hyperactivation of adaptive immunity in
COVID-19 patients might contribute to
exacerbating disease severity. Although
this possibility remains conjectural, we
posit that the combined effects of IL-10
in promoting systemic inflammatory cyto-
kine production and stimulating T cell
activation and proliferation in COVID-19
patients might contribute to a lethal
immunopathological process.
Currently, clinical trials are underway to
test the therapeutic efficacy of blocking
agents, either alone or in combination
with more than ten inflammatory media-
tors reported as highly elevated in
COVID-19 patients presenting a cyto-
kine storm (discussed in [13]). Preliminary
results from using blocking/neutralizing
antibodies against IL-6/IL-6R, GM-CSF,
and IL-1 suggest that further improvement
is necessary to lowermortality in COVID-19
patients [13]. By attempting to block its
pathological proinflammatory function,
we suggest that IL-10 might constitute a
potential target to reduce COVID-19
mortality. As such, the timing of blocking
IL-10 activity in severe/critically ill COVID-19
patients might be crucial [13]. We propose
that using a neutralizing antibody to block
IL-10 to limit its potential immune-activating
effects in the initiation phase of COVID-19
may be worth testing. Furthermore, we
argue that combinatorial targeting of multi-
ple proinflammatory mediators including
IL-10, chemokines, IL-6, and IL-1 might
be necessary to substantially reduce
mortality in severe/critically ill COVID-19
patients. Evidently, the potential roles of
systemically elevated IL-10 in COVID-19
pathogenesis and putative treatments
warrant robust experimental validation,
but certainly merit further attention.
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