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Introduction 

Cinnamon is a spice used for centuries as a culinary flavor-

ing agent with organoleptic properties in different cultures 

worldwide. It has been used traditionally as a remedy for 

respiratory and gastrointestinal complications and has 

been widely studied because of its potential health-pro-

moting properties [1]. These include antioxidant, anti-in-

flammatory, antimicrobial, antidiabetic, anticancer, and 
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antilipemic properties [2–4]. 

The anti-inflammatory properties of cinnamon have 

been suggested to be derived via inhibition of nuclear fac-

tor kappa B (NF-κB) expression and consequently reduced 

production of proinflammatory cytokines, such as tumor 

necrosis factor (TNF), C-reactive protein (CRP), and inter-

leukin (IL) 6 [5–7]. Cinnamon also promotes the activation 

of nuclear factor erythroid 2-related factor 2 (Nrf2), which 

upregulates a host of cytoprotective defenses and increas-
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es the synthesis of antioxidant enzymes such as catalase 

(CAT), heme oxygenase 1 (HO-1), glutathione peroxidase 1 

(GPx-1), and NAD(P)H dehydrogenase [quinone] 1 [6–9]. 

Patients with chronic diseases, including chronic kidney 

disease (CKD), commonly present with systemic inflam-

mation and oxidative stress, dysregulated glucose and 

lipid metabolism, variations in blood pressure, and, conse-

quently, a higher risk of cardiovascular disease (CVD) [10]. 

Furthermore, these patients may present with an altered 

composition of gut microbiota associated with increased 

uremic toxin levels in the circulation, exacerbating oxida-

tive and inflammatory burdens [11]. 

The concept of food as medicine (nutrients and bioac-

tive compounds are obtained from food) has been used to 

promote health and mitigate the chronic burden of lifestyle 

diseases [12]. Foods such as turmeric, propolis, Brazil nut, 

beetroot, berries, and cruciferous vegetables have docu-

mented benefits in patients with CKD, including control of 

inflammation, oxidative stress, and gut dysbiosis [13–19]. 

Few studies have been conducted on the effects of regu-

lar cinnamon consumption in patients with CKD. There-

fore, in this narrative review, we summarize the beneficial 

effects of cinnamon and its possible role as a nonpharma-

cologic adjuvant therapy for complications associated with 

CVD, diabetes, obesity, and gut dysbiosis in patients with 

CKD to explore its medicinal benefits for these high-risk 

patient groups. 

Cinnamon 

Cinnamon is an indigenous spice obtained from the in-

ner bark of trees belonging to the genera Cinnamomum 

from the Lauraceae family. It has been used since as early 

as 3,000 BC in Egypt. The name is of Greek origin (kin-

námōmon), which translates as ‘sweet wood’ [20]. Today, it 

is used daily in various cuisines worldwide. Despite there 

being several varieties of cinnamon, only two, Ceylon cin-

namon (also known as true cinnamon, which originates 

mainly from Sri Lanka) and cassia cinnamon (which orig-

inates from China, Vietnam, and Indonesia), are available 

in American and European food markets (Table 1) [2,21]. 

Cinnamon contains carbohydrates (52%), fibers (33%), 

protein (3.5%), and fat (4%). This spice is also a source of 

potassium (134.7 mg/g), magnesium (85.5 mg/g), calcium 

(83.8 mg/g), phosphorus (42.4 mg/g), manganese (20.1 

mg/g), and iron (7.0 mg/g) [22]. The key components of 

cinnamon are essential oils of trans-cinnamaldehyde, cin-

namyl acetate, and eugenol; a range of bioactive resinous 

compounds including cinnamaldehyde, cinnamic acid, 

and cinnamate; water-soluble polyphenols such as cate-

chin, epicatechin, procyanidin, quercetin, and kaempferol; 

and polyphenolic polymers [23,24]. Eugenol is the main 

compound in the leaves, whereas cinnamaldehyde is pre-

dominant in the bark and camphor in the root [2,23,25]. 

The spicy flavor and fragrance characteristics of cinnamon 

are due to cinnamaldehyde (known as cinnamic aldehyde). 

In addition, the aging of cinnamon leads to color darkening 

due to higher levels of resinous compounds [25]. 

The daily intake of cinnamon can be considered safe if it 

does not exceed the tolerable daily intake of coumarin (0.1 

mg/kg of body weight) [2], which is a phytochemical with 

anticoagulant, carcinogenic, and hepatotoxic properties 

[2,26]. However, coumarin concentration depends on the 

type of cinnamon, e.g., cassia cinnamon contains signif-

icant amounts of coumarin, whereas Ceylon cinnamon 

contains only trace quantities [2]. 

Different species of cinnamon may present an array of 

other oils with diverse characteristics, and their effects have 

been widely debated. Various studies have used different 

species and forms of cinnamon supplementation, leading 

Table 1. Varieties of cinnamons and origins
Cinnamon variety Scientific names Common names Country of origin Color Taste
Ceylon cinnamon Cinnamomum zeylanicum 

or Cinnamomum verum
Ceylon cinnamon, true cinna-

mon, Mexican cinnamon
Sri Lanka, south-

ern India
Light to medium 

reddish brown
Slightly sweetness

Cassia cinnamon Cinnamomum burmanni Indonesian cassia, Indonesian 
cinnamon, Korintje cinnamon, 
Padang cassia

Indonesia,  
Philippines

Dark reddish 
brown

Strong spicy

Cinnamomum loureiroi Saigon cinnamon, Vietnamese 
cassia, Vietnamese cinnamon

Vietnam Dark reddish 
brown

Spicy and sweet

Cinnamomum aromaticum Chinese cinnamon, Chinese 
cassia, cassia cinnamon

China, Burma Dark reddish 
brown

Mild and slightly 
sweet
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to equivocal findings [1,27,28]. 

Cinnamon: antioxidant and anti-inflammatory 
actions 

High production of reactive oxygen species (ROS) and re-

active nitrogen species and reduced antioxidant capacity 

lead to oxidative stress, which promotes the pathogenesis 

of several chronic diseases, including diabetes, CKD, and 

CVD [29,30]. Therefore, modulating antioxidant enzyme 

production can reduce ROS formation and oxidative stress, 

slowing chronic disease progression [31]. Various cinna-

mon extracts, such as Cinnamomum zeylanicum Blume 

essential oil, ethanol extracts of cinnamon bark, cinnamon 

bark aqueous extract, and methanolic crude extract of 

Cinnamomum verum, display antioxidant activity, which 

indicates the potential for cinnamon to manage oxidative 

stress-related disorders [32]. Most cinnamon studies in vi-

tro and in vivo (Table 2) [9,33–47] demonstrate significant 

antioxidant activity through multiple mechanisms, includ-

ing reduction of malondialdehyde level (lipid peroxidation 

marker), activation of transcription factor Nrf2, and syn-

thesis of antioxidant enzymes such as HO-1, superoxide 

dismutase, CAT, and GPx [48,49]. Twenty-two chemical 

ingredients have been isolated from cinnamon in addition 

to cinnamaldehyde analogues; of these, lignan pinoresi-

nol (PRO) and the flavonol (–)-(2R,3R)-5,7-dimethoxy-3', 

4'-methylenedioxy-flavan-3-ol (MFO) display antioxidant 

capacity [50]. 

The primary mechanism by which cinnamon (princi-

pally the cinnamaldehyde component) acts as an anti-in-

flammatory is via the downregulation of NF-κB [33,51] 

and diminution of inflammatory cytokine expression (e.g., 

TNF, CRP, and IL-6). Cinnamon also appears to reduce the 

levels of IL-1β and IL-18 by inhibiting the expression of 

NLR family pyrin domain containing 3 inflammasome and 

caspase-1 [34]. 

Additionally, cinnamaldehyde suppresses the expression 

of cyclooxygenase 2, nitric oxide synthase and prostaglan-

din E2 (PGE2) [52,53]. It has been implicated in the de-

creased phosphorylation of extracellular signal-regulated 

kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and 

p38 mitogen-activated protein kinases (p38 MAPKs) path-

ways [35]. The role of cinnamon as an antioxidant and an-

ti-inflammatory agent is illustrated in Fig. 1. 

A limited number of studies have described the anti-in-

flammatory effects of cinnamon in humans, but the results 

remain inconclusive. Supplementation of 1.5 g/day of Cin-

namomum burmannii powder in women with rheumatoid 

arthritis for 8 weeks promoted a reduction in both visual 

and pain scales, reduced tender and swollen joint counts, 

and reduced serum CRP and TNF levels [5]. Similarly, cin-

namon (1.8 g/day for 2 months) in patients with migraines 

reduced serum IL-6 and nitric oxide (NO) levels [54]. The 

frequency, severity, and duration of migraine attacks de-

creased, suggesting a reduction in the inflammatory pro-

cess [54]. In contrast, Davari et al. [51] used 3 g/day of cin-

namon for 8 weeks in patients with type 2 diabetes (T2D). 

They found no beneficial effects on NF-κB, sirtuin 1 (SIRT1), 

or other systemic inflammation markers, including IL-6 

and high-sensitivity CRP. The reasons for this outcome dis-

parity remain unclear and may be multifactorial, includ-

ing differing cinnamon sources, purity, and experimental 

methodologies. 

Diabetes and cinnamon 

Diabetes is one of the leading causes of CKD, manifesting 

as diabetic kidney disease. Several studies (Table 3) [51,55–

78] have proposed that cinnamon therapy can improve 

insulin action and glucose metabolism, with procyanidin 

type-A polymers and cinnamaldehyde being the primary 

components associated with the antidiabetic effects [79]. 

Procyanidin type-A polymers in cinnamon can mimic 

insulin action as they increase insulin receptor autophos-

phorylation of β-subunit tyrosine residues and reduce 

oxidative stress in pancreatic β-cells [80,81]. Moreover, cin-

namon extract (C. zeylanicum) ameliorated glucose trans-

porter 4 translocation via the adiponectin and intracellular 

5' adenosine monophosphate-activated protein kinase 

(AMPK) signaling pathway [82,83] and through stimulation 

of liver kinase B1 mediated AMPK phosphorylation [84]. 

Additionally, inhibition of α-glucosidase and pancreatic 

α-amylase, which promote postprandial glycemic amelio-

ration, has been attributed to the action of the cinnamon 

extract [85]. 

Cinnamon also induces the expression of the peroxisome 

proliferator-activated receptors (PPAR) alpha and gamma 

(PPAR-α and PPAR-γ) in vitro and in vivo. This is notable 

as these regulate adipogenesis and insulin resistance by 
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Table 2. Studies involving cinnamon and antioxidant and anti-inflammatory actions
Reference Study/samples Intervention Results
In vitro study
 Uchi et al. (2017) 

[36]
Human keratinocyte cell line ben-

zo[a]pyrene-stimulated
Cinnamaldehyde (25 μM) or Cinnamo-

mum cassia extract (100 mg/mL)
↑ Nrf2 translocation and HO-1 expression
↓ activation of AHR

 Kim et al. (2018) 
[35]

Raw 264.7 murine macrophage 
cells

Trans-cinnamaldehyde (25, 50, or 
100 μM)

↓ TNF-α, IL-1β, and IL-6 and NO synthesis

LPS-induced
 Schink et al. (2018) 

[37]
THP-1 monocyte-macrophage cell 

line TIB-202, LPS-stimulated
Cinnamon compounds (25 μg/mL) Trans-cinnamaldehyde and p-cymene ↓ IL-8 

secretion
 Qu et al. (2019) 

[38]
LPS-stimulated RAW264.7 cells Cinnamaldehyde (5, 10, or 20 μM) 

pretreatment
↓ NLRP3 inflammasome, miR-21 and miR-155
↓ ROS, the phosphorylation of AKT, mTOR, and 

COX-2 protein level
 Cheng et al. (2020) 

[39]
Human rheumatoid fibroblast-like 

synoviocyte line MH7A cells IL-1β-
induced

Cinnamaldehyde (40, 60, and 80 nM) 
pretreatment

40, 60, and 80 nM: ↓ TNF-α, IL-6

 Chen et al. (2020) 
[33]

Human osteoarthritis chondrocytes 
LPS-induced

Cinnamaldehyde pretreatment (10, 
20, or 50-μM)

All doses: ↓ IL-6, IL-1β, TNF-α
↓ MMP-13 and ADAMTS-5
Doses of 20 and 50 μM: LPS-stimulated NF-
κB expression

 Ben Lagha et al. 
(2021) [40]

The monoblastic leukemia cell line 
U937 LPS-stimulated

Cinnamon bark aqueous extract (32.5 
to 500 μg/mL) pretreatment

250 μg/mL: ↓ IL-6, IL-8, and TNF-α

 Vallion et al. (2022) 
[41]

Human keratinocytes cells 100 μM of cinnamaldehyde ↑ Nrf2 accumulation
↓ IL-1β transcription

 Chen et al. (2022) 
[42]

LPS-induced human osteoarthritis 
synovial fibroblasts

Pretreatment with cinnamic aldehyde 
(20 and 50 μmol/L)

↓ IL‐1β, IL‐6, and TNF‐α
↓ TLR-4 and MyD88 expression

Experimental study
 Tuzcu et al. (2017) 

[9]
HFD rats Cinnamon polyphenol (100 mg/kg 

body weight) for 12 weeks
↓ NF-κB p65 expressions
↑ PPAR-α, IRS-1, Nrf2, and HO-1 expressions in 

the HFD rat livers
 Abou El-Ezz et al. 

(2018) [43]
LPS-induced neuroinflammation 

mouse model
Trans-cinnamaldehyde (50 mg/kg) 

intraperitoneally for 1 week
↓ IL-1β levels, MDA, and caspase-3 levels in 

the hippocampus
Activate Nrf2
↑ Glutathione S-transferase

 Liu et al. (2020) 
[44]

In vitro: macrophages (Raw246.7) 
LPS-induced

In vivo: cinnamaldehyde (6.25, 12.5, 
or 25 μM)

In vitro: ↓ IL-1β, NLRP3 (12.5, and 25 μM)

In vivo: arthritis rat model, complete 
Freund’s adjuvant-induced

In vivo: cinnamaldehyde (200 mg/kg) 
orally for 4 weeks

↓ TNF-α and NO (6.25, 12.5, and 25 μM)
In vivo: ↓ IL-1β in blood
↓ NLRP3 in synovium

 Wang et al. (2020) 
[45]

Leptin receptor-deficient (db/db) 
mice

Diet containing 0.02% cinnamalde-
hyde for 12 weeks

↓ ROS generation, preserved NO production
↑ p-eNOS
↑ Nrf2, HO-1 and NQO-1

 Ryu et al. (2020) 
[46]

Mice with cognitive dysfunction 
induced by d-galactose and alumi-
num chloride

Trans-cinnamaldehyde (30 mg/kg/
day) injected intraperitoneally + 
treadmill exercise for 5 weeks

↑ Nrf2, NQO-1, HO-1, and SOD-1

 Abdel-kawi et al. 
(2022) [47]

Wistar rats, gastric ulcers etha-
nol-induced model

2.5 mL/kg of cinnamon oil and 
omeprazole (20 mg/kg) for 1 week 
before ulcer induction

↑ CAT, SOD, GPx, and GSH in the stomach
↓ MDA and TNF-α levels

 Zou et al. (2022) 
[34]

Sepsis-induced C57BL/6 J mice 2 g/kg of cinnamyl alcohol by gavage ↓ IL-1β and IL-18
↓ Expression of NLRP3, caspase-1, and apop-

tosis-associated speck-like protein containing 
a C-terminal caspase recruitment domain in 
the liver, heart, lungs, and kidneys

ADAMTS-5, metalloproteinase with thrombospondin motif 5; AHR, aryl hydrocarbon receptor; AKT, protein kinase B; CAT, catalase; COX-2, cyclooxygenase 
type 2; GPx, glutathione peroxidase; GSH, glutathione; HFD, high-fat diet; HO-1, heme oxygenase 1; IL, interleukin; IRS-1, insulin receptor substrate 1; LPS, 
lipopolysaccharide; MDA, malondialdehyde; MMP-13, matrix metalloproteinase-13; mTOR, mammalian target of rapamycin; MyD88, myeloid differentia-
tion factor 88; NF-κB, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; NO, nitric oxide; NQO-1, NAD(P)H dehydrogenase [quinone] 1; 
Nrf2, nuclear factor erythroid 2-related factor 2; p-eNOS, phosphorylated endothelial nitric oxide synthase; PPAR-α, peroxisome proliferator-activated recep-
tors (PPAR) alpha; ROS, reactive oxygen species; SOD-1, superoxide dismutase 1; TLR-4, toll-like receptor 4; TNF-α, tumor necrosis factor alpha.
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Figure 1. Antioxidant and anti-inflammatory actions of cinnamon in cells. Bioactive compounds from cinnamon may activate the 
transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), leading to the synthesis of antioxidant enzymes such as superox-
ide dismutase (SOD), catalase (CAT), heme oxygenase 1 (HO-1), glutathione peroxidase 1 (GPx-1), and NAD(P)H dehydrogenase [qui-
none] 1 (NQO-1). Also, these compounds can inhibit nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and NLR family pyrin 
domain containing 3 (NLRP3), reducing inflammatory cytokine production.
TLR-4, toll-like receptor 4; ERK, extracellular signal-regulated kinase; AKT, protein kinase B; Keap1, Kelch-like ECH-associated protein 1; 
TNF-α, tumor necrosis factor alpha; CRP, C-reactive protein; IL, interleukin.

regulating the expression of genes encoding proteins in-

volved in adipokine synthesis, adipocyte differentiation, 

and lipid and carbohydrate metabolism [86]. Additionally, 

cinnamaldehyde may stimulate the expression of PPAR-γ 

and PPAR delta (PPAR-δ) in differentiated adipocytes, pro-

moting insulin sensitivity and fatty acid β-oxidation in ad-

ipose tissue and skeletal muscle [87]. Another component 

of cinnamon extract, the B-type procyanidin C1, has been 

demonstrated to stimulate preadipocyte differentiation 

as well as act as a potential insulin sensitizer through the 

protein kinase B (AKT)/endothelial NO synthase (eNOS): 

AKT/eNOS pathway in mature adipocytes [88]. The phos-

phoinositide 3-kinase (PI3K)/AKT pathway participates in 

glucose uptake by skeletal muscles, adipose tissues, and 

liver. Cinnamaldehyde treatment (10 mg/kg) has been 

reported to increase the expression of insulin receptor sub-

strate 1 (IRS-1), PI3K, and AKT2 in diabetic rats, promoting 

enhanced insulin signaling by the IRS1/PI3K/AKT pathway 

and reducing insulin resistance and promoting an antidia-

betic effect [55]. 

Despite the salutogenic effects of cinnamon treatment in 

diabetes, other human-based studies have yielded equivo-

cal results. In one systematic review, no significant benefits 

were found for cinnamon in reducing glucose and glycated 

hemoglobin (HbA1c) levels in patients with type 1 diabetes 

[89]. Conversely, a meta-analysis has reported that intake 

of whole cinnamon or cinnamon extract lowered fasting 

blood glucose (FBG) in T2D and prediabetes [90]. In a me-

ta-analysis of 435 patients, Akilen et al. [91] reported that 

cinnamon doses ranging from 1 to 6 g/day ingested for 

Cytokines
(TNF-α, CRP, IL-6,

IL-1β, IL-18)
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SOD, GPx, HO-1, CAT, NQO-1
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Table 3. Studies involving cinnamon and diabetes

Reference Study/sample Intervention Results
Experimental study
 Hafizur et al. (2015) [58] STZ-induced diabetic rats 5 and 10 mg/kg of cinnamic acid 

or cinnamaldehyde
Cinnamic acid: ↓ blood glucose, im-

proved glucose tolerance
↑ Glucose-stimulated insulin secretion 

in isolated islets.
Cinnamaldehyde: ↔ glucose-stimulated 

insulin secretion
 Qusti et al. (2016) [59] STZ-induced diabetic in 

male albino rats
20% (w/w) cinnamon methanol 

extract for 28 days
↓ Blood glucose
↓ IL-6 and MDA
↑ CAT and SOD
↓ Urea, Cr, and uric acid

 Jawale et al. (2016) [60] STZ-induced diabetic in rats 10, 20, or 40 mg/kg of cinnamal-
dehyde for 3 weeks

↓ Blood glucose
↓ TNF-α and IL-6

 Hosni et al. (2017) [61] STZ-induced diabetic in 
female albino rats with 
gestational diabetes

20 mg/kg oral dose of cinnamalde-
hyde with or without fatty-sucrose 
diet, or normal diet for 8 weeks

↓ Hyperphagia and glucose intolerance
↓ Fructosamine, TC, TG, leptin
↓ TNF-α, MDA, NO
↑ HDL-C, adiponectin, liver glycogen
↑ PPAR-γ gene expression

 Taheri et al. (2018) [62] STZ-induced diabetic in  
adult male Wistar rats

300 mg/kg cinnamon bark powder 
for 14 days

↓ CYP2D

 Abdelmageed et al. (2019) 
[55]

STZ-induced T2D in male 
rats

10 mg/kg of cinnamaldehyde for 2 
months

↓ OGTT, ITT, FBG
↓ Insulin and HOMA-IR
↑ HOMA-β
↓ MDA
↑ Aortic GSH, SOD, IRS-1, PI3K-p85, 

AKT2
 Kommula et al. (2020) [63] Neonatal STZ rat model 3% Cinnamon for 8 months ↓ Fasting and postprandial glucose 

levels prevented retinal functional 
abnormalities

 Mohammed et al. (2020) 
[64]

STZ-induced diabetic rats 200 and 400 mg/kg of cinnamon 
oil emulsion in whey protein con-
centrate for 1 month

↓ Blood glucose, amylase,
↓ TC, LDL-C, TG
↑ Insulin, HDL-C
↑ Hepatic SOD, GSH
↓ Hepatic MDA

 Niazmand et al. (2021) [65] STZ-induced diabetic rats Cinnamon extract (100, 200, 400 
mg/kg) and metformin (300 mg/
kg) orally for 42 days

↓ MDA level, SOD and CAT activities in 
the liver and kidney

 Sampath et al. (2021) [66] Gastric emptying in  
obesity-induced diabetic 
female mice

Cinnamaldehyde 50 mg per body 
mass per day for 6 weeks

↓ Body weight gain
↓ FBG
↓ HOMA-IR
↑ Reduced/oxidized glutathione ratio

 Vijayakumar et al. (2022) 
[57]

STZ-induced diabetic rats Ethanolic bark extracts of Cinnamo-
mum cassia with different con-
centrations (300, 400, and 500 
mg/kg BW) and glibenclamide (3 
mg/kg BW)

↑ Activities of mitochondrial enzymes
↓ Levels of hepatic marker enzymes 

(AST, ALT, and ALP)
↓ Urea, Cr, and uric acid

 Çelik et al. (2022) [67] STZ-induced diabetic rats 20 mg/kg of BW of cinnamalde-
hyde by gavage daily for 1 month

↓ FBG
↓ TG, TC, VLDL, LDL-C, and urea levels

(Continued to the next page)
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Reference Study/sample Intervention Results
Human study
 Bernardo et al. (2015) [68] Nondiabetic adults 100 mL of cinnamon tea (Cinnamo-

mum burmannii bark) obtained 
from 60 g sticks of cinnamon 
soaked into 1,000 mL of water, 
after OGTT

Slightly ↓ PBG level after OGTT

 Sengsuk et al. (2015) [69] T2D patients 1,500 mg of cinnamon (divided 
into 3 times a day capsules) or 
placebo for 2 months

↓ Median glucose, TG, TG/HDL-C ratio, 
and BP

↑ HDL-C and eGFR
 Anderson et al. (2015) [71] Hyperglycemic adults 1 g (divided into 2 capsules) a day 

of water extract of cinnamon  
(CinSulin), or placebo for 2 
months

↓ FBG, HOMA-IR
↓ Serum glucose 2 hours after 75 g car-

bohydrate load
↓ Fructosamine, fasting insulin
↓ TC, LDL-C, HDL-C

 Azimi et al. (2016) [56] T2D patients 3 g/day of cinnamon with black tea 
for 2 months

↓ ICAM-1
↔ BP and endothelial function

 Gutierrez et al. (2016) [70] Young, sedentary, obese 
women

5 g of encapsulated cassia cinna-
mon bark for 3 separate days 
(30-, 60-, 90-, and 120-minute 
following glucose ingestion)

↔ Insulin resistance and sensitivity

↓ Peak blood glucose at 30-time point
 Gupta Jain et al. (2017) [72] Individuals with metabolic 

syndrome
3 g (divided into 6 capsules) of cin-

namon or placebo, for 4 months
↓ FBG, ↓ HbA1c
↓ WC, ↓ BMI improved lipid profile, 

waist-hip ratio, and BP
 Talaei et al. (2017) [73] T2D patients 3 g of cinnamon (divided into 3 

capsules-day), for 2 months
↔ FBG, insulin, HbA1c, HOMA-IR, 

carboxymethyl lysine, total antioxidant 
capacity, and MDA

 Zare et al. (2019) [74] T2D patients 1 g of cinnamon bark powder 
(divided into 2 capsules daily) or 
placebo for 3 months

↓ BMI, body fat, visceral fat
↓ FBG, HbA1c, fasting insulin, and insu-

lin resistance
↓ TC, LDL-C, and HDL-C

 Kizilaslan and Erdem 
(2019) [75]

Healthy adult individuals 1 g or 3 g or 6 g/day cinnamon 
peel (C. cassia), for 40 days

↔ BMI, HbA1c
Difference in pre-prandial blood glucose 

(6 g/day)
Difference in postprandial blood glucose 

on days 20 and 40 for 1, 3, and 6 g of 
cinnamon

 Davari et al. (2020) [51] T2D patients 3 g of cinnamon for 2 months ↔ NF-κB, SIRT1, hs-CRP, IL-6, and TNF-α 
plasma levels

 Romeo et al. (2020) [76] Adults with prediabetes 500 mg cinnamon thrice daily for  
3 months

Fasting plasma glucose remained stable 
only in the cinnamon group

↓ OGTT
 Lira Neto et al. (2022) [77] T2D patients 3 g of cinnamon (capsules daily) 

for 3 months
↓ HbA1c
↓ Fasting venous glucose

 Rachid et al. (2022) [78] T2D patients 6 g/100 mL of aqueous cinnamon 
extract (C. burmannii) after 30, 
60, 90, and 120 minutes

↔ Area under the curve, glucose conc., 
variation, and maximum glucose conc

AKT, protein kinase B; AKT2, AKT serine/threonine kinase 2; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
BMI, body mass index; BP, blood pressure; BW, body weight; CAT, catalase; Cr, creatinine; CYP2D, cytochrome P450; eGFR, estimated glomerular filtration 
rate; FBG, fasting blood glucose; GSH, glutathione; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; HOMA-β, homeostasis model 
assessment of β-cell function; HOMA-IR, homeostasis model assessment-estimated insulin resistance; hs-CRP, high-sensitivity C-reactive protein; ICAM-
1, intercellular adhesion molecule 1; IL, interleukin; IRS-1, insulin receptor substrate 1; ITT, insulin tolerance test; LDL-C, low-density lipoprotein cholesterol; 
MDA, malondialdehyde; NF-κB, nuclear factor kappa B; NO, nitric oxide; OGTT, oral glucose tolerance test; PBG, postprandial glucose level; PI3K, phospho-
inositide 3-kinase ; PPAR-γ, peroxisome proliferated activated receptor gamma; SIRT 1, silent mating-type information regulation 2 homolog 1; SOD, super-
oxide dismutase; STZ, streptozotocin; T2D, type 2 diabetes; TC, total cholesterol; TG, triglyceride; TNF-α, tumor necrosis factor alpha; VLDL, very-low-density 
lipoprotein; WC, waist circumference.

Table 3. Continued
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between 40 days and 4 months reduced HbA1c and fasting 

glycemia levels. In 2013, a further meta-analysis including 

543 patients reported that cinnamon supplementation 

(powdered cinnamon and aqueous extract) ranging from 

120 mg to 6 g ingested for between 4 and 18 weeks reduced 

blood glucose, total cholesterol, and triglycerides but did 

not affect HbA1c level [92]. Costello et al. [80] have shown 

that cinnamon dietary supplements (doses ranging from 

120 to 6,000 mg/day ingested for between 4 and 16 weeks) 

have clinically meaningful effects on glycemic control (FBG 

or HbA1c) in patients with T2D. 

Additionally, a meta-analysis showed no effect of pow-

dered cassia cinnamon intake (1–2 g) on fasting glucose, 

HbA1c, triglycerides, low-density lipoprotein (LDL), and 

total cholesterol levels in patients with T2D. On the other 

hand, a higher (at least 3 g) rather than a lower dose of cas-

sia bark powder or cassia extract associated with lifestyle 

and diet protocols was more effective for glucose control in 

T2D [93]. 

Analyzing the impact of cinnamon on patients with 

diabetes is very complex as cinnamon contains several 

compounds, such as coumarin, cinnamic acid, cinnamal-

dehyde, cinnamic alcohol, and eugenol, with varied con-

centrations among species [94]. In addition, results are re-

lated to the quality of cinnamon, the type of branches, and 

manufacturing practices among species and formulations 

[95]. 

The effectiveness of cinnamon in glucose control may 

depend on how well the diabetes was controlled during 

the study. In addition, previous studies have used different 

parameters and periods [95]. Therefore, administering cin-

namon can be a helpful add-on therapy in integrative med-

icine for managing T2D. Still, long-term trials are required 

to establish the efficacy and safety of cinnamon. In addi-

tion, the differing contributions of various microbiomes 

between subjects must be addressed [96]. 

Cinnamon: benefits in obesity 

Obesity is a strong predictor of renal dysfunction and CKD 

[97]. Some physiological responses of the kidneys to obesi-

ty include increased glomerular filtration rate, tubular re-

absorption of sodium, filtration fraction, and renal plasma 

flow [98]. Central obesity and abdominal fat are risk factors 

for metabolic syndrome, which is also associated with the 

development and progression of CKD and CVD [99]. 

Cinnamon has been studied as a potential nutritional 

strategy for managing obesity and its complications [9]. 

Cinnamon’s antiobesogenic effect may be related to its 

ability to induce thermogenesis in adipocytes as mediated 

by uncoupling protein 1 which is expressed in brown and 

beige tissues and improves metabolism to promote weight 

loss [100]. 

Moreover, cinnamaldehyde activates a classic thermo-

genesis pathway through protein kinase A signaling that 

phosphorylates p38 MAPK, inducing the transcription of 

thermogenic genes such as hormone-sensitive lipase and 

lipid droplet-associated protein perilipin 1 [52]. Additional-

ly, as cinnamaldehyde is the primary natural agonist of the 

transient receptor potential ankyrin 1 (TRPA1), it may also 

indirectly influence food intake and weight gain, which can 

be expressed in gastrointestinal functions such as decreas-

ing ghrelin secretion [101,102]. Other natural compounds 

present in cinnamon oil, such as cumin aldehyde (cumin), 

p-anisaldehyde (anise), and triglycaldehyde (onion/gar-

lic), can activate human TRPA1 specifically but with lower 

affinity compared to cinnamaldehyde. Among these com-

pounds, cumin aldehyde demonstrated glucose-depen-

dent insulin secretagogue activity in diabetic rats by TRPA1 

stimulation [102]. 

The AMPK pathway is also relevant to the study of obe-

sity as it is a mediator of cellular energy production, which 

can improve insulin sensitivity in insulin-sensitive tissues, 

such as adipose tissue [103]. Cinnamon seems to exert 

beneficial effects via AMPK activation and enhanced adi-

ponectin concentrations, as demonstrated by Kopp et al. 

[104]. They evaluated the Gi/Go-protein-coupled receptor 

09A, which stimulates adiponectin secretion after binding 

trans-cinnamic acid from cinnamon. 

Other protective effects ascribed to cinnamon appear 

to result from a reduction of hepatic expression of the 

transcription factor sterol regulatory element-binding 

protein-1c (SREBP-1c) and NF-κB, in conjunction with up-

regulation of PPAR-α, a cluster of differentiation 36 (CD36), 

fatty acid synthase, carnitine palmitoyltransferase I, and 

Nrf-2 [105]. Studies of obese rats with hepatic steatosis 

caused by a high-fat diet suggest enhancement of hepatic 

beta-oxidation and inhibition of hepatic lipogenesis, oxida-

tive damage, and inflammation resulting from cinnamon 

intake. 
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Aqueous extract of Cinnamomum cassia bark has been 

linked to neurochemical and behavioral effects in rats by 

decreasing food intake through augmentation of 5-hydroxy 

tryptamine in the brain [106]. 

Only a few studies have reported a relationship between 

cinnamon and antiobesogenic effects in humans. Yazdan-

panah et al. [107] have conducted a systematic review and 

meta-analysis to investigate the effects of cinnamon on 

fat and body mass, body mass index (BMI), waist circum-

ference, and waist-hip ratio. In total, 21 randomized con-

trolled trials (RCTs) with 1,480 participants were includ-

ed, and it was reported that cinnamon supplementation 

decreased obesogenic parameters. In agreement with the 

studies discussed, a systematic review and dose-response 

meta-analysis suggested that cinnamon supplementation 

could improve obesity measures, particularly in obese 

subjects aged <50 years at dosages of ≥2 g/day for at least 

12 weeks [108]. More recently, Keramati et al. [109] eval-

uated the effects of cinnamon on obesity rates in humans 

through an umbrella meta-analysis, which indicated that 

cinnamon supplementation reduced BMI. The effects of 

cinnamon were more pronounced at doses of ≥3 g/day 

and in patients with polycystic ovary syndrome. Table 4 

[52,72,105,110–123] lists these associated experimental and 

clinical studies on the effects of cinnamon on obesity. 

Cinnamon and cardiovascular disease 

Patients with CKD have a high risk of developing prema-

ture CVD due to a combination of traditional risk factors, 

including diabetes, obesity, dyslipidemia, hypertension, 

and a toxic uremic milieu [124]. Cinnamon may benefit 

cardiovascular health; indeed, studies have shown hy-

potensive effects, control of dyslipidemia, and protection 

of the endothelium and vascular smooth muscle cells 

(VSMC). As already discussed, cinnamon has anti-in-

flammatory and antioxidant properties, which can reduce 

the progress of atherosclerosis [56]. However, postulated 

hypotensive effects ascribed to cinnamon remain incon-

clusive [125]. Ghavami et al. [126] evaluated the effects of 

cinnamon supplementation on blood pressure through a 

systematic review and meta-analysis of RCTs. Eight studies, 

including 582 participants, suggested that cinnamon sup-

plementation had beneficial effects only on diastolic blood 

pressure. 

Components of cinnamon, such as catechin, epicatechin, 

procyanidin B2, and phenolic polymers, can act as agonists 

of PPARs, inhibiting the formation of advanced glycation 

end products to reduce oxidative stress and increasing the 

bioavailability of vasodilator NO [108,125]. 

Furthermore, cinnamon improves the lipid profile and 

reduces lipid oxidation and the risk of vascular blockage, 

mitigating potential hypertensive conditions [127]. Flavo-

noids and phenolic acids found in cinnamon inhibit pan-

creatic lipase, which is necessary for forming chylomicrons 

[110]. Cinnamon ameliorates lipid profiling by suppressing 

the expression of transcription factor SREBP-1c and liver X 

receptor alpha enzymes, such as ATP-citrate lyase and NF-

κB p65. Furthermore, it upregulates PPAR-α expression to 

enable modulation of lipid metabolism [9]. Additionally, 

cinnamon has been reported to inhibit the secretion of 

proatherogenic apolipoprotein B 48 CD36, and the class 

A macrophage scavenger receptor, as well as the uptake of 

acetylated LDL, again suggesting that cinnamon can act as 

a preventive medicine [128,129]. 

Despite these promising results, the evidence remains 

inconclusive. Krittanawong et al. [130] have systematically 

reviewed the literature and evaluated cinnamon consump-

tion and cardiovascular risk. A meta-analysis that included 

23 studies (1,070 subjects) concluded that there was no as-

sociation between cinnamon consumption and differences 

in LDL-cholesterol, high-density lipoprotein cholesterol, 

and HbA1c levels. Studies on cinnamon in vitro, in ani-

mals, and in humans are listed in Table 5 [9,45,131–144]. 

Again, allowance for different exposome features, such as 

microbiota composition, may be pertinent here [145]. 

Does cinnamon benefit the gut microbiota? 

Microbiota dysbiosis is a disruption to the normative 

microbial community driven by host-related exposome 

factors such as diet, resulting in perturbations to its com-

position and function [145,146]. Dysbiosis is associated 

with many chronic diseases, such as metabolic syndrome, 

inflammatory bowel disease, and CKD, which present a 

typical proinflammatory phenotype. Increased permeabil-

ity in the gut with age and condition enables the entry of 

microbial metabolites, pathobionts, or endotoxins such as 

lipopolysaccharides (LPS) into the circulation [147,148]. It 

also presents a loss of symbiotic microbes. 
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Table 4. Studies involving cinnamon on obesity
Reference Study/sample Intervention Results
Experimental study
 Lopes et al. (2015) [111] Adult male Wistar rat 400 mg/kg BW/day of cinnamon 

aqueous extract (Cinnamomum 
zeylanicum), for 25 days

↔ Food intake and serum lipid profile
↓ Body mass gain
↓ Relative mass of WAT
Leptin mRNA expression in the WAT
↑ Protein content

 Lee et al. (2016) [112] 3T3-L1 preadipocytes cells 50, 100, 200 μg/mL of cinna-
mon extract (Cinnamomum 
cassia)

↑ Lipid storage in white adipocytes,
↑ Fatty acid oxidation capacity
↑ PGC-1α, CPT-1α, PPARγ, C/EBP-α, 

and C/EBP-β genes expressions
 Khare et al. (2016) [113] 3T3-L1 preadipocytes cells 10, 20, and 40 μM of cinnamal-

dehyde: in vitro
5 mL/kg and 10 mL/kg BW of 

cinnamaldehyde with a normal 
or HFD: in vivo

↑ HPL
In vivo: male Swiss albino mice ↓ Expression of perilipin and GPD

↓ PPARγ and C/EBP-α prevented the 
increase in visceral fat pad weight 
regulated leptin/ghrelin ratio

↑ Anorectic gene expression in 
hypothalamus (POMC, BDNF, UCN, 
CARTPT, and CCK)

↓ Glycerol and free fatty acid levels
↑ Expression levels of lipolysis-pro-

moting genes: HSL, PNPLA2, and 
MGLL

↓ IL-1β, COX, MCP1, TNF-α, and IL-6
↑ Anorectic and lipolytic gene expres-

sion
 Jiang et al. (2017) [52] Primary preadipocytes from and 

human adipose-derived stem 
cells

200 and 400 μM of cinnamalde-
hyde

↑ Thermogenesis: ↑ UCP1, FGF21, 
PKA, phosphorylation of HSL and 
PLIN1

↑ Lipid metabolism: Pdk4
 Kwan et al. (2017) [114] 3T3-L1 preadipocytes and 80 μg/mL (in vitro) and 500 

mg/kg BW (in vivo) cinnamon 
extract (C. cassia)

Induced browning in white adipocytes: 
↑ UCP1 expression; ↑ Prdm16, 
Cidea, PPARγ, PGC, Cpt1

Ex vivo: subcutaneous adipose 
tissue from db/db mice and in 
vivo/ex vivo DIO mice

Induced browning in subcutaneous 
adipocytes in db/db mice: UCP1 pro-
tein and mRNA Cidea and Prdm16

DIO mice: ↑ UCP1 expression in the 
subcutaneous adipose tissue; ↓ BW

 Kang et al. (2019) [115] 3T3-L1 and HIB1B preadipocytes 
cells

10–200 μM of trans-cinnamic 
acid of bark (C. cassia)

Induced browning in white adipocytes 
activation of β3AR-PKA-AMPK, 
TRPA1, and GPR signaling pathways

↑ Fat oxidation
↓ Adipogenesis and lipogenesis

 Neto et al. (2019) [116] Lactating dams (Wistar rats) were 
supplemented, and adult male 
offspring were evaluated at 180 
days old

400 mg/kg BW/day of cinnamon 
aqueous extract (C. zeylani-
cum) during lactating period

↑ Visceral obesity
Hepatic metabolic dysfunction and ↑ 

lipid accumulation
↓ Glycogen content in the liver, hyper-

leptinemia and hyperinsulinemia
 Neto et al. (2020) [117] Adolescent rat model of obesity 

programmed by early overnutri-
tion

Cinnamaldehyde 40 mg/kg of 
body mass per day for 29 days

↓ Visceral adipose tissue mass

 Ataie et al. (2021) [118] Adult male Wistar rats with 
HFD-induced

Cinnamaldehyde 20 mg/kg 
of body mass per day for 16 
weeks

↓ Plasma nitrate and nitrate
↓ Islet insulin secretion
↓ iNOS activity

(Continued to the next page)
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Reference Study/sample Intervention Results
 Li et al. (2022) [105] Adult male Wistar rat obesity 

HFD-induced
Cinnamon powder 50 or 100 

mg/kg BW orally for 12 weeks
↓ Hepatic levels of oxidative and 

inflammatory biomarkers
↓ Serum levels of glucose, liver en-

zymes, insulin, and lipid profiles
↓ Hepatic expression of SREBP-1c 

and NF-κB
↑ PPAR-α, CD36, CPT-1, and Nrf-2

 Neto et al. (2022) [119] Adolescent rat model of obesity 
programmed by early overnutri-
tion

Cinnamaldehyde 40 mg per kg of 
body mass per day for 30 days

↓ Adipocyte hypertrophy
↑ Oxidative pathways (PGC1α, FGF21) 

in WAT
↑ Increased BAT thermogenesis mark-

ers (PPARα, FGF21, UCP-1)
↓ WAT adipocyte size

 Miah et al. (2022) [120] Adult Swiss albino mice hyperlip-
idemia and obesity

Butter enriched HFD-induced

10% butter with cinnamon 200 
mg, 400 mg, or 600 mg pow-
der per liter drinking water for 
10 weeks

↓ TC, LDL-C, and glucose levels
↓ ALT and AST and fat deposition in 

the liver
Human study
 Gupta Jain et al. (2017) [72] Adults with metabolic syndrome 3 g/day (6 capsules) of cinna-

mon for 16 weeks
↓ BW, WC, waist-to-hip ratio
↓ % Body fat

 Borzoei et al. (2017) [121] Polycystic ovary syndrome in  
overweight or obese women

1.5 g cinnamon extract (3 cap-
sules) for 8 weeks

Improved glucose metabolism and 
lipid profile, ↓ insulin

 Khedr et al. (2020) [110] Overweight /obese adults 1.2 g of Ceylon cinnamon cap-
sules and 120 mg of Orlistat 
for 15 weeks

↓ BMI
↓ Lipase activity
↓ Lipid profile

 Wang et al. (2021) [122] Normal and overweight/obese 
individuals

1/2 cup dry instant oatmeal with 
milk prepared with or without 6 
g of cinnamon (Korintje cinna-
mon, from cassia bark), acute 
intake (4 hours)

↓ Postprandial insulin response in 
overweight/obese individuals

↓ Postprandial glucagon levels, 
glucagon and C-peptide response in 
normal weight participants

 Huang et al. (2022) [123] Overweight adults 6 g of cinnamon meal on 4 sepa-
rate visits at least 3 days apart

↓ Postprandial glycemia

ALT, alanine aminotransferase; AMPK, adenosine monophosphate-activated protein kinase; AST, aspartate aminotransferase; BAT, brown adipose tissue; 
BDNF, brain-derived neurotrophic factor; BMI, body mass index; BW, body weight; C/EBP-α, CCAAT/enhancer-binding protein alpha; C/EBP-β, CCAAT-en-
hancer-binding protein beta; CARTPT, cocaine amphetamine-related transcript; CCK, cholecystokinin; CD36, cluster of differentiation 36; Cidea, DFFA-like 
effector A; COX, cyclooxygenase; CPT-1, carnitine palmitoyl transferase 1; CPT-1α, carnitine palmitoyltransferase 1 alpha; DIO, diet-induced obesity; FGF21, 
fibroblast growth factor 21; GPD, glycerol-3-phosphate dehydrogenase; GPR, G-protein-coupled receptor; HFD, high-fat diet; HSL, hormone-sensitive lipase; 
IL, interleukin; iNOS, inducible nitric oxide synthase; LDL-C, low-density lipoprotein cholesterol; MCP-1, monocytechemotactic protein 1; MGLL, monoglycer-
ide lipase; NF-κB, factor nuclear kappa B; Nrf-2, nuclear factor erythroid 2-related factor 2; Pdk4, pyruvate dehydrogenase kinase 4; PGC1α, peroxisome 
proliferator-activated receptor gamma coactivator 1 alpha; PKA, protein kinase A; PLIN1, lipid droplet-associated protein perilipin 1; PNPLA2, patatin phos-
pholipase domain containing 2; POMC, proopiomelanocortin; PPARα, peroxisome proliferator-activated receptor alpha; PPARγ, peroxisome proliferator-ac-
tivated receptor gamma; Prdm16, PR domain containing 16; SREBP-1, sterol regulatory element-binding transcription factor 1; TC, total cholesterol; TNF-α, 
tumor necrosis factor alpha; TRPA1, necrosis factor receptor-associated protein 1; UCN, urocortin; UCP-1, uncoupling protein 1; WAT, white adipose tissue; 
WC, waist circumference; β3AR, β3 adrenergic receptor.

Table 4. Continued

Beyond typical treatments to mitigate dysbioses, such as 

pro-, pre-, or symbiotics, some bioactive compounds can 

be effective in modulating the gut microbiota [149,150]. 

Studies of the benefits of cinnamon in this capacity have 

been increasing [150,151]. 

Cinnamon compounds, such as polyphenols, reach the 

colon and serve as substrates for bacterial metabolism 

[152]. Normative gut microbiota is dominated by anaerobic 

bacteria from the Firmicutes and Bacteroidetes phyla. Dys-

biosis is characterized by a loss of microbial diversity and 

symbionts and an increased representation of pathobionts 

[96,153]. Cinnamon effectively enriches gut microbiota 

by reducing Proteobacteria and increasing Bacteroidetes 

[154]. 

The essential oil in cinnamon contributes to the growth 

of salutogenic bacteria capable of short-chain fatty acid 
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Table 5. Studies involving cinnamon on cardiovascular health
Reference Study/sample Intervention Results
Experimental study
 Kwon et al. (2015) [131] Rat aortic vascular smooth 

muscle cells
Extract Cinnamomum cassia 

bark – 10, 30, and 50 μM
↓ PLCγ1, Akt, and P38
↑ Percentage of G0/G1 phase cells
↓ PCNA expression

 Panickar et al. (2015) [132] Mouse brain endothelial cells Cinnamtannin D1 – 10−2 and 
10−3 mg/mL

↓ OGD-induced swelling
↓ Cell swelling in presence of MCP-1
↓ Mitochondrial ROS
↓ OGD-induced fluorescence

 Chen et al. (2016) [133] Mice with ischemia/reperfu-
sion-induced brain injury

10, 20, and 30 mg/kg trans-cin-
namaldehyde, an essential oil 
in cinnamon powder 60 min-
utes before ischemia surgery

↓ Infarction area and neurological 
deficit score

↓ iNOS, COX-2, NF-κB, mRNA, TNF-α

 Kang et al. (2016) [134] Male rats with metabolic 
syndrome with cardiac 
oxidative stress

20, 40, and 80 mg/kg cinnamal-
dehyde for 5 weeks

↓ HW/BW, TGF-β, p-Smad 2/3 and 
Smad4

↑ GSH/GSSG
 Tuzcu et al. (2017) [9] Rats given high-fat feed 100 mg/kg cinnamon polyphenol 

extract for 12 weeks
↓ Expression of hepatic SREBP-1c, 

LXRs, ACLY, FAS, MDA, NF-κB
↑ PPAR-α, IRS, Nrf2, HO-1, SOD, CAT
↓ TG, TC, LDL-C
↓ BW, visceral fat

 Nayak et al. (2017) [135] Mice with dexamethasone-in-
duced atherosclerosis

500 mg/kg and 250 mg/kg 
cinnamon extract for 12 days

↓ TG, TC, LDL-C
↑ HDL-C
↓ Atherosclerotic change of aorta

 Sedighi et al. (2018) [136] Rats with ischemia Cinnamomum zeylanicum bark 
extract – 50, 100, or 200 mg/
kg – 2 weeks before ischemia

↓ Infarct size
↓ Ventricular tachycardia, ventricular 

ectopic beats episodes
↓ R-wave amplitude
↑ Heart rate during ischemia
↓ MDA, cardiactroponin I, LDH
↑ SOD, GPx

 Pulungan and Pane (2020) [137] Mice (Mus musculus) given 
high-fat feed

2, 4, and 8 mg/kg cinnamon 
extract for 2 weeks

↓ TC

 Alsoodeeri et al. (2020) [138] Rats given high-fat feed 2 and 4 g/kg cinnamon powder 
for 4 weeks

↓ TG, TC, LDL-C
↑ HDL-C

 Wang et al. (2020) [45] Leptin receptor-deficient 
mice

Diet containing 0.02% cinnamal-
dehyde for 12 weeks

↑ Nitrotyrosine, NO, NRF2, HO-1, 
NQO-1

↓ ROS, p-eNOS
 Moreno et al. (2022) [139] Rings from male Wistar rat 

thoracic aorta pre
Cinnamon extract (0–380 μg/

mL)
Induced concentration-dependent 

vasodilation
 Tian et al. (2022) [140] Male, cardiac hypertrophy 

model C57BL/6
Trans-cinnamaldehyde daily at 

a dosage of 50 mg/kg or 100 
mg/kg via oral gavage for 2 
weeks

Inhibited induced cardiac hypertrophy

Human study
 Ranasinghe et al. (2017) [141] Healthy adults 85 mg, 250 mg, and 500 mg of C. 

Zeylanicum (water extract) for a 
period of 3 months, with dose 
increased at monthly intervals

SBP, DBP
↔Renal and liver function, fasting 

blood glucose, HDL-C, VLDL, and TG
↓TC and LDL-C

 Mirmiran et al. (2019) [142] Type 2 diabetes patients 3 g cinnamon extract capsules, 
for 2 months

↓ICAM-1 and VCAM-1 in both cinna-
mon and placebo groups, but not 
between groups

(Continued to the next page)
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Reference Study/sample Intervention Results
 Shirzad et al. (2021) [143] Stage 1 hypertension pa-

tients
Cinnamon capsules, 1,500 mg/

day, for 2 months
Moderate clinical decrease in mean 

ambulatory SBP
↑ HDL-C
↓ LDL-C levels

 Zhang et al. (2022) [144] Patients with mild stroke or 
transient ischemic attack

Aspirin-cinnamon group (100 mg/
day aspirin + 5 g of cinnamon 
granules) and aspirin-placebo 
group (100 mg/day aspirin + 
placebo granules) for 2 months

Aspirin-cinnamon group:
↓TG, LDL-C, fasting plasma glucose, 

HbA1c, Lp-PLA2, and hs-CRP
↑ HDL-C
↓ Carotid atherosclerosis

ACLY, ATP-citrate lyase; Akt, protein kinase B; BW, body weight; CAT, catalase; COX-2, cyclooxygenase type 2; DBP, diastolic blood pressure; FAS, fatty acid 
synthase; GPx, glutathione peroxidase; GSH/GSSG, glutathione/oxidized glutathione ratio; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein 
cholesterol; HO-1, heme oxygenase 1; hs-CRP, high-sensitivity C-reactive protein; HW/BW, heart-to-body weight; ICAM-1, intercellular adhesion molecule 
1; iNOS, inducible nitric oxide synthetase; IRS, insulin receptor; LDH, lactate dehydrogenase; LDL-C, low-density lipoprotein cholesterol; Lp-PLA2, plasma 
lipoprotein-related phospholipase A2; LXRs, liver X receptor; MCP-1, monocyte chemoattractant protein 1; MDA, malondialdehyde; mRNA, messenger RNA; 
NF-κB, nuclear factor kappa B; NO, nitric oxide; NQO-1, NAD(P)H dehydrogenase [quinone] 1; NRF2, factor erythroid nuclear factor 2 related to factor 2; 
OGD, oxygen-glucose deprivation; P38, anti-phospho-p38; PCNA, antiproliferating cell nuclear antigen; p-eNOS, phosphorylated endothelial nitric oxide syn-
thase; PLCγ1, anti-phospho-phospholipase C gamma 1; PPAR-α, peroxisomeproliferator-activated receptor alpha; p-Smad 2/3, phosphorylated Smad2/3; 
p-Smad4, phosphorylated Smad4; ROS, reactive oxygen species; SBP, systolic blood pressure; SOD, superoxide dismutase; SREBP-1c, sterol regulatory el-
ement-binding proteins; TC, total cholesterol; TG, triglyceride; TGF-β, transforming growth factor beta; TNF-α, tumor necrosis factor alpha; VCAM-1, vascular 
cell adhesion molecule-1; VLDL, very-low-density lipoprotein.

Table 5. Continued

production. These can produce butyrate, acetate, and pro-

pionate, which not only serve as the substrate for the host 

cells but also regulate inflammation [154,155]. Cinnamon 

oil may improve microbiota diversity and downregulate 

inflammatory processes [154]. Moreover, cinnamon oil 

can protect against LPS-induced intestinal injury through 

upregulation of epidermal growth factor, claudin-1, occlu-

din, alkaline phosphatase (ALP), and pregnane X receptor 

expression, improving gut barrier integrity [156]. The ev-

idence supports cinnamon or cinnamon compounds as 

nutritional adjuvants for maintaining intestinal integrity 

[156,157]. 

An experimental study conducted with early-weaned 

rats, highly susceptible to intestinal stress and alterations, 

has shown that treatment with 100 or 200 mg/kg body 

weight/day cinnamaldehyde for 2 weeks improved the gut 

barrier and was accompanied by an increase in mucin pro-

duction, reduced inflammation, and improved microbiome 

diversity [158]. These authors suggested that the beneficial 

effects were due to inhibition of NF-κB activation; upreg-

ulated expression of mucin 2, trefoil factor 3, and tight 

junction proteins; and reduced IL-6 and TNF-α expression, 

potentially mediated by increased in gut microbe diversity 

[158]. 

Another recent study has supported this assertion, in-

dicating that the microbiota in ovariectomized mice dis-

played improved diversity after treatment with cinnamic 

acid. This result was accompanied by an elevation in trans-

forming growth factor beta levels in bone marrow cells, 

which induced osteoblast differentiation and increased the 

expression of osteogenic markers [159]. 

Based on these data, cinnamon usage is encouraged not 

only to manage diseases influenced by microbiota, such as 

CKD but also for general health. The role of the microbiota 

in the health of the general population has recently been 

exemplified by a report linking poor renal function with 

accelerated aging and an imbalanced diet [160]. These data 

are pertinent to the treatment and management of CKD, as 

well as other diseases of aging. 

Cinnamon: could it be of benefit in chronic kidney 
disease? 

Although studies evaluating the effect of cinnamon on the 

kidneys are scarce, the salutogenic effects suggested by 

the literature (as shown in Fig. 2) suggest an overall benefit 

[161]. CKD is a significant cause of mortality globally, and 

its prevalence is growing in low-middle-income countries, 

where social deprivation amplifies its effects [145]. The 

reenvisioning of the Hippocratic concept of ‘food as med-

icine’ champions the use of natural bioactives as potential 

therapeutics to tackle the emerging diseasome of aging [12]. 
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The use of cinnamon is merited for evaluation to be includ-

ed in the physician’s and nutritionist’s armamentarium. 

Common pathways underpin the salutogenic effects 

of cinnamon in CKD, including the inactivation of the 

ERK/JNK/p38 MAPK pathway leading to reduced renal 

interstitial fibroblast proliferation and hypertrophy [162]. 

Nrf2 pathway stimulation, promoting attenuation of renal 

damage and preservation of renal function, is also a key 

element in this mechanism [8,163–165]. Other reported 

benefits of cinnamon are the inhibition of peroxynitrite-in-

duced nitration and lipid peroxidation and its influence on 

the production of NO and PGE2 [166,167]. 

Patients with CKD experience premature and accelerated 

aging [145], and cinnamon may also benefit in mitigating 

the effects of cellular aging. In support of this, it has been 

reported that cinnamaldehyde attenuates cellular senes-

cence in the kidney through PI3K/AKT pathway-mediated 

autophagy via downregulation of microRNA-155 [168]. 

Cinnamon is a promising candidate in the dietetic man-

agement of CKD, as it can mitigate complications such as 

dyslipidemia and diabetes. Studies have suggested pos-

sible improvements in kidney function through dietetic 

approaches aimed at upregulating antioxidant and anti-in-

flammatory defenses [12,169]. However, despite the known 

properties of cinnamon, its effect on patients with CKD has 

not been explored, and most studies are experimental (Ta-

ble 6) [65,168,170–173]. This highlights the need for further 

investigations. 

Toxicity caused by cinnamon 

Contrary to popular belief, herbal medicines are not en-

tirely safe and may have adverse effects. The available data 

suggest that cinnamon is safe for use as a spice, and mod-

Figure 2. The potential benefits of cinnamon to patients with diabetes, obesity, or CVDs. Cinnamon can provide physiological bene-
fits by mimicking insulin action through insulin receptor autophosphorylation of the β-subunit of tyrosine and promoting glucose trans-
porter (GLUT) translocation via the 5’ adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Cinnamaldehyde 
has antidiabetic activity through upregulation of the insulin signaling pathway, induction of peroxisome proliferator-activated receptors 
(PPARs), and inhibition of α-glucosidase and pancreatic α-amylase. Cinnamon may increase the expression of uncoupling protein 1 
(UCP-1), promoting thermogenesis. It can also reduce hepatic expression of sterol regulatory element-binding protein-1c (SREBP-1c) 
and nuclear factor kappa B (NF-κB) and upregulate PPAR-α, fatty acid synthase, carnitine palmitoyltransferase I (CPT-1), and nuclear 
factor erythroid 2-related factor 2 (Nrf-2) to promote cytoprotective effects and reduce inflammation. Cinnamaldehyde might act as a 
natural agonist of transient receptor-ankyrin receptor 1 (TRPA1), reducing ghrelin secretion and food intake. Cinnamon may decrease 
SREBP-1 and cluster of differentiation 36 (CD36) expression and increase expression of PPAR-γ, reducing oxidative stress, inflammato-
ry burden and, therefore, cardiovascular risk.
LXR-α, liver X receptor alpha; CVD, cardiovascular disease.

↑ Insulin receptor autophosphorylation of β-subunit tyrosine residues
↑ Translocation GLUT-4
↑ PPARα and PPARγ
↓α-glucosidase and pancreatic α-amylaseDiabetes

Obesity

CVD

↑ Thermogenesis→↓UCP-1
↑ TRPA1→↓ghrelin
↑ 5-Hydroxy tryptamine in the brain→↓food intake

Ameliorate lipid profile→↓expressions SREBP-1c and LXR-α enzymes
↑ PPARα
↑ ApoB48 secretion
↑ CD36
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Table 6. Experimental studies involving cinnamon on kidney diseases
Reference Study/sample Intervention Results
Hussain et al. (2019) [170] Administration of acet-

aminophen in BALB/c 
mice

Pretreatment with 200 mg/kg/day 
i.g. of cinnamon bark aqueous 
extract for 2 weeks

Prevention against elevation in serum ALT, 
AST, Cr, urea

Prevention against macroscopic and histo-
logical alterations in liver and kidney

Improvement of oxidative balance
Niazmand et al. (2021) [65] STZ-induced diabetic rats 100, 200, or 400 mg/kg of cinna-

mon extract for 6 weeks
↓ MDA level, SOD and CAT activities in the 

liver and kidney
↑ GSH and total thiol contents and NO 

production
Alshahrani et al. (2021) [171] Male Wistar rats with 

nephrotoxicity induced 
by acetaminophen

50, 100, and 200 mg/kg of cinna-
mon oil with 2 g/kg of acetamino-
phen, for 15 days

Improvement in serum biochemical mark-
ers and oxidative parameters:

Protected cellular injury in kidney tissue
↓ IL-1β, IL-6, and caspase 3 and 9
↑ GSH level and ameliorates antioxida-

tive enzymes (SOD, CAT, GR, and GPx in 
kidney tissue)

Atsamo et al. (2021) [172] Male Wistar rats with 
gentamicin-induced 
nephrotoxicity

200 and 400 mg/kg/day of Cin-
namomum zeylanicum stem 
bark aqueous extract for 2 weeks 
concomitantly with gentamicin 
administration

Prevention of alterations in body weight, 
serum total proteins, calcium level, 
kidneys’ relative weight, Cr, urea, and uric 
acid

↓ MDA, and TNF-α, IL-1β, and IL-6 and 
nitrites

↑ GSH, SOD, CAT
Prevention of histological alterations

Elshopakey and Elazab (2021) 
[173]

Broiler chickens with 
copper-induced nephro-
toxicity

200 mg/kg of C. zeylanicum alone 
or plus probiotic for 6 weeks

Both supplementations:
↓ Urea, Cr, and uric acid
In renal tissue:
↓ MDA ↑CAT, and GSH, ↓ Copper
↓ TNF-α, IL-2, Bax, and COX-II in kidneys
↑ IL-10 and Bcl-2

Xiao (2022) [168] Sprague-Dawley rats 
(male) kidney senes-
cence model D-galac-
tose-induced

40 mg/kg/day of cinnamaldehyde 
for 6 weeks

↓ Blood urea nitrogen and Cr
In the kidneys: the contours of the proxi-

mal and distal convoluted tubules were 
improved, ↓ the number of nuclear 
pyknosis, ↓ hyperemia

↑ Ratio of p-P13K to P13K and the ratio of 
p-Akt to Akt

Akt, protein kinase B; ALT, alanine transaminase; AST, aspartate transaminase; Bcl-2, B-cell lymphoma 2; CAT, catalase; COX-II, cyclooxygenase; Cr, creat-
inine; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, glutathione; IL, interleukin; MDA, malondialdehyde; NO, nitric oxide; p21, p21/WAF-
1Cip1; PARP, poly (ADP-ribose) polymerase; PI3K, phosphoinositide 3-kinase; SOD, superoxide dismutase; TNF-α, tumor necrosis factor alpha.

erate ingestion has several health benefits, as previously 

reported. However, its use for medicinal purposes in high 

doses or over a long duration may lead to adverse effects, 

such as gastrointestinal disturbances and self-limiting al-

lergic reactions that should be clinically monitored [174]. 

Yun et al. [175] have reported that cinnamon extract (2 g/kg  

body weight/day for 13 weeks) might result in nephrotox-

icity and hepatotoxicity in rats due to high doses of cou-

marin. In animals, despite all the extracts tested showing 

possible antioxidant activity in vitro, they showed acute 

dose-dependent toxicity (1,000, 2,000, 3,000, 4,000, and 

5,000 mg/kg body weight) in vivo, with increased levels of 

aspartate transaminase, alanine transaminase ALP, urea, 

and creatinine reported in animals treated with the highest 

dose [57]. 

In a systematic review of the adverse effects of cinnamon, 

the authors report that most studies did not identify the 

cinnamon species responsible for these effects. Knowing 

that different cinnamon species contain other components, 

such as coumarin, studies on herbal medicines should be 

standardized to include their exact identification, dose, and 

duration of treatment [174]. Recently, Gu et al. [176] evalu-
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ated the safety of cinnamon in humans through a study us-

ing relevant meta-analyses and systematic reviews of RCTs 

and concluded that there are no adverse effects caused by 

cinnamon. 

There is no exact recommendation for the daily intake 

of cinnamon. Still, studies recommend approximately 1 to 

4 g per day, and attention should be paid to the amount of 

coumarin in different types of cinnamon and symptoms 

such as diarrhea, nausea, and vomiting [161]. 

Conclusion 

Cinnamon compounds have several beneficial effects for 

consideration for inclusion in a ‘food as medicine’ strat-

egy to treat CKD. These reside in inherent antioxidant, 

anti-inflammatory, cardioprotective, antiobesogenic, and 

antidiabetic properties. Additionally, they may reside in 

the ability of cinnamon to influence the composition of the 

gut and microbiota. Though most reported studies are pre-

clinical, they indicate that human clinical studies are mer-

ited. Therefore, different clinical trials need to be planned 

regarding the dose and period of supplementation, the 

types of cinnamon species, and other populations. This 

review highlights the need for further studies on patients 

with CKD who suffers from several comorbidities, in which 

the use of cinnamon supplementation has demonstrated 

potential advantages. 
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