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A B S T R A C T   

Alzheimer’s disease(AD) poses a significant challenge due to its widespread prevalence and the 
lack of effective treatments, highlighting the urgent need for early detection. This research in-
troduces an enhanced neural network, named ADnet, which is based on the VGG16 model, to 
detect Alzheimer’s disease using two-dimensional MRI slices. ADNet incorporates several key 
improvements: it replaces traditional convolution with depthwise separable convolution to 
reduce model parameters, replaces the ReLU activation function with ELU to address potential 
issues with exploding gradients, and integrates the SE(Squeeze-and-Excitation) module to 
enhance feature extraction efficiency. In addition to the primary task of MRI feature extraction, 
ADnet is simultaneously trained on two auxiliary tasks: clinical dementia score regression and 
mental state score regression. Experimental results demonstrate that compared to the baseline 
VGG16, ADNet achieves a 4.18% accuracy improvement for AD vs. CN classification and a 6% 
improvement for MCI vs. CN classification. These findings highlight the effectiveness of ADnet in 
classifying Alzheimer’s disease, providing crucial support for early diagnosis and intervention by 
medical professionals. The proposed enhancements represent advancements in neural network 
architecture and training strategies for improved AD classification.   

1. Introduction 

Alzheimer disease (AD) [1] is a degenerative disease that hides the progressive nervous system. AD patients often suffer from 
dementia symptoms such as memory decline, communication disorder, and confusion after illness, which seriously affect daily life and 
can lead to irreversible brain damage. Research has shown that in the past 20 years, dementia has become the seventh leading cause of 
death among all diseases, with one-third of elderly people dying from Alzheimer’s disease or other forms of dementia [2]. However, 
people are still unclear about the pathogenic factors of AD. If a correct diagnosis can be made in the early stages of a patient’s attack, 
some modern medical treatment methods may effectively alleviate the condition and delay its development [3–5]. In the past, most AD 
detection methods relied on clinical observation, which mainly relied on the experience of clinical doctors, and often had to wait until 
the condition worsened and symptoms became apparent before being diagnosed. With the continuous development and maturity of 
medical imaging technology, neuroimaging technology can detect subtle changes in the brain structure of AD patients, among which 
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magnetic resonance imaging (MRI) technology can display high-resolution brain anatomy, and can effectively highlight images with 
AD characteristics [6]. 

Magnetic resonance imaging (MRI) technology offers high-resolution and non-invasive capabilities, enabling the detection of subtle 
alterations in the brain structure of individuals with Alzheimer’s disease (AD). By employing specialized imaging sequences, MRI can 
unveil distinctive brain characteristics linked to AD, which is crucial for the accurate diagnosis of AD and the differentiation from other 
forms of dementia. Furthermore, MRI technology can assess brain function and activity, with functional magnetic resonance imaging 
(fMRI) techniques allowing for the observation of changes in brain activity in AD patients during task performance or stimulation. The 
Mini-Mental State Examination (MMSE) [7] is a widely utilized cognitive assessment instrument for evaluating cognitive function in 
individuals with AD and other forms of dementia. The MMSE offers several advantages, including its ease of use, standardization, high 
reliability, and ability to aid in the early identification of dementia in patients. By comparing MMSE scores to established normative 
values, healthcare professionals can gauge the extent of cognitive decline in a patient and track the progression of the disease. The 
Clinical Dementia Rating (CDR) [8] is an assessment tool designed to evaluate the overall functioning and disease severity in in-
dividuals with dementia. The comprehensive nature of the CDR allows for a thorough assessment of the patient’s overall functioning, 
aiding in the determination of disease severity, development of treatment plans, and monitoring of disease progression. 

Most current research focuses on a single test (such as MRI), but should focus on combining multiple tests to improve the diagnosis 
of Alzheimer’s disease dementia. This article proposes a classification method for Alzheimer’s disease based on an improved VGG16 
network and multi-task learning, named ADnet, with data sourced from MRI imaging data in ADNI1 and patient related clinical in-
formation. The study used an improved VGG16 network for feature extraction of MRI data as the main task, and used the CDR score 
regression and the MMSE score regression as two auxiliary tasks to jointly train the model. The model parameters were updated based 
on gradient backpropagation to improve the classification performance of the Alzheimer’s disease classification algorithm. 

2. Related work 

2.1. Background 

In recent decades, machine learning and pattern recognition methods have been widely used in neuroimaging analysis of AD. The 
machine learning method has a good effect in analyzing MRI [9]. Meng et al. [10] used MRI in ADNI to obtain 649 voxel based 
morphometry (VBM) methods, including early Mild cognitive impairment (MCI), cognitive normal(CN), Late Mild cognitive 
impairment (LMCI) and Alzheimer’s disease (AD) construct new voxel based features, and propose a feature detection method based on 
random support vector machine (RS-SVM) for feature extraction and classification. Elaheh et al. [11] used regularized Logistic 
regression to conduct Feature selection on the MRI data of AD samples, and used Random forest classifier to classify the data. Kumari 
et al. [12] proposed an adaptive hyperparametric tuned Random forest fusion classifier (HPT-RFE). The simulation results show that 
the performance of the adaptive HPT-RFE classifier is the best in binary classification. The research shows that the machine learning 
method has achieved initial results in the field of Medical imaging, and then there are some limitations and shortcomings in this 
method. For example, machine learning requires a complex process for manual feature extraction, and extracting important features 
from MRI images often requires experienced clinical staff to operate. In addition, the mechanism of AD pathogenesis is not fully 
understood, and machine learning methods are also difficult to effectively achieve manual feature extraction. The research shows that 
the machine learning method has achieved initial results in the field of Medical imaging, and then there are some limitations and 
shortcomings in this method. For example, machine learning requires a complex process for manual feature extraction, and extracting 
important features from MRI images often requires experienced clinical staff to operate. In addition, the mechanism of AD patho-
genesis is not fully understood, and machine learning methods are also difficult to effectively achieve manual feature extraction. 

Deep learning is an important branch of Artificial Intelligence, which can automatically extract image information through efficient 
algorithms and complete complex task learning through abstract features of images [13,14]. Compared with machine learning, deep 
learning has fewer image preprocessing steps and can automatically extract the features of Medical imaging data to obtain a more 
objective and less biased result. Spasov et al. [15] used magnetic resonance imaging (MRI), Demographics, Neuropsychology and 
APOe4 genetic data as input data, and proposed a new deep learning architecture based on dual learning and 3D separable convolution 
temporary layer. Zhang et al. [16] proposed a 3D generated countermeasure network (BPGAN), which can synthesize brain positron 
emission tomography (PET) from magnetic resonance imaging (MRI), which can be used as a potential data completion scheme for 
multimodal medical image research. Kim et al. [17] proposed a spectral GCN method with CCA loss function (GCN-CCA), which can 
extract important image features from genetic data. Jin et al. [18] proposed using an improved 3D residual network (ResNet) to di-
agnose AD, achieving good classification results. By introducing attention mechanisms into the network, classification performance 
was improved, while potential biomarkers were studied. Oh et al. [19] used Unsupervised learning of convolutional automatic encoder 
(CAE) to complete the classification task of AD and CN, with an accuracy of 86.60%. 

2.2. Convolutional neural network 

Convolutional neural network (CNN) is one of the most concerned research topics in the field of artificial intelligence depth 
learning [20,21]. It has a broad application prospect in target recognition, image detection, segmentation and other fields. CNN in-
cludes various network structures, such as AlexNet [22], VGGNet [23], GoogLeNet [24], ResNet [25], and other frameworks. The basic 
structure of CNN usually includes input layer, convolutional layer, activation layer, pooling layer, fully connected layer, and output 
layer. By superimposing these layers, a complete convolutional neural network can be constructed. 
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2.2.1. Convolutional layer 
Convolution layer is the core layer of Convolutional neural network, which mainly performs convolution operations. Convolutional 

verification iteratively calculates the input or output features of the previous layer, extracts features through filtering, and summarizes 
the extracted local feature maps to obtain the feature matrix extracted by the convolution of that layer. The eigenvalues calculated by 
convolution kernel corresponding to the local area of the image are called Receptive field. In the case of two-dimensional convolution, 
the convolution kernel slides left and right first, then up and down on the feature map, and multiplies and sums the pixel values in the 
receptive field to obtain the mapping values of each Receptive field. Fig. 1 is a schematic diagram of the convolution calculation 
process, with input features of 4x4, convolution kernel size of 3x3, and stride size of 1. 

2.2.2. Pooling layer 
The main function of the pooling layer is to downsample data to reduce its spatial dimension. This can be used to reduce the model’s 

size and improve its computational efficiency. Commonly used pooling functions include: Mean pooling, Max pooling, and Stochastic 
pooling. These three pooling methods are shown in Fig. 2. 

2.2.3. Fully connected layer 
In a convolutional neural network, the function of fully connected layer is equivalent to that of a classifier. Each neuron in the fully 

connected layer is connected to all neurons in its previous layer. The fully connected layer can integrate local information with class 
distinctiveness from convolutional or pooling layers, and utilize filters for convolutional operations to merge the extracted feature 
information, and finally achieve classification calculation. 

2.3. Depthwise separable convolution 

Depthwise separable convolution [26] is a common convolution method in convolutional neural networks. As shown in Fig. 3, 
depthwise separable convolution decomposes a standard convolution into two steps: depthwise convolution and pointwise convo-
lution. Depthwise convolution involves applying convolutional kernels to each channel of input data, and then overlaying all results to 
obtain a set of depthwise convolution outputs. The computational complexity of depthwise convolution is relatively small, as it only 
requires convolution operations on each channel. Pointwise convolution is the convolution of the outputs of depthwise convolution, 
which uses a convolution kernel to multiply each depthwise convolution output with a set of learnable weight matrices to obtain the 
final convolution output. 

2.4. Channel attention module 

Channel attention [27] is used to mine dependencies in convolutional channels, model data channels, and adjust channel weights 
for features. The utilization of the channel attention module can weight the importance of key data features in the model, while also 
suppressing other irrelevant features to improve the network’s representation ability [28]. 

The SE (Squeeze Excitation) module [29] mainly captures correlations among feature channels, enabling the network to focus on 
effective features. This leads to enhanced extraction of target features and an overall improvement in the model’s expression ability. As 
shown in Fig. 4, the SE module mainly comprises two operations: Squeeze and Excitation. 

The squeeze operation of the SE module compresses features based on spatial dimensions, using global average pooling to encode 
the spatial features of different channels into corresponding global features. The calculation formula is shown in Eq. (1). 

Zc =Fsq(uc)=
1

H × W
∑H

i=1

∑W

j=1
uc(i, j) (1) 

Among them, Zc is the global feature on the compressed channel, uc is the feature before compression, and W and H are the width 
and height of the feature map. 

The excitation function in the SE module can use full connection, ReLU activation function, sigmoid activation function and other 
operations on the global feature information Z obtained in the previous step, and finally obtain the relationship between channels, and 
calculate the normalized weight of (0,1). Its calculation formula is shown in Eq. (2). 

Fig. 1. Schematic diagram of convolution operation process.  
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S= Fex(z,W)=σ(g(z,W))=σ(W2δ(W1z)) (2) 

Fig. 2. Three pooling methods.  

Fig. 3. Depthwise separable convolution.  

Fig. 4. SE module.  
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Where σ and δ are respectively sigmoid activation function and ReLU activation function, W1 ∈ RC
r×c, W2 ∈ Rc×C

r，the hyperparameter 
represents the dimensionality reduction parameter, and r represents the scaling ratio. Its purpose is to simplify the computational 
workload by reducing the count of channels. 

The scale operation of SE module can multiply the weight value with the original features of the image to obtain different 
contribution degrees of different channels. The calculation formula is shown in Eq. (3): 

Xc =FScale(uc,Sc)= Sc • uc (3) 

Among them, Sc is the weight value of the channel obtained during the excitation process, and uc is the feature information of the 
channel obtained during the compression operation. 

2.5. Multi-task learning 

Multi-task learning was proposed by Caruana [30]. Traditional machine learning methods are usually based on a single task 
learning pattern, which decomposes into multiple independent single tasks when dealing with complex tasks. This approach only 
focuses on a single model and often overlooks important information that exists in related tasks [31]. In multi-task learning, the 
original task can have better generalization ability by sharing parameters between different tasks. As shown in Fig. 5, according to the 
MTL sharing method, it can be divided into hard sharing and soft sharing [32]. Hard sharing is to place the network layer of a specific 
task on the sharing layer and combine multiple Loss function to train the model [33,34]. Soft sharing is where each task has an in-
dependent model and parameter set, and interaction between tasks is achieved through a sharing mechanism [35,36]. 

Compared to single tasks, multi-task learning have the following advantages: 1) Parameter sharing between tasks can greatly 
reduce the memory occupied by the network. 2) The features in the shared layer are not recalculated. One task iteration can display 
higher inference speed. 3) Sharing complementary information from related tasks can help improve network performance potential. 

3. Data and methods 

3.1. Data sources 

The data for this study is sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [37]. ADNI is an open 
source medical dataset currently the authoritative data center for studying Alzheimer’s disease. This study conducted experiments 
using magnetic resonance data from test subjects in the ADNI1 standard database. As shown in Table 1, the dataset comproses 208 AD 
patients, 264 individuals with normal cognition and 222 patients with Mild Cognitive Impairment(MCI). Among the AD patients, there 
are 108 male and 100 female patients, with an average age of 76.3 years. The average MMSE score is 20.56, and the average CDR score 
is 1.09; Among normal cognitive individuals (CN), there are 132 males and 132 females, with an average age of 75.84 years. The 
average MMSE score is 27.94, and the average CDR score is 0.07; There were 110 male patients and 112 female patients with Mild 
cognitive impairment (MCI), with an average age of 75.58 years. The mean MMSE score was 27.06, and the mean CDR score was 0.56. 
In clinical practice, doctors will use their MMSE and CDR levels as a basis for evaluation, and the diagnostic criteria are shown in 
Table 2. 

3.2. MRI data preprocessing 

Use Matlab 2016b′s SPM12 (Statistical Parameter Mapping 12) and CAT12 (Computational Anatomy Toolbox 12) toolkits to 
preprocess the data of MRI images downloaded from ADNI. The preprocessing steps included: (1) Correction: AC-PC (Anterior 

Fig. 5. Multi-task learning sharing method.  
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Commissure-Posterior Commissure) correction [38] is performed on each MRI. Because there is no significant difference in the AC-PC 
lines of different human brains, a three-dimensional coordinate system can be established with the midpoint of AC-PC as the origin, 
and the image data of different human brains obtained from this three-dimensional space can be compared. (2) Skull removal and 
cerebellectomy: The original MRI images contain some non brain structures, such as the skull. To avoid increasing computational 
complexity and avoiding subsequent image preprocessing that may affect experimental results, it is necessary to remove non brain 
structures such as the skull from the image during the image preprocessing operation. (3) Registration: use Affine transformation and 
nonlinear registration to normalize all subjects’ images and register them on the MNI (Montreal Neurological Institute) standard 
template. (4) Modulation: After spatial registration, the volume of gray tissue and other tissues changes, so it is necessary to 
compensate for the volume of gray tissue after nonlinear registration. (5) Segmentation: The brain image is divided into gray matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF). In this article, gray matter data is used as experimental data, so removing 
white matter and cerebrospinal fluid can reduce the number of parameters and avoid excess data affecting experimental accuracy. (6) 
Slicing: Slice the segmented images, calculate the information entropy of each sliced image, and select the 30 images with the highest 
information entropy as the experimental dataset. 

3.3. Method 

The ADNet model diagram of this article is shown in Fig. 6. This study takes the VGG16 network as the basic network and improves 
the model in four aspects: (1) using depthwise separable convolution instead of ordinary convolution to reduce the number of model 
parameters; (2) Use ELU activation function instead of ReLU activation function to avoid gradient explosion during backpropagation; 
(3) Embed the channel attention SE module into the network; (4) Add two auxiliary tasks to improve the accuracy of the model. 

Table 1 
Experimental data.   

AD CN MCI 

Gender (male/female) 108/100 132/132 110/112 
Age (mean ± standard deviation) 76.3 ± 7.24 75.84 ± 6.39 75.58 ± 8.05 
MMSE score (mean ± standard deviation) 20.56 ± 4.03 27.94 ± 2.81 27.06 ± 2.43 
CDR score (mean ± standard deviation) 1.09 ± 0.77 0.07 ± 0.32 0.56 ± 0.59  

Table 2 
Diagnostic criteria.  

AD MCI CN 

CDR 1–3 & MMSE<24 CDR 0.5–1 & MMSE ≥ 24 CDR 0~0.5 & MMSE ≥ 24  

Fig. 6. ADNet model diagram.  
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The VGGNet architecture was proposed by a research team at the University of Oxford, and the VGG16 network model is shown in 
Fig. 7. Examining Fig. 7 reveals that the VGG16 network can be divided into five convolutional blocks, where each convolutional block 
contains two or three convolutional layers, with 3 × 3 convolutional kernels being employed within each convolutional layer. The 
initial two convolutional blocks are composed of two convolutional layers, while the subsequent three convolutional blocks are 
composed of three convolutional layers each. Subsequently, there are three fully connected layers with 4096, 4096 and 1000 neurons. 
The ReLU function is used for all activation units in the hidden layer, and the softmax activation function is used for classification in the 
final output layer. 

3.3.1. Depthwise separable convolution 
In the VGG16 model, the convolutional layer uses standard convolution, which has a relatively large number of parameters and also 

requires high computational complexity. However, replacing standard convolution with depthwise separable convolution can lead to a 
significant reduction in both the model’s parameters and computational complexity. This enhances the model’s training and inference 
speed. Eqs. (4) and (5) represent the parameter quantities of standard convolution and depthwise separable convolution, respectively. 
It can be seen that the parameter quantities of depthwise separable convolution are much smaller than standard convolution. 

P1 =Cin × K × K × Cout (4)  

P2 =Cin × (K×K+Cout) (5)  

3.3.2. ELU activation function 
The activation function realizes the arbitrary mapping between input and output by adding nonlinear factors, thus improving the 

expression ability of the model and playing an important role in the deep neural network. The activation function in the initial VGG16 
network uses the modified linear unit ReLU. This paper introduces an improved ReLU exponential linear unit ELU activation function, 
whose function curve is shown in Fig. 8, and the expressions of ReLU activation function and ELU activation function are shown in Eqs. 
(6) and (7). In contrast to the Rectified Linear Unit (ReLU), the Exponential Linear Unit (ELU) offers notable benefits. Primarily, its 
function curve maintains continuous differentiability across all intervals, preventing the occurrence of vanishing or exploding gra-
dients during the training process. Additionally, ELU allocates values within the negative range, ensuring that the gradient remains 
non-zero for all negative inputs. This effectively mitigates the problem of “neuron necrosis,” wherein specific neurons become inactive 
during training, resulting in diminished model performance. 

ReLU(x)=
{

x, x > 0
0, othrtwise (6)  

ELU(x, α)=
{

x, x > 0
α(ex − 1), othrtwise (7)  

3.3.3. Channel attention module 
The attention mechanism increases the nonlinearity of feature mapping in different dimensions to enhance the network’s feature 

extraction ability. Therefore, this article improves the network’s feature extraction ability by adding channel attention mechanism. 
The network structure with SE module is shown in Fig. 9. The SE module is composed of global average pooling, FC, ReLU, FC, and 
sigmoid. The SE module performs transformations on the channel dimension to weaken unimportant features and enhance their 

Fig. 7. The structure diagram of VGG16 network.  
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directionality. 

3.3.4. Multi-task learning 
MRI images can evaluate the brain from the perspective of structural changes in the brain, but cannot be evaluated from the 

patient’s cognitive perspective. CDR is a comprehensive score obtained by doctors based on communication with patients and their 
families to assess the degree of dementia in patients. Regression using CDR values has a certain degree of correlation with Alzheimer’s 
disease classification tasks. MMSE is a screening scale for dementia. MMSE is generally used as a reference for doctors in clinical AD 
diagnosis, so there is a certain correlation between MMSE value regression task and Alzheimer’s disease classification task. 

Therefore, this article uses MRI data for AD classification as the main task, CDR score regression task, and MMSE score regression 
task as auxiliary tasks to jointly train the model. The model parameters are updated based on gradient back propagation to improve the 
classification performance of the AD classification algorithm. 

The AD classification task uses the Cross entropy Loss function. The calculation formula is shown in Eq. (8). 

Lce =
1
n
∑n

i=0
− [yi log pi +(1 − yi)log(1 − pi)] (8)  

Where n represents the total number of samples, yi represents the true value of the i-th sample, and pi represents the probability that 
the i-th sample is predicted to be a positive class. 

The Mean squared error (MSE) Loss function was used for CDR score regression task and MMSE score regression task. The 
calculation formula is shown in Eqs. (9) and (10), 

Lcdr =
1
n
∑n

i=0
(yi − yp

i )
2 (9)  

Lmmse =
1
n
∑n

i=0
(yi − yp

i )
2 (10) 

Fig. 8. ReLU and ELU function curves.  

Fig. 9. The structure diagram of VGG16 network integrating SE module.  
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Where n represents the total number of samples, yi represents the true value of the i-th sample, and yp
i represents the predicted value of 

the model. 
The loss function of multi task learning is shown in Eq. (11). 

L=Lce + Lcdr + Lmmse (11)  

3.4. Evaluation indicators 

The evaluation indicators are accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and negative 
predictive value (NPV). In AD and CN classification tasks, accuracy refers to the proportion of correctly classified samples to the total 
number of samples, that is, the proportion of accurately classified AD and CN samples to the total number of samples. Sensitivity is the 
proportion of predicted positive classes and actually positive classes to actual positive classes, measuring the classifier’s ability to 
recognize positive samples, that is, the proportion of accurately identified CN samples to all real CN samples. Specificity is the pre-
dicted negative class, which is actually the proportion of negative classes to all actual negative classes. It measures the classifier’s 
ability to recognize negative samples, that is, the proportion of accurately identifying AD samples to all actual AD samples. 

The calculation formula for accuracy is shown in Eq. (12): 

ACC=
TP + TN

TP + TN + FP + FN
(12) 

The calculation formula for sensitivity is shown in Eq. (13): 

SEN=
TP

TP + FN
(13) 

The calculation formula for specificity is shown in Eq. (14): 

SPE=
TN

TN + FP
(14) 

The calculation formula for positive predictive value is shown in Eq. (15): 

PPV=
TP

TP + FP
(15) 

The calculation formula for negative predictive value in Eq. (16): 

NPV=
TN

TN + FN
(16) 

TP is true positive, which refers to the number of AD (or MCI) samples predicted by the model as AD (or MCI), while FN is false 
negative, which refers to the number of AD (or MCI) samples predicted by the model as CN. FP is false positive, the number of CN 
samples predicted by the model as AD (or MCI) in this article, and TN is true negative, which is the actual number of CN samples 
predicted by the diagnostic model as CN. 

4. Results and discussion 

4.1. Training and testing sets 

This experiment established three datasets, namely AD, CN, and MCI. In order to improve the classification performance of the 
neural network model and enhance its generalization ability, during the model training process, all data is divided into 6:2:2 parts, 
including the training set, validation set, and test set. 

4.2. Experimental environment and parameter settings 

The hardware environment of this experiment is: the processor is Intel Core i7-9700 CPU; RAM is 16 GB; The GPU is NVIDIA 
GeForce RTX 3090. The SPM12 and CAT12 toolkits in Matlab R2016b used for image preprocessing. The network model is built using 
the open-source deep learning framework Python, with an input image size of 224 × 224 × 3. The hyperparameter settings are epochs 
= 100, Batch_size = 32, Initial Learning rate Learning_ Rate = 0.01, Weight_ Decay = 0. 0001, Dropout = 0.5. 

4.3. Experimental results and discussion 

4.3.1. The impact of different activation functions 
In this section, we compare the change of Loss function when ReLU and ELU activation function are used for training in VGG16 

model. The experimental results are shown in Fig. 10. When using the ReLU activation function, the loss value curve has fluctuated 
several times in a large range during the training process, which may indicate the occurrence of gradient explosion, resulting in 
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excessive weight update of the model, thus causing instability of the model. In contrast, the loss value curve of the ELU activation 
function changes more smoothly. The negative part of the ELU activation function has a soft saturation characteristic, which makes the 
model more robust to input changes and noise. Therefore, using the ELU activation function can effectively suppress the occurrence of 
gradient explosion and improve the stability of training. In addition, models using the ELU activation function perform better in terms 
of accuracy than models using the ReLU activation function. This indicates that the properties of the ELU activation function enable the 
model to better handle input changes and noise, thereby improving classification performance. 

4.3.2. The impact of SE module location on classification results 
In this section, we investigate the impact of adding SE modules to different locations in the VGG16 network on the classification 

results of Alzheimer’s disease. The VGG16 network consists of 5 convolutional blocks. We evaluate the performance changes by adding 
SE modules after the last convolutional layer of each convolutional block and conducting ablation experiments. The experimental 
results are shown in Fig. 11. It can be seen that the SE module added after the third convolutional block has the highest accuracy and 
specificity. The SE module after the third convolutional block can better capture key features in MRI images and provide more accurate 
classification and discrimination capabilities. 

4.3.3. Classification results and discussion of different improvement methods 
In order to verify the effectiveness of the improvement strategy based on the VGG16 model in this article, multiple sets of 

comparative and ablation experiments were conducted. The method used for comparison is as follows: only replace the ordinary 
convolutional layer in traditional VGG16 with Depthwise Separable Convolution, denoted as VGG16 (1); Only replace ReLU Activation 
function in VGG16 with ELU Activation function, which is recorded as VGG16 (2); Only embed the attention module SE module into 
VGG16, denoted as VGG16 (3); Add only two auxiliary tasks, denoted as VGG16 (4); Integrating the above strategies constitutes the 
method of this article. We compare these methods with the comprehensive improvement methods proposed in this article to evaluate 
their performance impact on Alzheimer’s disease classification. 

Table 3 and Table 4 respectively show the classification results of AD and CN, MCI and CN using different methods. It can be seen 
that the accuracy of the first optimized method VGG16 (1) is only 0.31% lower than VGG16 in AD and CN classification tasks, and 
0.46% lower than VGG16 in AD and CN classification tasks, but its running time and parameters are less than VGG16. It is not difficult 
to see from the statistical data that VGG16 (1) has more advantages in the diagnosis of AD/MCI patients. Its sensitivity reaches 0.8572 
and 0.7913, which are higher than 0.8481 and 0.7858 of VGG16, but its specificity is less than VGG16, That is, the misdiagnosis rate of 
VGG16 (1) is higher than that of VGG. In AD and CN classification tasks, the accuracy and specificity of the other three optimization 
strategies have been improved, but their specificity will be slightly lower than that of VGG16 network. In this paper, ADNet achieves 
the highest accuracy, sensitivity and specificity. In MCI and CN classification tasks, the accuracy, sensitivity and specificity of the other 
three optimization strategies were improved. These results show that ADNet proposed in this paper has achieved significant perfor-
mance improvement in the classification of Alzheimer’s disease. By combining depthwise separable convolution, ELU activation 
function, SE module and multi-task learning, we can better capture the key features in MRI images and provide more accurate clas-
sification and discrimination ability. The combination of these improved strategies plays a key role in improving the generalization 
ability and robustness of Alzheimer’s disease classification model. 

4.4. Comparative experiments 

4.4.1. Comparison of experimental results and discussion of different models 
Under the same experimental conditions, we further compared our method with common classification networks (AlexNet, 

GoogLenet, ResNet, MobileNet) and current state-of-the-art models in AD classification. The experimental results are shown in Table 4. 
First, the accuracy of VGG16 is second only to MobileNetv3, and it occupies a high position in all common classification networks. It 

is worth noting that MobileNetv3 includes the attention module. However, according to the results in Table 3, we can see that the 

Fig. 10. The impact of different activation functions on the loss value of the model.  
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accuracy of the attention module embedded in VGG16 is higher than that of MobileNetv3. Therefore, based on the experimental results 
in this paper, it can be concluded that VGG16 is more suitable for the purpose of this study. 

Secondly, compared with other classification network models, ADNet shows better results in accuracy, sensitivity and specificity. 
This shows that the improved method proposed in this paper has achieved better results in the early diagnosis of AD. By combining 
depthwise separable convolution, ELU activation function, SE module and auxiliary tasks, we improve the classification performance 
of the model, so that it can more accurately identify AD patients. 

To sum up, compared with common classification networks, the improved VGG16 proposed in this paper has significant advantages 
in accuracy, sensitivity and specificity. This result further proves the effectiveness of this method in the early diagnosis of AD. By 
improving the model structure and feature extraction strategy, we can improve the classification performance of the model, so as to 
provide more reliable support for the early diagnosis of AD. 

4.4.2. Experimental results on different datasets 
In order to evaluate the robustness and generalization capability of our proposed method, we conducted experiments using the 

MIRAD dataset and the AIBL dataset. The detailed information of these datasets is shown in Table 5. The MIRAD dataset consists of 
data from 46 Alzheimer’s disease patients and 23 cognitively normal individuals, while the AIBL dataset comprises data from 116 
Alzheimer’s disease patients and 122 cognitively normal individuals. 

The experimental results are shown in Fig. 12, where it can be seen that our model exhibits significant improvements in 

Fig. 11. Model classification effect of SE module in different positions(AD vs. CN).  

Table 3 
AD and CN classification results of different improved methods.  

Methods AD vs. CN MCI vs. CN 

ACC SEN SPE PPV NPV ACC SEN SPE PPV NPV 

VGG16 0.8294 0.8152 0.8481 0.8377 0.8553 0.7362 0.6994 0.7458 0.7471 0.7652 
VGG16(1) 0.8263 0.7782 0.8572 0.8036 0.8936 0.7316 0.6773 0.7813 0.7243 0.8244 
VGG16(2) 0.8451 0.7894 0.8860 0.8536 0.9133 0.7496 0.6977 0.8001 0.7655 0.8192 
VGG16(3) 0.8408 0.8063 0.8632 0.8534 0.8956 0.7451 0.7002 0.7863 0.7564 0.8184 
VGG16(4) 0.8489 0.7963 0.8912 0.8654 0.9256 0.7553 0.7223 0.7769 0.7847 0.8264 
ADNet 0.8712 0.8154 0.9308 0.9336 0.9308 0.7962 0.7776 0.8633 0.8291 0.8655  

Table 4 
Classification results of different network models.  

Methods AD vs. CN MCI vs. CN 

ACC SEN SPE PPV NPV ACC SEN SPE PPV NPV 

VGG16 0.8294 0.8152 0.8481 0.8377 0.8553 0.7362 0.6994 0.7458 0.7471 0.7752 
AlexNet 0.8006 0.7690 0.8261 0.7772 0.8375 0.7110 0.6431 0.7615 0.6854 0.7788 
GoogLeNet 0.8109 0.7456 0.8334 0.7633 0.8464 0.7273 0.6564 0.7733 0.7034 0.7984 
ResNet50 0.8252 0.8061 0.8435 0.8335 0.8512 0.7338 0.6690 0.7834 0.7245 0.8048 
MobileNetv3 0.8316 0.8004 0.8623 0.8657 0.9127 0.7403 0.6832 0.7955 0.7512 0.8359 
Spasov et al. [15] 0.8318 0.8002 0.8701 0.8673 0.9137 0.7432 0.6823 0.7884 0.7478 0.7918 
Zhang et al. [16] 0.8099 0.8063 0.8142 0.7894 0.8323 0.7292 0.6685 0.7587 0.7118 0.7653 
Kim et al. [17] 0.8300 0.8148 0.8482 0.8571 0.8926 0.7363 0.6538 0.7724 0.7335 0.7814 
Jin et al. [18] 0.8454 0.8170 0.8796 0.8833 0.9216 0.7521 0.6556 0.7916 0.7643 0.8035 
Oh et al. [19] 0.8165 0.8028 0.8330 0.7892 0.8531 0.7328 0.6294 0.7649 0.7219 0.7727 
ADNet 0.8712 0.8154 0.9308 0.9336 0.9308 0.7962 0.7776 0.8633 0.8291 0.8655  
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performance metrics such as accuracy (ACC), sensitivity (SEN), and specificity (SPE) compared to other base models. These results 
further validate the effectiveness of our improved approach, especially in identifying patients with Alzheimer’s disease. Our model is 
able to classify and detect potential Alzheimer’s disease cases more accurately, providing strong support for early diagnosis and 
treatment. 

4.5. Limitations and future work 

Although ADNet approaches demonstrate strong performance on the ADNI dataset, they are subject to certain constraints. Pri-
marily, the method heavily relies on MRI images, which may not be suitable for all patients, particularly those with implanted metal 
objects or pacemakers. Additionally, there exist alternative data sources for predicting AD, such as resting-state functional magnetic 
resonance imaging (rs-fMRI) and positron emission tomography (PET), which offer distinct information that could contribute to a more 
comprehensive understanding of a patient’s condition. 

To address these limitations, forthcoming research will concentrate on the following areas:  

(1) Integration of multiple data sources: The amalgamation of data from diverse sources, including MRI, PET, and cognitive 
assessment, can yield a more holistic comprehension of Alzheimer’s disease. The amalgamation of this data may facilitate the 
development of more precise diagnostic models that consider multiple facets of the disease concurrently.  

(2) Enhancement of the interpretability of AI models: Presently, AI models like ADNet can furnish accurate predictions but lack 
transparency in their decision-making processes. It is imperative to devise methods that can elucidate model predictions, 
thereby fostering trust in these models and facilitating their integration into clinical practice. 

5. Conclusion 

This study introduces a novel approach for classifying Alzheimer’s disease, referred to as ADNet. Firstly, in this paper, the 
depthwise separable convolution is applied in VGG16 network to replace the traditional ordinary convolution, which reduces the 
parameters of the model and improves the computational efficiency. At the same time, using the ELU activation function instead of the 
ReLU activation function helps to avoid the problems of gradient disappearance and gradient explosion, and enhances the stability of 
the model. In addition, this paper introduces the SE attention module, which improves the attention of the model to important features 
and reduces the interference of irrelevant features by adaptively adjusting the channel weight, so as to effectively improve the clas-
sification accuracy. The introduction of this attention mechanism enables the model to better capture the key features in MRI images 
and provide more accurate classification and discrimination ability. In terms of multi task learning, in addition to the main task of 
Alzheimer’s disease classification, this paper also constructed two auxiliary tasks, namely CDR value regression and MMSE value 
regression. By sharing feature information, multiple tasks promote each other, which improves the generalization ability and clas-
sification accuracy of the model. This design of multi task learning makes the model more comprehensive in understanding and 
representing the clinical information of patients, which is of great significance for the early diagnosis of Alzheimer’s disease. Through a 
large number of experiments on the public data set ADNI, this method shows excellent diagnostic effect. The experimental results show 
that the classification accuracy of Alzheimer’s disease based on ADNet is significantly better than other common classification net-
works, which provides strong support for the early diagnosis and treatment of Alzheimer’s disease. 
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Table 5 
MIRIAD and AIBL datesets  

Datasets class Gender(male/female) Age MMSE score 

MIRIAD CN 12/11 70.36 ± 7.28 29.39 ± 0.84 
AD 19/27 69.95 ± 7.08 19.20 ± 4.01 
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AD 58/58 71.27 ± 7.08 20.58 ± 5.21  
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