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Pumping approximately integrable systems
Florian Lange1, Zala Lenarčič1 & Achim Rosch1

Weak perturbations can drive an interacting many-particle system far from its initial

equilibrium state if one is able to pump into degrees of freedom approximately protected

by conservation laws. This concept has for example been used to realize Bose–Einstein

condensates of photons, magnons and excitons. Integrable quantum systems, like the

one-dimensional Heisenberg model, are characterized by an infinite set of conservation laws.

Here, we develop a theory of weakly driven integrable systems and show that pumping can

induce large spin or heat currents even in the presence of integrability breaking perturbations,

since it activates local and quasi-local approximate conserved quantities. The resulting steady

state is qualitatively captured by a truncated generalized Gibbs ensemble with Lagrange

parameters that depend on the structure but not on the overall amplitude of perturbations nor

the initial state. We suggest to use spin-chain materials driven by terahertz radiation to

realize integrability-based spin and heat pumps.

DOI: 10.1038/ncomms15767 OPEN

1 Institute for Theoretical Physics, University of Cologne, Zülpicher Stra�e 77a, D-50937 Cologne, Germany. Correspondence and requests for materials
should be addressed to Z.L. (email: zala.lenarcic@thp.uni-koeln.de).

NATURE COMMUNICATIONS | 8:15767 | DOI: 10.1038/ncomms15767 | www.nature.com/naturecommunications 1

mailto:zala.lenarcic@thp.uni-koeln.de
http://www.nature.com/naturecommunications


A
simple classical example for a weakly driven system is a

well-insulated greenhouse. Due to the approximate
conservation of the energy within the greenhouse, even

weak sunlight can lead to high temperatures in its interior, which
can be computed from the simple rate equation for the energy
transfer. Similarly, large spin accumulation can be achieved in
systems with approximate spin conservation1. Using approximate
conservation of the number of photons, magnons or exciton
polaritons, one can use pumping by light to reach densities, which
allow for the realization of Bose–Einstein condensates2–4.
Number-conserving collisions induce a quasi-equilibrium state
in these systems, which can be efficiently described by
introducing a chemical potential whose value is determined by
balancing pumping and decay processes. Related theoretical
approaches that describe electron-phonon systems far from
equilibrium are so-called two-temperature models5: here one
uses that the energy of the electrons and phonons are
approximately separately conserved to introduce two different
temperatures for the subsystems.

Integrable many-particle systems, like the one-dimensional
(1D) fermionic Hubbard model or the XXZ Heisenberg model,
are described by an infinite number of (local or quasi-local)
conservation laws6–11. In closed integrable systems those prevent
the equilibration into a simple thermal state, for example, after a
sudden change of parameters. Instead the system can be described
by a generalized Gibbs ensemble (GGE)12–21

r0� exp �
X

i

liCi

 !
ð1Þ

where Ci are the conserved quantities and li the
corresponding Lagrange parameters. It has also been shown
experimentally22 that GGEs for a Lieb–Liniger model can provide
highly accurate descriptions of interacting bosons in 1D.

Many materials are described with high accuracy by integrable
models23, however, weak integrability breaking terms and the
coupling to thermal phonons imply that in equilibrium these
systems are described by simple thermal states, r0� e�bH ,
instead of GGEs. The proximity to the integrable point and the
presence of approximate conservation laws leads to enhanced
spin or heat conductivities (within linear-response theory)24–26

and also to a slow relaxation after a quantum quench
(via GGE-prethermalization) towards the equilibrium state27.

We will show that—as in the greenhouse example, see
Fig. 1—such an approximately integrable system can be driven
far from its thermal equilibrium by weak perturbations arising,
for example, from a driving periodic in time or from coupling to a
non-thermal bath. To balance the constant heating due to driving
the system has to be weakly open, for example, by coupling to a
phonon bath. As we will demonstrate this mechanism can be used
for example to create large spin and heat currents. Besides
the quasi-1D systems considered by us, also approximately
many-body localized systems are characterized by infinitely many
approximate conservation laws which may lead to a strong
response to driving28,29.

Results
Weakly driven system. We consider an interacting many-body
system that is approximately described by Hamiltonian H0 and
characterized by a finite or infinite number of (quasi-)local
conserved quantities Ci, [H0, Ci]¼ 0, one of them being H0.
Energy and other conservations are weakly broken by coupling to
thermal or non-thermal baths and/or perturbations periodic in
time. For simplicity, we assume periodic boundary conditions and
a (discreet) translational invariance. We describe the system with
density matrix r whose dynamics is governed by the Liouvillian

super-operator L̂,

_r¼L̂r; L̂ ¼ L̂0þ EL̂1; ð2Þ

where L̂ can be split into the dominant unitary Hamiltonian
evolution L̂0r¼� i H0; r½ � and perturbation L̂1 of strength E. We
are interested in the limit of small E for t-N, where a unique
(Floquet) steady state rN is obtained. The general structure of
perturbation theory in this case has, for example, been discussed
in refs 30–32. In this limit, rN can be approximated by
r0¼limE!0limt!1r with L̂0r0¼0 according to equation (2).
We assume and later support numerically that r0 is approxi-
mately described by a GGE, see equation (1).

Here it is essential to note that—as in the greenhouse example
discussed above—the parameters li are not determined by the
initial state but by the form of the weak perturbations L̂1.
Our central goal is to compute the li. We first discuss the case of
Lindblad dynamics, where perturbation theory linear in E can be
used, and then focus on Hamiltonian dynamics where we have to
consider E2 contributions.

Markovian perturbation. Within the Markovian approximation
one can use the Lindblad form for L̂1 (ref. 33). Note that Lindblad
dynamics is considered here mainly for pedagogical purposes
(formulas are simpler) while no Lindblad approximation is used
for the models studied below. The coefficients li that fix the GGE
are determined from the condition that the change of the
approximately conserved quantities has to vanish in the steady
state

_Ci
� �
¼ Tr CiL̂r0

� �
¼ Tr CiEL̂1r0

� �
¼! 0; ð3Þ

where we used that L̂0r0¼� i H0; r0½ �¼0. Relation (3) yields a set
of coupled equations for li, where the number of equations is
equal to the number of conserved quantities. We define the
super-projector P̂ onto the tangential space of GGE density
matrix,

P̂X � �
X

i;i0

@r0

@li
w� 1
� �

ii0Tr Ci0Xð Þ; ð4Þ

using wii0 ¼ �Tr(Ci@r0/@li0). Then the conditions for r0 can be
compactly written as

L̂0r0¼0; P̂ L̂1r0

� �
¼0: ð5Þ

This equation can also be derived by considering higher order
perturbations in E, see Methods for details.

Hamiltonian perturbation. For Hamiltonian dynamics
EL̂1r¼� i H1; r½ �, where H1 may be a sum of several integrability
breaking perturbations. Perturbation theory linear in E vanishes,
TrðCiEL̂1r0Þ¼0 for all li. Therefore one has to expand to order E2

and equation (5) is replaced by

L̂0r0¼0; P̂ L̂1L̂� 1
0 L̂1r0

� �
¼0: ð6Þ

Since P̂ðL̂1r0Þ¼0, L̂1r0 is not in the kernel of L̂� 1
0 .

For periodic driving this equation has to be interpreted within
the Floquet formalism, see Methods.

Model. As discussed in the introduction, our goal is to describe a
situation which can be realized experimentally in spin-chain
materials driven by lasers operating in the terahertz regime.
We assume that spin chains are approximately described by a
spin-1/2 XXZ Heisenberg model, possibly in the presence of an
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external magnetic field B,

H0¼
X

j

J
2

Sþj S�jþ 1þ S�j Sþjþ 1

� �
þDSz

j Sz
jþ 1�BSz

j : ð7Þ

The system is driven out of equilibrium by a weak (integrability
breaking) time-dependent perturbation

Hd¼EdJ
X

j

ð� 1Þjþ 1Sj � Sjþ 1sinðotÞþ ð� 1ÞjSz
j cosðotÞ

� �
;

ð8Þ

with driving frequency o. This specific term has been chosen
because it can induce heat and spin currents (as can be shown
by a symmetry analysis), and because it can be realized
experimentally. Such staggered exchange couplings and staggered
magnetic fields arise naturally in certain compounds with
(at least) two magnetic atoms per unit cell when coupled to
uniform electric and magnetic fields, respectively34–37. See Fig. 1
for a schematic drawing of such a compound and Methods
for concrete experimental suggestions. Therefore Hd can be
realized by shining a laser (typically at terahertz frequencies) onto
the sample. In this case E2

d is proportional to the laser power.
Note that for T¼ 0 and B¼ 0 in the adiabatic limit, o-0,
equations (7) and (8) realize an adiabatic Thouless pump, where
per pumping cycle one spin is transported by one unit cell38.
We will be interested in the opposite regime of large o and large
(effective) temperatures.

Formally, the periodic perturbation Hd would drive the system
to infinite temperature39–42 (up to remaining conservation laws43,
possibly through a prethermal-like regime44). In a solid state
experiment this is prohibited by the coupling to phonons and,
ultimately, to the thermal environment of the experimental
set-up. We mimic this effect by coupling the spin system to a bath
of Einstein phonons, Hph

0 ¼oph
P

j awj ajþ . . . , where dots stand
for the couplings to further reservoirs which guarantee that the
phonon system is kept at fixed temperature Tph, rph� e�Hph

0 =Tph .
See Methods for details on finite size calculation using a
broadened distribution of phonon energies. The (weak)
coupling to the spin system is described by

Hph¼EphJ
X

j

Sj � Sjþ 1 ajþ ayj
� ��

þ gm Sx
j Sz

jþ 1þ Sz
j Sx

jþ 1

� �
ajþ ayj
� ��

:

ð9Þ

To obtain a unique steady state it is essential to break all
symmetries, including the Sz conservation. Relativistic effects
which relax Sz are mimicked by gm in our approach. We expect
gm � 1 in materials without heavy elements. For simplicity, we
set gm¼ 1 within our numerics as this is found to minimize finite
size effects, without a qualitative influence on the results. Besides
phonons also other integrability breaking perturbations exist
in real materials, including defects, which typically dominate
at the lowest temperatures. For high temperatures of the order of
J (relevant for the considered set-up) it is realistic to assume that
phonon coupling dominates.

In the presence of a periodic perturbation, equation (8), in
the long-time limit the density matrix is changing periodically,
r(t-N)¼

P
ne� iontr(n) with rðnÞ

w¼rð� nÞ, n 2 Z. Within the
Floquet formalism one therefore promotes the steady-state
density matrix to a vector and Liouville operator to a matrix,
see Methods. For weak driving, Ed-0, only the n¼ 0 sector
remains and the GGE ansatz, equation (1), simply reads
rðnÞ0 ¼ðr0 � rphÞdn;0, where we included also the phonon density
matrix, see above.

Steady state. We will use two different approaches to determine
an approximate solution for the steady-state density matrix.
First, we will parametrize r0, equation (1), with a small number
of (quasi-)local conserved quantities, Ci, i¼ 1, y, NC.
In an alternative approach, feasible for small systems, we take
all conserved quantities into account: local and non-local,
commuting and non-commuting. While the second approach is
formally exact in the limit Ed,Eph-0, the first one is, perhaps,
more intuitive and can be computed for larger system sizes.

For the XXZ Heisenberg model an infinite set of mutually
commuting local conserved quantities Ci is known, see Methods.
C1 is the total spin C1¼

P
i Sz

i and C2¼HXXZ. Importantly, C3 is
the heat current45 C3¼ JH(B¼ 0). In addition there also exist
(infinite) sets of quasi-local commuting conserved quantities8–10.
As shown in refs 8,46 the spin-reversal parity-odd family has an
overlap with the spin current JS at DoJ. Therefore both heat and
spin current could show a large response to a weak perturbation.
For our analysis, we choose three or five (NC¼ 4, NC¼ 6)
most local conserved quantities Ci, i¼ 1, y, NC� 1. From the
quasi-local sets, we include as a single (effective) operator the
conserved part of spin current JS

c, computed numerically25,47.
For details see Methods. In the presence of an external magnetic
field, equation (7), the heat current also has, in addition to C3, a
spin current component, JH¼C3�BJS (ref. 45).

For the visualization of our results it is useful to define
generalized forces Fi in the space of Lagrange parameters by
rewriting P̂ _r¼

P
i
@r0
@li

Fi such that _li 	 Fi,

Fi¼
X

i0
w� 1
� �

ii0Tr Ci0 EL̂1L̂� 1
0 EL̂1r0

� �
ð10Þ

computed using exact diagonalization, see Methods. The vector F
is a function of the Lagrange parameters li, which points into the
direction of the steady-state stable fixed point obtained from
Fi¼ 0. In the absence of driving (Fig. 2a) one obtains the expected
thermal state with T¼Tph while all other Lagrange parameters li

vanish. For finite driving the GGE is activated and the li become
finite (Fig. 2b). To obtain the steady state, we solve wF¼ 0 using
Newton’s method.

For the second approach, performed on small N-site systems,
we first numerically construct a basis in the set of all (local
and non-local) conserved operators, Q¼ nj i mh j;with E0

m¼E0
n

� 	
,

where H0 nj i¼E0
n nj i. Due to degeneracies we find (for finite B and

DaJ) about 2 � 2N elements Qi 2 Q. In the limit Ed, Eph-0 the
steady-state density matrix rN has to fulfil L0r1¼ 0 and
therefore can be exactly written as a linear combination of the Qi,
r1¼

P
aiQi. Using equation (6), we therefore find that the

steady-state density matrix for Ed, Eph-0 is exactly given by the
unique eigenvector with eigenvalue zero of the matrix

LQmn¼�Tr Qym EL̂1L̂� 1
0 EL̂1Qn

� �
; ð11Þ

a b

Figure 1 | Greenhouse principle. (a) A well-insulated greenhouse exposed

to sunshine can heat up significantly since energy within it is approximately

conserved. (b) As the heat current in spin-chain materials is approximately

conserved even weak terahertz radiation can induce large heat current.

Material candidates must have appropriate crystal structure, schematically

denoted by dashed lines indicating alternating chemical bonds.
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where L̂1; L̂0 are Floquet matrices, see Methods. Note that only
the relative Ed/Eph and not the absolute strength of perturbations
determine r0, as can be seen by dividing the equations wF¼ 0 or
LQr0¼0 by E2

ph.

In Fig. 3, we show the expectation value of the energy and of
the heat current densities as functions of Ed/Eph taking into
account NC¼ 4, NC¼ 6, and all conserved quantities. The energy
density expectation value is already obtained with good accuracy
for NC¼ 4 and even better for NC¼ 6. The heat current vanishes
both in thermal equilibrium, Ed-0, and for Eph-0, where the
system is described by an infinite temperature state with finite
magnetization, r0� e� l1Sz

and H0h i¼�B Szh i. It takes its largest
value for Eph� Ed. For the currents a description in terms of
NC¼ 4 or 6 is qualitatively but not quantitatively accurate. Our
study strongly suggests that further quasi-local conserved
quantities contribute, as discussed in quench protocols15–17, see
also ref. 25. For the chosen parameters our results depend only
weakly on the system size N, see inset of Fig. 3. System size
analysis is performed for NC¼ 6 since the solution based on all
conservations cannot be obtained for larger systems.

Our set-up can also be used to create spin currents. Whilst, by
symmetry (bond-centered rotation in real and spin space by p
around y axis), a finite external field B is needed to obtain a finite
heat current, this is not the case for the spin current. Figure 4
displays the spin current density as a function of Ed/Eph for B¼ 0.
Qualitatively one obtains a behaviour rather similar to the results
for the heat current shown in Fig. 3 with a maximum in the spin
current for Eph� Ed.

The external magnetic field B is a parameter which can easily
be tuned experimentally. Figure 5 shows heat and spin current
densities as a function of external magnetic field B for
Ed=Eph
� �2¼2:5. Note that the sign of the magnetic field
determines the sign of the heat current JHh i¼ C3h i�B JSh i.
All main features of the B-dependence are semi-quantitatively
reproduced by the truncated GGE with NC¼ 6. For very large
magnetic fields the convergence to the steady-state fixed point
becomes slow as transitions rates connecting sectors with
different magnetization are strongly suppressed, see Methods
for further details.

Discussion
We have demonstrated that driving approximately integrable
systems activates and pumps into approximately conserved
quantities. Perhaps the most simple experimental set-up to
measure the pumping effect predicted in this work, is to use a
terahertz laser that excites a spin-chain material like Cu-benzoate
where by symmetry staggered terms of the form (8) are
expected34,35. As a consequence of the induced heat currents it
is anticipated that the system cools down on one side while it
heats upon the other. The direction of the effect can be controlled
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Figure 3 | Steady-state expectation values of conserved quantities.

Expectation values of (a) energy and (b) heat current densities for a

weakly driven spin chain, Ed, Eph-0, as functions of the ratio of driving

strength Ed and phonon coupling Eph. Red solid lines: exact result taking

into account all 7,969 conservation laws of a system of N¼ 12 sites.

(a) For the energy accurate results are already obtained with a GGE

ensemble based on NC¼4 (dot-dashed lines) or NC¼6 (dashed lines)

conserved quantities. (b) Also the heat current JH¼C3� BJS is

qualitatively well described by the GGE ensemble but quantitative

deviations are larger. Inset: Finite size analysis for (local) C3 based on

GGE ensemble with NC¼6 conserved quantities. Parameters: J¼ 1,

D¼0.8, B¼ � 1.0, o¼ 1.6 oph, oph¼ Tph¼ 1.
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Figure 4 | Spin current in the steady state. For vanishing magnetic field a

spin current (but no heat current) is generated within our model for finite

ratios of Ed/Eph. The expectation value of spin current density is again maximal

for Ed/EphE1. Parameters: J¼ 1, D¼0.8, o¼ 1.6 oph,oph¼ Tph¼ 1, N¼ 12.
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Figure 2 | Force field with thermal and non-thermal steady state.

Effective force F in the space of Lagrange parameters (b, l3) using

e�bH0 � l3C3 as an ansatz for the generalized Gibbs ensemble. Parameters:

J¼D¼ � B¼o¼oph¼ Tph. Lagrange parameters (b, l3) are plotted in

units 1/J and 1/J2, respectively. (a) In the absence of an external driving,

Ed¼0, the stable fixed point (red dot) is given by the thermal ensemble,

b¼ 1/Tph, l3¼0. (b) When the system is driven by Hd (Ed¼ Eph), it heats up

and l3 becomes finite.
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either by changing the direction of the laser beam or the sign of
the external magnetic field B.

For the chosen parameters the spin and heat currents
expressed in dimensionless units appear to be rather small, of
the order of 10� 3. While these values can definitely be increased
by tuning parameters, for example the external magnetic field,
it is important to note that the currents are actually quite
large compared to the typical heat or spin currents obtained in
bulk materials. To create a heat current of similar size in a good
heat conductor like Cu (assuming J � kB � 100 K, 5 Å for the
distance of the spin chains, and kCuE400 Wm� 1 K� 1) one
would need a temperature gradient of several 105 Km� 1.
Similarly, to create a (transversal) spin current of comparable
size in a heavy element like Pt using the spin Hall effect
(assuming rPtE10 mO cm and aPt

s 	 10% for the spin Hall
angle48) one needs electric fields of the order of 104 V m� 1 or
sizable current densities of the order of 1011 Am� 2. These
numbers are even more remarkable when one takes into account
that the electron densities in Cu or Pt are at least an order of
magnitude higher than the spin density for spin chains with a
distance of 5 Å.

While our study has focused on the steady state, it is
instructive to discuss the relevant timescales for its buildup. For
this argument, we consider a quench where at time t¼ 0 an initial
state is perturbed both by the integrable part of the Hamiltonian
and by small non-integrable perturbations. At short times of the
order of several 1/J the initial state will prethermalize27,49–52 into
a GGE, where the values of the conserved quantities, Cih i, are

set by the initial conditions (with small corrections from the
perturbations52,53). Further time evolution can be approximately
described by a GGE with time-dependent Lagrange
parameters. Their time-dependence is determined by
perturbations which assert forces Fi� E2, such that dli/dtEFi.
Governed by the perturbations the system will loose the memory
of its initial condition on a timescale of order 1/E2 and relax to the
steady state (obtained from Fi¼ 0) which is, in general,
completely unrelated to the prethermalized state. Note that the
same approach predicts ordinary thermalization in the absence of
external driving.

Our results suggest that the concept of generalized GGEs has a
much broader range of application than previously anticipated,
now extended to open systems where symmetries are not
exact and integrability is weakly broken. A truncated GGE
proved to be useful for qualitative description, however, it showed
quantitative discrepancies most probably due to disregarded
quasi-local conserved quantities, as observed already in quench
protocols15,16. We are planning a future study tailored to address
this issue systematically. It would be interesting to develop
integrability-based methods similar to the quench-action
approach15,16,54,55 to treat such situations.

Most important for applications is that the integrability is
not required to be realized exactly but only approximately.
Efficient pumping requires only that the pumping rates are of the
same order of magnitude as the loss rates arising from
integrability breaking terms. Especially the integrability-based
creation of large spin currents could find its application in future
spintronics devices.

Methods
Perturbing around q0. The central equations (5) or (6), used to determine the
density matrix r0 in the limit E-0, have to be consistent and can also even be
derived by considering perturbations around r0, rN¼ r0þ dr.

First, the leading dr correction to _Ci
� �

, equation (3), arising from Tr CiL̂0dr
� �

which is nominally of the same order as Tr CiEL̂1r0

� �
vanishes trivially as

Tr(Ci[H0, dr])¼Tr(dr[Ci, H0])¼ 0.
For arbitrary r0, dr is exactly given by dr¼� L̂� 1EL̂1r0, where L̂� 1 is a

short-hand notation for limZ!0ðL̂ � Z1̂Þ� 1 with the infinitesimal regularizer Z. The
correct expansion point r0 is found if limE!0dr¼0. Below we show that for
the projection operator P̂, equation (4),

L̂� 1P̂�O E� 1
� �

; ð12Þ

which would yield L̂� 1P̂EL̂1r0 �Oð1Þ. This contradicts our perturbative approach
unless P̂L̂1r0¼0, as set by our condition equation (5).

Equation (12) is a consequence of the fact that P̂ projects onto the tangential
space to GGE density matrix. In this space L̂0 vanishes by definition,
L̂0 @r0=@lið Þ¼0, and L̂¼L̂0 þ EL̂1 is therefore of order E. Technically, this can be
seen by using the general relation

X̂þ Ŷ
� �� 1 � X̂ � 1¼� X̂þ Ŷ

� �� 1
ŶX̂ � 1; ð13Þ

for

X̂¼P̂EL̂1P̂;

Ŷ¼L̂0 þ Q̂EL̂1Q̂þ P̂EL̂1Q̂þ Q̂EL̂1P̂;
ð14Þ

with Q̂¼1̂� P̂ and X̂þ Ŷ¼L̂. Then

L̂� 1P̂¼ X̂þ Ŷ
� �� 1

P̂

¼X̂� 1P̂� X̂þ Ŷ
� �� 1

Q̂ Ŷ P̂ X̂� 1P̂

�O E� 1
� �

þOð1Þ
ð15Þ

The second term is O(1) as L̂0P̂¼0 and therefore ŶP̂�OðEÞ. The divergence
of L̂� 1P̂ for E-0 can be directly related to the fact that integrable systems
are characterized by infinite conductivities (finite Drude weights) at finite
temperatures56 as can, for example, be seen24 within the memory matrix
formalism57.

All arguments given above can be generalized to situations where leading
corrections arise from second-order perturbation theory in which case one obtains
equation (6) instead of equation (5).
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Figure 5 | Currents in the steady state at different magnetic field.

(a) Heat current JH, (b) spin current JS, and C3 densities as a function of

external magnetic field B obtained from a GGE ensemble with NC¼6

conserved quantities (dashed) or from an exact calculation (solid)

including all conservations. Parameters: Ed=Ephð Þ2¼2:5, J¼ 1, D¼0.8,

o¼ 1.6 oph, oph¼ Tph¼ 1, N¼ 12.
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Staggered hopping and magnetic field modulation. Sizable staggered g-tensors
leading to staggered B-fields have been observed in a number of different
compounds34–37. Similarly an external electric field will distort the crystalline
structure in these materials, leading to staggered exchange couplings linear in
homogeneous electric fields. An example of such a material is Cu-benzoate34 with
the above modulations allowed by symmetry for electric (magnetic) fields applied
in the 010 (001) crystallographic direction. In this system the staggered g-tensor
has been measured to be B0.08 (ref. 35), the size of the staggered exchange
coupling is unknown. For simplicity, we assume in equation (8) that the two
staggered terms are of the same size.

Conservation laws of the XXZ Heisenberg model. An infinite set of local
conserved quantities Ci of the Heisenberg model HXXZ¼H0(B¼ 0) can be obtained
using the boost operator Ob¼� i

P
j jhj;jþ 1 (where HXXZ¼

P
j hj,jþ 1) from the

recursion relation [Ob, Ci]¼Ciþ 1 for i41 with C1¼
P

j Sz
j , C2¼HXXZ (ref. 7).

In general, Ci are operators involving maximally i neighbouring sites. Importantly,
C3 in the absence of external magnetic field equals the heat current

JHðB¼0Þ¼C3¼J2
X

j

S0j
S00jþ 1

� �
� S0jþ 2 ð16Þ

with rescaled spin operators S0aj ¼
ffiffiffiffiffi
la
p

Sa
j ; S00aj ¼

ffiffiffiffiffiffiffiffiffiffiffi
lz=la

p
Sa

j for lz¼D/J, lx¼ ly¼ 1.
In the presence of external magnetic field, equation (7), heat current has in addition
to C3 also a spin current component,

JH¼J2
X

j

S0j
S00jþ 1

� �
� S0jþ 2 �BJS: ð17Þ

As understood recently there also exist families of quasi-local conserved
quantities8–10, which are mostly disregarded in our study with the exception of a
spin-reversal parity-odd operator, JS

c. The latter is constructed as the conserved part

of the spin current operator JS,

JS¼i
J
2

X
j

Sþj S�jþ 1 � S�j Sþjþ 1

� �

Jc
S¼
X

~n

~nj i ~nh jJS ~nj i ~nh j
ð18Þ

where ~nj i are simultaneous eigenstates of the Ci. Since it is known that the spin
current has an overlap with the quasi-local family45 for DoJ, the conserved JS

c

contains quasi-local components (and, possibly, non-local components not
contributing in the thermodynamic limit).

Floquet formulation. For a periodically driven system described by _r¼L̂ðtÞr with
L̂ðtþTÞ¼L̂ðtÞ the density matrix changes periodically in the long-time limit.
Therefore it is useful to split it into Floquet components,

r¼
X

n

e� inotrðnÞ; n 2 Z ð19Þ

with rð� nÞ¼rðnÞw and o¼ 2p/T. The Floquet components are combined into the
vector r¼ . . . rð� 1Þ; rð0Þ; rð1Þ; . . .

� �
. The Liouvillian is promoted to a (static)

matrix L̂nm¼inodnm þ L̂n�m with L̂n�m¼ 1
T

R T
0 L̂ðtÞeioðn�mÞtdt. Using this

notation, all results obtained for static Liouvillian super-operators directly translate
to the time-periodic case. Within our set-up H0, all approximate conservation
laws Ci and the GGE density matrix r0 are static and therefore the projection
operator P̂, equation (4), projects onto the n¼ 0 Floquet sector only. The
steady-state condition, equation (6), thus means that the approximately conserved
quantities do not grow after averaging over an oscillation period. To second order
in Ed only transitions from the n¼ 0 to the n¼±1 Floquet sector and back
contribute to equations (6) or (10) as L̂n¼0 for nj j41.

For the generalized force due to the periodic driving, we obtain from (10)

FðdÞi ¼
2p
N

E2
d

X
i0

w� 1
� �

ii0

X
m;k

rm Ci0 ;m �Ci0 ;k
� �


 kh jHðþ Þd mj i
��� ���2d E0

k � E0
m �o

� ��
þ kh jHð� Þd mj i
��� ���2d E0

k � E0
mþo

� � ð20Þ

where we used H0 eigenstates mj i with H0 mj i¼E0
m mj i, matrix elements

rm¼ mh jr0 mj i, Ci;m¼ mh jCi mj i, and the notation Hd¼EdðeiotHð� Þd þ e� iotHðþ Þd Þ.
Note that equation (20) contains—as expected—transition rates well-known
from Fermi’s golden rule. Equation (20) is evaluated for finite systems of size
N by replacing the d function by a Lorentzian (1/p)Z/(o2þ Z2) (Z¼ 0.1J for
N¼ 12).

Equation (20) is only valid for situations where all conservation laws commute
with each other, with Ci¼

P
m mj iCi;m mh j, see below for a brief discussion of the

non-commuting case.

Phonon coupling. As written in the main text, we assume that the phonon system
always remains at equilibrium, rph � e�Hph

0 =Tph . Using equation (10), after tracing
over phonons, we obtain for the generalized force

FðphÞ
i ¼2pE2

ph

X
i0

w� 1
� �

ii0

X
m;k

rm Ci0 ;m �Ci0 ;k
� �


J2 kh jSj � Sjþ 1 mj i
�� ��2 þ g2

m kh jSx
j Sz

jþ 1 þ Sz
j Sx

jþ 1 mj i
��� ���2� �


 nB E0
m � E0

k

� �
þ 1

� �
AðphÞ E0

m � E0
k

� ��
þ nB E0

k �E0
m

� �
AðphÞ E0

k � E0
m

� ��
ð21Þ

where nBðEÞ¼1=ðeE=Tph � 1Þ is the equilibrium Bose distribution evaluated
at the temperature Tph and A(ph)(o) is the phonon spectral function. For our finite
size calculation, we broaden the spectral function of the Einstein phonons using

AðphÞðoÞ¼YðoÞ o
ophZ

ffiffi
p
p e�ðo�ophÞ2=Z2

. This choice of broadening ensures detailed

balance relations (necessary to obtain a thermal state in the absence of driving)
and the positivity of phonon frequencies (necessary for stability). For all plots we
use Z¼ 0.4J. However, we have checked that similar results are obtained, for
example, for Z¼ 0.1J for magnetic fields up to Bj j ¼ 2J. For larger fields Z¼ 0.1J
does not provide a sufficient amount of relaxation between sectors with different
magnetization and convergence becomes slow and unstable. For Z¼ 0.4J larger
fields, Bj jt5J, can be reached.

Implementation of non-commuting conservation laws. As discussed in the main
text, a complete basis of all non-local commuting or non-commuting conserved
quantities is given by Q¼ nj i mh jwith E0

m¼E0
n

� 	
which solve the equation L̂0Qi¼0

for Qi 2 Q. Using the exact eigenstates of H0 it is straightforward to evaluate
equation (11), where we use for our finite size calculations the broadening
procedures described above. As a technical detail, we note that, when one follows
this procedure, one has to evaluate in the phonon sectors integrals of the typeR AðphÞ o0ð Þ

o�o0 nB o0ð Þdo0 numerically. For efficient evaluations, we use interpolating
functions for these integrals.

NC= 6

Exact
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Figure 6 | Additional verification of generalized Gibbs ensembles.

(a) The energy density and (b) the expectation value of another conserved

quantity C4 (4-spin operator) as a function of magnetic field B, obtained

from calculation using all conserved quantities (solid) and a GGE with

NC¼ 6 (quasi-) local conserved quantities (dashed).
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GGE estimation for other conserved quantities. To provide further support
for our claim that truncated GGEs give a semi-quantitative description of our
weakly open system we show in Fig. 6 additional comparison of the H0h i and C4h i
as a function of magnetic field B at Ed=Eph

� �2¼2:5, comparing as in the main
text the exact calculation including all conserved quantities and the truncated
GGE with NC¼ 6 (quasi-)local conserved quantities. The GGE ansatz captures
the right magnitude and the correct behaviour in the dependence on B also
for more complicated 4-spin operators like C4. We use same parameters as
for the Fig. 5 in the main text: Ed=Eph

� �2¼2:5, J¼ 1, D¼ 0.8, o¼ 1.6 oph,
oph¼Tph¼ 1, N¼ 12.

Code availability. Custom computer codes used in this study are available from
the corresponding author upon request. Documentation of the codes is not
available.

Data availability. Data is available from the corresponding author upon
reasonable request.
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