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The blood–brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump
P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium
decreases 5 days after brain irradiation, which may reduce P-gp function and increase brain levels of P-gp substrates. To elucidate
whether radiation therapy reduces P-gp expression and function in the brain, right hemispheres of rats were irradiated with single
doses of 2–25 Gy followed by 10 mg kg�1 of the P-gp substrate cyclosporine A (CsA) intravenously (i.v.), with once 15 Gy followed
by CsA (10, 15 or 20 mg kg�1), or with fractionated irradiation (4� 5 Gy) followed by CsA (10 mg kg�1) 5 days later. Additionally,
four groups of three rats received 25 Gy once and were killed 10, 15, 20 or 25 days later. The brains were removed and P-gp
detected immunohistochemically. P-gp function was assessed by [11C]carvedilol uptake using quantitative autoradiography. Irradiation
increased [11C]carvedilol uptake dose-dependently, to a maximum of 20% above non irradiated hemisphere. CsA increased
[11C]carvedilol uptake dose-dependently in both hemispheres, but more (Po0.001) in the irradiated hemisphere. Fractionated
irradiation resulted in a lost P-gp expression 10 days after start irradiation, which coincided with increased [11C]carvedilol uptake.
P-gp expression decreased between day 15 and 20 after single dose irradiation, and increased again thereafter. Rat brain irradiation
results in a temporary decreased P-gp function.
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The blood–brain barrier (BBB) is a major impediment for the
delivery of several drugs to the brain, including cytotoxic, anti-
epileptic, and anti-HIV drugs. The BBB is formed by specialised
capillary endothelial cells, which have several properties, such as
strong tight junctions with a high electrical resistance, absence of
fenestrations and presence of efflux-pumps such P-glycoprotein
(P-gp) and multidrug resistance associated protein 1 (MRP1). The
efflux pumps are transmembrane proteins, able to extrude actively
toxic compounds against a concentration gradient. P-gp effluxes a
broad spectrum of natural compounds, among which chemo-
therapeutic drugs, such as anthracyclines, taxanes, and epipodo-
phyllotoxins (Bart et al, 2000). MRP1 transports also a broad
spectrum of substrates, but these substrates are transported in
conjugation with or co-transported with glucuronide or glu-
tathione. Strategies to pass the BBB include therapies to change the
physical properties of the capillary endothelium by hypertonic

solutions or by bradykinin analogues (Bartus et al, 1996; Elliott
et al, 1996). Other strategies are directed to inhibition of efflux
pump function. At present the concept of efflux pump inhibition is
most frequently studied for P-gp. Studies in rodents have shown
that P-gp function can be inhibited with cyclosporin A (CsA)
(Hendrikse et al, 1998, 1999; Syvanen et al, 2006). To circumvent
toxic side effects of CsA in patients, therapies that influence P-gp
function could be utilised, such as radiotherapy. Early effects on
brain capillary endothelium were studied by Mima et al (1999).
They exposed one brain hemisphere of rats to a single dose of 25
Gy and demonstrated that P-gp expression was decreased in the
irradiated hemisphere compared to the non-irradiated hemisphere
5 days after irradiation. It is therefore hypothesised that brain
irradiation could also be used to enhance the delivery of P-gp
substrates to the brain. P-gp function can be measured with the
aid of radiolabelled P-gp substrates, such as [11C]verapamil
and [11C]carvedilol (Hendrikse et al, 1999; Bart et al, 2003,
2005; Syvanen et al, 2006; Takano et al, 2006). Other approaches
like the 111In-labelled 15D3 monoclonal anti-P-gp has been used
to visualise P-gp expression (van Eerd et al, 2006). To eluci-
date whether the decrease in P-gp expression, which was
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determined with immunohistochemistry using C219, also resulted
in a decrease of P-gp function, the latter was assessed by
autoradiography using [11C]carvedilol (Bart et al, 2005). The right
brain hemisphere of rats was irradiated with single fractions of
radiotherapy. Furthermore, to mimic clinically relevant palliative
whole brain radiotherapy, radiation was also administered in five
fractions of 4 Gy.

MATERIALS AND METHODS

Chemicals

Ketamine (Ketanests 25 mg ml�1) was obtained from Parke-Davis
(Munich, Germany), medetomidine (Domitors 10 mg ml�1) from
Pfizer (New York, NY, USA), CsA (50 mg ml�1) in cremophore EL
(650 mg ml�1) (Sandimmunes/Neorals) from Novartis (Basel,
Switzerland) and C219, a monoclonal antibody against rat and human
P-gp, from Thamer Diagnostica (Uithoorn, The Netherlands).
Peroxidase-conjugated rabbit-anti-mouse secondary antibody
(RAMPO) and peroxidase-conjugated goat-anti-rabbit antibody
(GARPO) were purchased from DAKO (Glostrup, Denmark),
3.3-diaminobenzidine tetrahydrochloride and isopentane from
Sigma (St. Louis, MO, USA), phosphate buffered saline (PBS,
140 mmol l�1 NaCl, 9 mmol l�1 Na2HPO4, 9 mmol l�1 NaH2PO4; pH
7.4)) and imidazole from Merck (Darmstadt, Germany), and
bovine serum albumin (BSA) from Serva Electrophoresis GmbH
(Hamburg, Germany). Desmethyl carvedilol was kindly provided
by Roche (Mannheim, Germany).

Preparation of [11C]carvedilol

[11C]carvedilol was synthesised as described earlier (Doze et al,
2002), with some modifications. Desmethyl carvedilol reacts with
[11C]methyltriflate, in the presence of K2CO3 (4 mg) with kryptofix
(4 mg) in 400 ml dry acetone for 5 min at 851C. The product was
purified by HPLC Platinum C18 column (300� 7.8 mm, Alltech,
Deerfield, IL, USA) with a solvent system of 25 mM NaH2PO4 (pH
7.6) : MeOH (43 : 57), flow rate 3 ml min�1 and UV detection at
254 nm. After evaporation of the solvent under reduced pressure,
[11C]carvedilol was dissolved in 0.3 ml saline.

Animal experiments

Male Wistar rats (HSD CPB wu, Harlan, The Netherlands)
weighing 225–275 g, were anesthetised with an intra-peritoneal
injection of a mixture of S-ketamine 25 mg ml�1 and medetomi-
dine 1 mg ml�1 (5 : 1, 1 ml kg�1). However, the rats who underwent
fractionated irradiation were anesthetised with inhaled isoflurane/
oxygen. The irradiations were performed with a Philips/Muller MG
300 X-ray machine operated at 200 kV (HVL¼ 1.05 mm Cu) and a
beam of 15 mA. The rat was protected against X-rays with a 3 mm
lead shield, except the right half of the skull. The right hemisphere
was irradiated with a dose rate of 1 Gy min�1 as measured in air
with a calibrated electrometer and ionisation chamber combina-
tion (Keithley 35040þNE 2571) at source to skin distance of
32 cm.

Four groups of rats were formed: Group 1 received 2 (n¼ 4),
5 (n¼ 4), 10 (n¼ 4), 15 (n¼ 4), and 25 Gy (n¼ 5) once, group 2
received 15 Gy once, group 3 received fractionated irradiations
(5 days 4 Gy, biologically effective dose equal to E10 Gy when an
a/b of 2 for brain is used) (van der Kogel, 2002) and group 4
received 25 Gy (n¼ 12) once. Five days post-irradiation, all rats
were anesthetised again with the medetomidine/S-ketamine mix-
ture, and the tail was cannulated. Rats in groups 1 and 3 received
10 mg kg�1 CsA, to obtain a better signal/noise ratio, and in group
2 10 mg kg�1 (n¼ 4), 15 mg kg�1 (n¼ 4), 20 mg kg�1 (n¼ 4) CsA.
CsA was administered intravenously (i.v.) after 30 min followed by
[11C]carvedilol i.v. After 15 min the rats were killed by extirpation

of the heart and the brain was removed. One part of the brain was
fixed in formalin and embedded in paraffin for immunohisto-
chemistry and the second part was frozen in isopentane at �701C
for autoradiographic assessment. The rats in group 4 were killed
10, 15, 20, and 25 days after irradiation. The removed brains were
fixed in formalin, embedded in paraffin, and stained for P-gp.

Animal studies were conducted according to the UKCCCR
Guidelines for the care and use of laboratory animals.

Histology/Immunohistochemistry

The embedded brains were cut into 4 mm slices, placed on
positively charged glass slides, and dried. The slices were dewaxed
in xylene and re-hydrated in serial ethanol washes (100, 96, and
70%). Subsequently, they were washed three times in 1% BSA/PBS
(pH 7.4). For histology, the slices were stained with hematoxylin/
eosin. For immunohistochemistry, the slices were heated three
times for 10 min in an autoclave at 1151C in 20 mM blocking
reagens (Boehringer Mannheim, Mannheim, Germany) at pH 6.0.
Endogenous peroxidase was blocked by incubation with 1% H2O2

in PBS during 30 min and a-specific antigens were blocked with 1%
rat serum in PBS. The slices were incubated with C219 antibody in
1% BSA/PBS (pH 7.4) for 1 h at room temperature in a humidified
chamber. The primary antibody was detected with a peroxidase
conjugated rabbit anti-mouse secondary antibody (1 : 50 diluted in
1% BSA/PBS) followed by incubation with peroxidase labelled
goat-anti-rabbit antibody (1 : 50 diluted in 1% BSA/PBS). As
chromagen served 3,3-diaminobenzidine tetrahydrochloride
(25 mg) and imidazole (50 mg) in PBS (50 ml) with 50 ml 30%
H2O2. After counterstaining with Mayer’s hematoxylin for 2 min,
slices were dehydrated through graded ethanols (70, 96, and 100%)
and mounted with coverslips. Rat liver served as positive controls
for P-gp staining. A negative control was made by processing a rat
liver slice identical to other slices, but without C219 antibody.
Slides were scored by two independent investigators, P-gp
expression was assessed semi-quantitatively by using a scale of
0–3 (0: no staining, 1: very weak staining, 2: intermediate staining,
3: strong staining). Strong staining was defined as comparable to
the strongest stained slide of all tissue slides. Samples were
considered negative if less than 10% of a specific subtype of cells
was stained.

Uptake of [11C]carvedilol in the brain

Brain slices of 80 mm thickness were prepared with a Cryo-cut
microtome, model 840 (American Optical Corp., Buffalo, NY, USA)
at �71C, placed on object glasses and dried at room temperature.
Cyclonet (Super Sensitive, Packard Instrument Company Inc.,
Meriden, CT, USA) storage phosphor screens were exposed to the
slices for at least 400 min (20 half-lifes of [11C]) and subsequently
analysed with Optiquant analysis software (version 03.00, Packard
Instrument Company Inc., Meriden, CT, USA). To convert from
the photostimulated luminescence (PSL) of the exposed screen into
Bequerel (Bq), a calibration line was made during each experiment.
Regions of interest were drawn over the right (irradiated) and the
left (non-irradiated) hemisphere in all slices. The ratio of
[11C]carvedilol uptake in the right over the left hemisphere was
calculated. Exposition in each area was quantified with the aid of a
calibration line, converted into Bq, and corrected for injected dose
of [11C]carvedilol and body mass (Murata et al, 1996; Sihver et al,
1997; Ishiwata et al, 1999).

Calibration

In each experiment a 1 MBq ml�1 [11C]carvedilol solution in saline
was prepared. The solution was diluted to 714, 625, 500, 250, 125,
55.6, 26.3, and 17.2 kBq ml�1 and 10 ml of each dilution was loaded
on filter paper. The radioactivity (counts/min) of the pieces
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of filter paper was measured in the g counter (Compu Gamma,
LKB Wallace, Turku, Finland) for 15 s, corrected for decay,
and converted to Bq. Thereafter, the pieces were placed on the
phosphor storage screen at the same time as the brain slices and
exposed for the same time. The PSL of the spots from the
calibration pieces was measured and corrected for background
PSL. The calibration lines were highly reproducible. The mean
direction-coefficients of the individual calibration lines was
63� 103 (s.d.¼ 4.8� 103, n¼ 10). The equation of the linear
relationship between PSL and Bq from the combined calibration
line was: PSL¼ 65.3 kBq (r2¼ 0.99). The calibration lines showed a
good linearity between the radiation intensity (Bq) and the PSL
of the calibration samples of an order of 10 magnitudes.

Statistics

Wilcoxon rank tests were used to examine paired data from right
(irradiated) and left (non-irradiated) hemisphere. Univariate
analysis of variance was used to examine differences in uptake
ratio of [11C]carvedilol between groups of rats, which were exposed
to different single doses of X-rays (SPSS, version 12). Significance
was defined as Po0.05.

RESULTS

P-gp function measured by autoradiographic uptake of
[11C]carvedilol in rat brain

The [11C]carvedilol uptake in rat brains, expressed as the ratio
between the irradiated hemisphere vs the non-irradiated hemi-
sphere in group 1, 5 days after different doses of irradiation is
shown in Figure 1. Increasing the radiation dose resulted in
a higher [11C]carvedilol uptake ratio (P¼ 0.001). The fitted
curve shows a dose-dependent increase of the uptake ratio, to
1.20, which means that the increase in [11C]carvedilol uptake by
25 Gy irradiation is 20% compared to the non-irradiated hemi-
sphere. Furthermore, the fitted curve suggests that a plateau of
[11C]carvedilol uptake will be reached above 25 Gy. In Figure 1 is

also depicted that fractionated irradiation for 5 days with 4 Gy
(group 3) results in a 13% increased uptake in the irradiated
hemisphere, confirming the biologically equal effectiveness to
E10 Gy single dose for this end point.

The effect of different doses CsA combined with irradiation was
investigated in rats of group 2. Figure 2 shows that increasing
dosages of CsA pretreatment resulted in a dose-dependently
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Figure 3 Semiquantitative representation of P-gp expression
(mean7s.d.) in non-irradiated hemisphere (J) and irradiated hemisphere
(K) at different days after irradiation with 25 Gy, single dose.
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increased uptake of [11C]carvedilol, in both the irradiated and the
non-irradiated hemisphere, suggesting that maximal P-gp block-
ade was not reached. In individual rats, irradiation with 15 Gy
single dose resulted in a 20–30% higher uptake in the irradiated
hemisphere compared with the non-irradiated hemisphere
(P¼ 0.02).

P-gp expression measured by immunohistochemistry

In rats that underwent single-dose irradiation (groups 1 and 2),
P-gp was equally expressed at the endothelial wall of brain
capillaries in the irradiated and non-irradiated hemisphere on day
5. P-gp expression in the rats that underwent single-dose
irradiation (group 4) is shown in Figure 3. P-gp expression is
reduced 15 days after irradiation, and this reduction is maximal
after 20 days. Interestingly, P-gp expression restores to the same
level as before irradiation between days 20 and 25. Furthermore, in
rats who underwent fractionated dose irradiation (5� 4 Gy), P-gp
is not detectable immunohistochemically on capillary endothelium
10 days after start of the irradiation (Figure 4A vs 4B). As expected
other morphological changes of brain tissue were not found at
these time points after irradiation.

DISCUSSION

The present study shows that single and fractionated doses of
irradiation of rat brains, increases brain uptake of the P-gp
substrate [11C]carvedilol after 5 days. This coincided with a
maximal reduction in P-gp expression 20 days after single-dose
irradiation and a complete loss of P-gp expression 10 days after the
start of fractionated irradiation (5� 4 Gy). After 25 days P-gp
expression returned to the same values, as before radiotherapy.

Five days after irradiation there is a discrepancy between P-gp
expression and [11C]carvedilol uptake. [11C]Carvedilol uptake
already is higher in the irradiated hemisphere, whereas P-gp
expression remains immunohistochemically unaffected. In con-
trast to Mima et al (1999), who showed a decrease in P-gp
expression by immunohistochemistry 5 days after irradiation
which was quantified by Western blot (�40%), we observed a
decrease in P-gp expression between day 15 and 20 after single-
dose irradiation. This discrepancy might be explained by the use of
different P-gp antibodies. Second, evaluation of P-gp function by
assessment of [11C]carvedilol uptake is most likely more sensitive
compared to semi-quantitative measurement of P-gp expression
by immunohistochemistry. Therefore, minor changes in P-gp
expression levels might be missed by immunohistochemistry
shortly after irradiation, which can already be detected with
quantitative PET autoradiography.

We showed that uptake of the P-gp substrate [11C]carvedilol
already increased 5 days after irradiation, which could indicate

that P-gp function decreases earlier than observed with P-gp
expression. Interestingly, P-gp expression disappeared completely
5 days after fractions of 4 Gy. Uptake of [11C]carvedilol after
fractionated irradiation was the same as for the calculated equal
biological effective single dose of 10 Gy (van der Kogel, 2002),
indicating that a dose-dependent relationship as shown with
single-dose irradiation could have clinical implications. The
impairment of P-gp functionality after single-dose irradiation is
most likely not solely due to a loss of P-gp expression. It is known
that irradiation induces membrane damage, which may result in
changes in membrane fluidity and in increased apoptosis of
irradiated cells (Berroud et al, 1996; Giusti et al, 1998; Vincent-
Genod et al, 2001). P-gp function is closely related to membrane
fluidity status (Sinicrope et al, 1992; Regev et al, 1999). Irradiation-
induced cell-membrane damage may therefore indirectly cause a
loss of function of transmembrane proteins such as P-gp, but could
also apply to other efflux pumps in the BBB such as multidrug-
resistance-associated proteins, organic anion/cation transporters
and glucose transporter 1. Apart from a reduction in P-gp
expression, reduced P-gp function may also be due to cell
membrane damage, which could be another potential explanation
for the discrepancy seen in P-gp function and expression of P-gp 5
days post-irradiation.

Little is known about early effects of irradiation on the BBB. If
an early decrease in P-gp expression and P-gp function in the BBB
also occurs in patients after brain irradiation, the results of this
study may have clinical implications. Since brain irradiation is
frequently applied to patients with brain metastases, it can be
speculated that irradiation can lead to a temporary window leading
to increased delivery of chemotherapeutic drug to the brain. This
could be considered as a tool in the treatment and prevention of
brain metastases. P-gp expression in the rat brain is maximally
reduced 20 days after radiotherapy and decrease of P-gp function
can already be measured at day 5 after irradiation. To elucidate
whether P-gp function decreases after irradiation in patients, P-gp
mediated kinetics can be measured in vivo with PET with, for
example [11C]verapamil as P-gp substrate in patients (Hendrikse
et al, 1998, 1999; Bart et al, 2003, 2005; Syvanen et al, 2006; Takano
et al, 2006). Future studies should elucidate if these results can be
extrapolated to the human setting. A study in which patients with
brain metastases who receive radiotherapy undergo a [11C]carve-
dilol or [11C]verapamil PET scan before and shortly after
radiotherapy would give helpful information. In this way an
optimal time schedule of chemotherapy following radiotherapy can
potentially be determined.
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Figure 4 C219 staining (magnification � 400) of a rat brain. Capillary endothelium stains brown in the non-irradiated hemisphere (A), revealing the
presence of P-gp. In the irradiated hemisphere (B), after five fractions of 4 Gy, no P-gp is present in the capillary endothelium. Arrows mark capillaries.
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