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Protein kinases modulate store-operated channels
in pulmonary artery smooth muscle cells
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Abstract

Background: This study investigates whether protein kinase G (PKG), protein kinase A (PKA) and protein kinase C
(PKC) are involved in the regulatory mechanisms of store-operated channel (SOC) in pulmonary arteries.

Methods: Pulmonary artery smooth muscle cells (PASMCs) were enzymatically dissociated from rat intralobar
pulmonary arteries. Whole cell, cell-attached and inside-out patch-clamp electrophysiology were used to monitor
SOCs in isolated PASMCs.

Results: Initially the Ca2+-ATPase inhibitor cyclopiazonic acid (CPA, 10 μM) initiated a whole cell current that was
reduced by the SOC blocker SKF-96365 (10 μM). Subsequent work using both cell-attached and whole cell
configurations revealed that the PKG and PKA inhibitors, KT5823 (3 μM) and H-89 (10 μM), also stimulated SOC
activity; this augmentation was attenuated by the SOC blockers SKF-96365 (10 μM) and Ni2+ (0.1 mM). Finally using
the inside-out configuration, the PKC activator phorbol 12-myristate 13-acetate (PMA, 10 μM) was confirmed to
modestly stimulate SOC activity although this augmentation appeared to be more substantial following the
application of 10 μM inositol 1,4,5-triphosphate (Ins(1,4,5)P3).

Conclusions: SOC activity in PASMCs was stimulated by the inhibition of PKG and PKA and the activation of PKC.
Our findings suggest that the SOC could be a substrate of these protein kinases, which therefore would regulate
the intracellular concentration of calcium and pulmonary arteriopathy via SOC.

Background
Intracellular calcium ([Ca2+]i) is an important second
messenger responsible for many physiological functions
including contraction, cell growth and gene expression.
Many agonists increase [Ca2+]i by mobilizing intracellu-
lar Ca2+ stores, such as the sarcoplasmic (SR) or endo-
plasmic (ER) reticulum. To maintain Ca2+ signaling,
these intracellular Ca2+ stores must be refilled and as
such many agonists are thought to activate specialized
plasma membrane channels termed store-operated
channels (SOCs) [1]. By definition, SOCs are Ca2
+-permeable cation channels which are activated by
depletion of intracellular Ca2+ stores [2]. The activation
of SOCs is often termed ‘capacitative Ca2+ entry (CCE)’,
as the principal function of these Ca2+ channels is to

refill the internal stores, as if they were in essence capa-
citors [3]. Inhibitors of the sarco-endoplasmic reticulum
Ca2+-ATPase pump (SERCA) are the most common
tools used to deplete the intracellular Ca2+ stores and
consequently activate these unique channels.
It is generally accepted that SOCs play an important

role in regulating smooth muscle contraction and cellu-
lar proliferation in the resistance vasculature [4,5]. In a
similar, although less documented manner, SOCs have
also been coupled to the genesis of pulmonary vascular
tone and pulmonary artery smooth muscle cell
(PASMC) proliferation [6]. Given their functional
importance and their role in severe pulmonary arterio-
pathies, there is considerable interest in defining how
SOCs are regulated in PASMCs [7]. To date, literature
specific to PASMCs has prominently stressed a role for
IP3, PIP2 and other lipid products in the activation of
these channels. While important, few pulmonary studies
have ventured beyond these confines to electrically
address other aspects of SOC regulation, including the
role of protein kinase G (PKG), protein kinase A (PKA)
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and protein C (PKC). This is surprising given the rich
nature of the research performed on smooth muscle
cells derived from resistance arteries isolated from the
coronary, mesenteric and hepatic circulation [4,8,9].
The main objectives of this study were to isolate and

characterize a SOC current in pulmonary artery myo-
cytes and determine whether protein kinases (i.e. PKG,
PKA and PKC) are involved in the activation of SOCs in
PASMCs. Whole cell, cell-attached and inside out
patch-clamp electrophysiology were used to monitor
SOCs and the effects of various agents known to modu-
late protein kinases were recorded. Like smooth muscle
cells isolated from the coronary, mesenteric and hepatic
circulation, SOCs in PASMCs were stimulated by PKG
and PKA inhibition and PKC activation. The functional
significance of these findings is discussed.

Materials and methods
Animal procedures and tissue preparations
All procedures and protocols were approved by the Ani-
mal Care and Use Committee at Kaohsiung Medical
University. Briefly, female Sprague-Dawley rats (250-350
g) were sacrificed with an overdose of urethane (1.25 g/
kg) via intraperitoneal injection. Lungs were carefully
removed and placed in cold phosphate-buffered saline
containing (in mM): 122 NaCl, 1 MgCl2, 0.5 KH2PO4,
10 HEPES, 5 KCl, 0.5 NaH2PO4, 11 Glucose, 0.1 EGTA,
0.1 CaCl2, with pH adjusted to 7.4 with NaOH. Intralo-
bar resistance pulmonary arteries (internal diameter
300-400 μm) were dissected free of the surrounding tis-
sue and cut into 1 mm segments.

Preparation of isolated pulmonary artery myocytes
Pulmonary artery smooth muscle cells (PASMCs) from
rat intralobar pulmonary arteries were enzymatically
isolated as follows. Arterial segments were placed in a
warm (37°C) cell isolation medium containing (in mM)
122 NaCl, 1 MgCl2, 0.5 KH2PO4, 10 HEPES, 5 KCl, 0.5
NaH2PO4, 11 Glucose, 0.1 EGTA (pH 7.4, NaOH) for
20 min. After this equilibration step, arterial segments
were initially incubated (37°C) in 1 mg ml-1 papain
and 0.85 mg ml-1 dithioerythritol for 20-25 min. After
enzyme treatment, the tissue was washed three times
in ice-cold isolation medium and triturated with a fire-
polished pipette to release the myocytes. Cells were
stored in ice-cold isolation medium for use on the
same day.

Patch-clamp electrophysiology
SOC currents in PASMCs were recorded in voltage-
clamp mode using whole cell, cell-attached and inside-
out configurations [10]. When employing whole cell
patch-clamp electrophysiology, PASMCs were placed in
a recording dish and perfused with a bath solution

containing (in mM): 120 sodium methanesulfonate, 20
Ca(OH)2, 0.5 3,4-diaminopyridine, 10 HEPES and 10
glucose (pH 7.4, HCl). A recording electrode pulled
from borosilicate glass (resistance, 4-7 MΩ for whole
cell recordings; 8-12 MΩ for cell-attached and inside-
out patches) was coated with sticky wax to reduce capa-
citance [11,12] and backfilled with pipette solution con-
taining (in mM): 138 CsOH, 2.5 EGTA, 1 Ca(OH)2 (free
internal [Ca2+] ~100 nM as calculated using EQCAL
software), 10 HEPES and 2 Na2ATP (pH 7.2, HCl). This
pipette was gently lowered onto a PASMC, negative
pressure was briefly applied to rupture the membrane
and a gigaohm seal was obtained. Cells were voltage
clamped at 0 mV while resting membrane currents were
recorded on an Axopatch 700A amplifier (Axon Instru-
ments, Union City, CA, USA). Cells were subsequently
equilibrated for 25 min and then exposed to a series of
voltage ramps (-100 mV to +100 mV, 0.2 Vs-1) or step
protocols (20 mV increments from -80 to +20 mV for
200 ms). These voltage protocols were performed under
resting conditions and in the presence of cyclopiazonic
acid (CPA, 10 μM) ± 1-[b-(3-(4-Methoxyphenyl)pro-
poxy)-4-methoxyphenethyl]-1H-imidazole HCl (SKF-
96365, 10 μM) [13,14], (9S,10R,12R)-2,3,9,10,11,12-hexa-
hydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-
diindolo-[1,2,3-fg:30,20,10-kl]pyrrolo[3,4-i][1,6]benzodia-
zocine-10-carboxylic acid methylester (KT5823, 3 μM)
or N-[2-((p-Bromocinnamyl)amino)ethyl]-5-isoquinoli-
nesulfonamide (H-89, 10 μM). Whole cell currents were
then filtered at 1 kHz (low-pass Bessel filter), digitized
at 5 kHz and stored on a computer for subsequent ana-
lysis with Clampfit 9.0. A 1 M NaCl-agar salt bridge
between the bath and the Ag-AgCl reference electrode
was used to minimize offset potentials [12,15]. All elec-
trical recordings were performed at room temperature.
When using the inside-out and the cell-attached patch

clamp configurations to monitor single channel activity,
recording pipettes were backfilled with a solution con-
taining (in mM): 126 CsCl, 10 HEPES, 11 Glucose, 1.5
CaCl2, 10 TEA, 5 4-AP, 0.0002 Iberiotoxin, 0.1 DIDS,
0.1 Niflumic acid and 0.005 Nifedipine (pH 7.2, NaOH).
The bath solution for the inside-out configuration con-
tained (in mM): 18 CsCl, 108 C2H3CsO2, 1.2 MgCl2, 10
HEPES, 11 Glucose, 1 BAPTA, 0.48 CaCl2, 1 Na2ATP
and 0.2 NaGTP (pH 7.2, Tris). The bath solution for the
cell-attached configuration contained (in mM): 126 KCl,
1.5 CaCl2, 10 HEPES, 11 Glucose and 0.01 Nifedipine
(pH 7.2, Tris). Following a 25 min equilibration period,
single channel activity in excised patches was recorded
at -80 mV, filtered at 100 Hz and digitized at 50 kHz.
These recordings were collected under resting condi-
tions and in the presence of phorbol 12-myristate 13-
acetate (PMA, 10 μM), inositol-1,4,5-triphosphate (Ins
(1,4,5)P3, 10 μM), KT5823 (3 μM) and H-89 (10 μM).
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Data analysis and statistics
Whole cell SOC currents were analyzed from the base-
line-to-peak amplitude within 50 ms. Single SOC cur-
rent amplitudes were calculated from idealized traces
of at least 60 s in duration using the 50% threshold
method and analyzed using Clampfit 9.0 as previously
described [8]. For single channel analysis, SOC activity
(NPo) was determined from continuous gap-free data
using Clampfit 9.0. The NPo was calculated from the
following equation: NPo = (Σtii)/T, where i is the num-
ber of channels open, ti is the open time for each level
i and T is the total time of analysis. Data are expressed
as means ± SE, n indicating the number of cells.
Repeated measures analysis of variance (ANOVA)
compared values at a given voltage. When appropriate,
a Tukey-Kramer pairwise comparison was used for
post hoc analysis. ANOVA followed by Dunnett’s test
was performed to statistically compare the open prob-
ability of SOCs. P ≤ 0.05 was considered statistically
significant.

Chemicals
Buffer reagents, papain, dithioerythritol, H-89, KT5823,
PMA, CPA, Ins(1,4,5)P3, NiCl2 and SKF-96365 were
obtained from Sigma-Aldrich Chemical Co. (St Louis,
MO, USA). All drugs and reagents were dissolved in
distilled water unless otherwise noted. CPA, PMA and
KT5823 were dissolved in dimethylsulphoxide at 10
mM. Serial dilutions were made in phosphate-buffered
solution to a final solvent concentration of ≤0.01%.

Results
CPA evoked whole cell currents in rat PASMCs
Our investigation of SOCs in PASMCs first began by
monitoring the whole cell currents evoked by CPA.
This assessment involved the application of voltage
ramps (-100 mV to +100 mV, 0.2 Vs-1) every 30 s from
a holding potential of 0 mV in order to inactivate vol-
tage-dependent Na+ and Ca2+ channels. The recording
solutions dictate that inward currents at negative poten-
tials should be the result of Ca2+ and Na+ influx, while
outward current at positive potentials should be puta-
tively generated by Cs+ efflux [13]. Figure 1 illustrates
that bath application of 10 μM CPA induces a whole
cell SOC current that displays modest outward rectifica-
tion and which reverses at -2 ± 1 mV (n = 6). In the
presence of CPA, current density at -100 mV and +100
mV peaked at -7.3 ± 1.1 pA pF-1 and 13.9 ± 1.1 pA pF-
1 (n = 6), respectively. These values were significantly
greater (P < 0.01) than control (-1.6 ± 0.1 pA pF-1 and
3.5 ± 0.3 pA pF-1 at -100 mV and +100 mV, respec-
tively). CPA evoked whole cell currents were subse-
quently attenuated by the addition of SKF-96365 (10
μM, a SOC inhibitor) to the perfusate. In the presence

of CPA and SKF-96365, current density at -100 mV and
+100 mV was 4.6 ± 0.8 pA pF-1 and 6.5 ± 1.1 pA pF-1,
respectively.

Activation of SOCs by a PKG inhibitor
To determine whether PKG can modulate SOCs, this
study first employed whole cell patch clamp electrophy-
siology to monitor SOC currents in the absence of pre-
sence of KT5823. The representative trace in Figure 2A
illustrates that the bath application of KT5823 (3 μM)
elevated SOC current and that SOC inhibitors SKF-
96365 (10 μM) and Ni2+ (0.1 mM) [13,16] reversed and
attenuated this effect respectively. As shown in Figure
2B, the mean inward current (at -80 mV) increased
from -21.6 ± 1.4 pA to -138.8 ± 12.0 pA (n = 6, P <
0.01) in the presence of KT5823 and this effect was lar-
gely eliminated by SKF-96365 (-23.5 ± 2.1 pA, n = 6, P
< 0.01) or Ni2+ (-82.0 ± 10.1 pA, n = 6, P < 0.01). With
whole cell measurements suggesting that PKG likely
inhibits SOCs in PASMCs, the cell-attached configura-
tion was subsequently employed to assess single channel
SOC activity prior to and following PKG inhibition.
Representative traces in Figure 3A show on two differ-
ent time scales that the bath application of KT5823 (3
μM) increases SOC activity. Summary data in Figure 3B
highlights that KT5823 elevated the mean open prob-
ability (NPo) from 0.0107 ± 0.0059 to 0.0589 ± 0.0063
(n = 6, P < 0.01).

Activation of SOCs by a PKA inhibitor
To ascertain the role of PKA in the modulation of
SOCs, this study again employed whole cell patch
clamp electrophysiology to monitor SOC currents in
the absence and presence of H-89. The representative
trace in Figure 4A shows that the addition of H-89 (10
μM) significantly increased the SOC current and that
the bath application of SKF-96365 (10 μM) and Ni2+

(0.1 mM) abolished and attenuated this elevation
respectively. Mean inward current (at -80 mV) plotted
in Figure 4B further emphasized that the H-89 induced
increase in SOC activity (-16.2 ± 0.5 pA to -98.8 ± 9.1
pA, n = 6, P < 0.01) was indeed effectively blocked by
SKF-96365 (-17.5 ± 1.6 pA, n = 6, P < 0.01) or Ni2+

(-59.4 ± 9.5 pA, n = 6, P < 0.01). With whole cell mea-
surements indicating that PKA likely inhibits SOCs in
PASMCs, the cell-attached configuration was once
again employed to monitor single channel SOC activ-
ity. The representative trace in Figure 5A nicely illus-
trates, at two different time scales, that the bath
application of H-89 (10 μM) elevates SOC activity.
Mean NPo was plotted in Figure 5B and reinforces that
single channel SOC activity rose from 0.0106 ± 0.0056
to 0.0798 ± 0.0028 (n = 6, P < 0.01) in the presence of
H-89.
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Figure 1 Cyclopiazonic acid (CPA) evokes an SOC conductance. Using whole cell patch clamp electrophysiology, PASMCs were voltage
clamped and then periodically exposed to voltage ramps (-100 mV to +100 mV) in the absence and presence of 10 μM CPA ± 10 μM SKF-
96365 (SKF). A, original traces showing that CPA activates whole cell SOC currents in PASMCs. SKF-96365 was added to the perfusate 12 min
after CPA. B, individual I-V relationships under resting conditions (a, Control), and in the presence of CPA (b) and SKF-96365 (c). C, mean I-V
relationships of whole cell SOC currents. Data are means ± SE, n = 6. * denotes significant difference CPA alone.
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Figure 2 PKG inhibition by KT5823 augments SOC whole cell currents. Using whole cell patch clamp electrophysiology, PASMCs were
voltage clamped and then periodically exposed to a step protocol (-80 mV to +20 mV, 20 mV increments, 300 ms duration) in the absence and
presence of 3 μM KT5823 ± 10 μM SKF-96365 (SKF) or 0.1 mM Ni2+. A representative trace and summary data can be found in A &B,
respectively. Data are means ± SE, n = 6. * and # denote significant difference from control and KT5832, respectively.
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Activation of SOCs by a PKC activator and IP3
Finally, to study the involvement of PKC and possibly
Ins(1,4,5)P3 in SOC modulation, the inside-out config-
uration was utilized to monitor these channels in the
absence and presence of PMA (a PKC activator) and Ins
(1,4,5)P3. As the representative traces in Figure 6A
show, bath application of PMA (10 μM) induced a mod-
est increase in SOC activity that was further augmented
by the addition of Ins(1,4,5)P3. The amplitude and NPo
histograms in Figure 6B and 6C statistical confirm this.
Of particular note was the increase in NPo from 0.0056
± 0.0023 to 0.2475 ± 0.0261 (P < 0.05) and to 0.8949 ±
0.1573 (n = 6, P < 0.05) as paired experiments advanced
from rest, to PMA addition and finally to the dual

application of PMA and Ins(1,4,5)P3. Cumulatively,
these experiments support an important role for PKC
and IP3 in the activation of SOCs in PASMCs.

Discussion
This study is the first to use patch clamp electrophysiol-
ogy to investigate the role of protein kinases in the
modulation of SOCs in rat PASMCs. To briefly sum-
marize, this study observed that PKG and PKA elicited
an inhibitory effect on SOC channels when measured at
the whole cell and single channel level. Conversely, PKC
appears to activate these channels and this augmenta-
tion was enhanced by the addition of Ins(1,4,5)P3

(Figure 7). The findings show that SOCs in PASMCs are

Figure 3 PKG inhibition by KT5823 augments single channel SOC activity. Using cell attached patch clamp electrophysiology, single
channel SOC activity in PASMCs was assessed (holding potential, -80 mV) in the absence and presence of 3 μM KT5823. Representative traces
and summary data can be found in A &B, respectively. Data are means ± SE, n = 6. * denotes significant difference from control.
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Figure 4 PKA inhibition by H-89 augments SOC whole cell currents. Using whole cell patch clamp electrophysiology, PASMCs were voltage
clamped and then periodically exposed to a step protocol (-80 mV to +20 mV, 20 mV increments, 300 ms duration) in the absence and
presence of 10 μM H-89 ± 10 μM SKF-96365 (SKF) or 0.1 mM Ni2+. A representative trace and summary data can be found in A &B, respectively.
Data are means ± SE, n = 6. * and # denote significant difference from control and H-89, respectively.
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diversely targeted by protein kinases. Such regulation
likely plays an important role in setting pulmonary
arterial tone under normal and pathophysiological
conditions.

Type and character of SOCs in pulmonary artery
myocytes
There are three types of SOCs described in vascular
smooth muscles. ISOC1 is the conductance (g = 2-3 pS)
described in rabbit portal vein myocytes. ISOC2 is the
conductance (g = 3 pS) described in aortic smooth mus-
cle. ISOC3 is the conductance described in mouse

anococcygeus muscle due to its estimated conductance
of less than 1 pS [4]. Single channel currents induced by
CPA have also been recorded in cell-attached patches
from cultured human PASMCs, which had a slope con-
ductance of about 5 pS [17]. From the differences in the
biophysical properties of SOCs recorded in smooth
muscles, it is evident that there are different types of
SOCs which probably reflect different molecular identi-
ties and possibly physiological functions [4].
SOCs play an important role in controlling Ca2+

influx, arterial tone development and smooth muscle
cell growth in the pulmonary vasculature [6,7]. While it

Figure 5 PKA inhibition by H-89 augments single channel SOC activity. Using cell attached patch clamp electrophysiology, single channel
SOC activity in PASMCs was assessed (holding potential, -80 mV) in the absence and presence of 10 μM H-89. Representative traces and
summary data can be found in A &B, respectively. Data are means ± SE, n = 6. * denotes significant difference from control.
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is commonly agreed that these channels are activated by
SR store depletion, their electrical properties do show
some degree of variability. For example, the I-V relation-
ship of SOC currents can be both linear in nature or
outward rectifying [9]. Their relative permeability for
monovalent and divalent cations has also been difficult
to precisely define but appears to shift among published
studies [17]. In this study, we report that CPA-evoked
currents in rat PASMCs display, in essence, a linear I-V
relationship at negative potentials and a limited degree
of outward rectification at positive potentials. Although
relative cation permeability was not directly ascertained,
the composition of our recording solutions dictates that
at negative potentials, Na+/Ca2+ influx should dominate
the whole cell current where as Cs+ efflux will dominate
at positive potentials. As such, the SOC channels noted
in this investigation share some of the same biophysical
characteristics as those previous isolated from rat and
human pulmonary arteries [17,18].

Activation of SOCs in pulmonary artery myocytes is
regulated by PKG and PKA
The guanylate cyclase-cyclic GMP-protein kinase G sig-
naling pathway plays a pivotal role in several physiologi-
cal processes including vascular tone development and
cell cycle progression. Broadly speaking, studies have
shown that activation of this NO-dependent signaling
pathway characteristically attenuates SOC activity in
smooth muscle [19-21]. This is exemplified by the inhi-
bition of SOCs not only in A7R5 cells [22] but in native
smooth muscle cells derived from the mouse anococcy-
geus and the rat systemic circulation [4,23,24]. In HEK-
293 cells expressing recombinant canonical transient
receptor potential isoform 3 (TRPC3), protein kinase G
was reported to phosphorylate and inhibit Ca2+ influx
through TRPC3 channels, the latter apparently function-
ing in a store-operated mode [20,25]. On the other
hand, cGMP did not affect the inactivation of Ca2+

release-activated Ca2+ current (ICRAC) in RBL-1 cells

Figure 6 Effects of PKC activation and Ins(1,4,5)P3 on single channel SOC activity. Using inside out patch clamp electrophysiology, single
channel SOC activity in PASMCs was assessed (holding potential, -80 mV) in the absence and presence of 10 μM PMA ± 10 μM Ins(1,4,5)P3.
Representative traces and amplitude histograms of single channel currents (a, control; b, PMA; c, PMA + Ins(1,4,5)P3 can be found in A &B,
respectively. Mean NPo data was plotted in C. Data are means ± SE, n = 6. * and # denote significant difference from control and PMA,
respectively.
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[26], nor did membrane-permeable analogs of cGMP
alter store-operated Ca2+ entry (SOCE) in Xenopus
oocytes [27], pancreatic acinar cells [28], or T lympho-
cytes [29]. Regulation of SOCE by cGMP is likely there-
fore to be cell type specific [25]. In a similar manner, it
is thought that the adenylate cyclase-cyclic AMP-PKA
signaling pathway relaxes vascular smooth muscle in
part due to the inhibition of SOCs [30]. Indeed, in por-
tal vein myocytes, b-adrenoceptor stimulation attenuates
SOC activity whereas PKA inhibitors (H-89 and
KT5720) elicit the reciprocal effect [31,32]. With regard
to PKA-mediated inhibition of SOCs in portal vein myo-
cytes there is some similarity to data obtained in Xeno-
pus oocytes [27,31]. Petersen and Berridge [27]
demonstrated that low concentrations of dibutyryl
cAMP (1-10 μM) inhibited Ca2+ influx but higher con-
centrations (1-10 mM) potentiated SOCE. It should be
noted that in corneal epithelial cells PKA has also
been shown to inhibit an epidermal growth factor-

evoked Ca2+ influx pathway, attributed to opening of
SOCs [33]. In this study, we extended the idea that both
the NO-cGMP-protein kinase G and cAMP-protein
kinase A signaling pathways effectively regulate SOCs by
demonstrating that PKG and PKA inhibition (KT5823
and H-89, respectively) augment single channel activity
in PASMCs. From a physiological perspective, this inhi-
bition would likely raise intracellular calcium ([Ca2+]i),
an event intimately tied to both contraction and prolif-
eration in PASMCs. Such alterations could in turn con-
tribute to the constriction and medial hypertrophy that
commonly underlies pulmonary arterial hypertension
(PAH).

Activation of SOCs in pulmonary artery myocytes is
regulated by PKC and IP3
Past studies have strongly linked PKC activation to the
augmentation of SOC activity in vascular smooth mus-
cle [32]. Particularly noteworthy has been the ability of

Figure 7 Diagram highlighting protein kinase modulation of SOCs in rat PASMCs. Note that protein kinase G (PKG) and protein kinase A
(PKA) inhibit SOC currents whereas protein kinase C (PKC) appears to activate SOC currents. PKC activation of SOC currents is augmented by
phospholipase C (PLC) activation and the production of Ins(1,4,5)P3. AC, adenylate cyclase; sGC, soluble guanylate cyclase.
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phorbol esters and 1-oleoyl-sn-glycerol (diacylglycerol
analogue) to activate and PKC inhibitors to attenuate
SOCs [4,8,34]. Interestingly, this PKC-induced activation
of vascular SOCs appears to be augmented by the pro-
duction of IP3 and/or the depletion of PIP2 [2,35]. Such
observations suggest some degree of cooperation among
the various signaling events activated by vasoconstrictors
via G-protein coupled receptors. In canine pulmonary
vein smooth muscle cells, activation or inhibition of
PKC was found to have no effect on SOCE [36]; thus,
there appears to be considerable diversity in the role of
PKC plays in regulating this Ca2+ entry pathway in dif-
ferent cells [34]. Perhaps SOCE pathways differ in differ-
ent blood vessels. Indeed, smooth muscle cells from
mesenteric and coronary arteries have store depletion
activated cation channels with distinct properties,
although both are activated by PKC [8]. A wide range of
properties have been reported for SOCs in different
smooth muscle preparations, suggesting that multiple
cation channels can be opened by store depletion
[37,38]. In this study of PASMCs, we observed a similar
phenomenon whereby the PMA-induced increase in
SOC activity was further enhanced by the application of
IP3. Generally speaking, in physiological states this acti-
vation would be more important than PKG and PKA
inhibition to induce both the contraction and prolifera-
tion in PASMCs, which promotes the development of
severe PAH.

Limitations
It is generally agreed that SOCs are relatively difficult to
isolate from other conductance channels in the plasma
membrane because of a deficiency of highly selective
pharmacological agents and the lack of selectively char-
acteristic electrophysiological properties. A previous
report [4] demonstrated that cell-attached recording
may be an improved method for studying SOCs in
smooth muscle, and benefits from the advantage of not
disturbing the intracellular milieu. In this study, we
initially showed that PKG and PKA inhibition and PKC
activation enhance the SOC currents in freshly dispersed
rat PASMCs. Nevertheless, over the time course of typi-
cal experiments, we cannot exclude the possibility that
an induced current of such amplitude is due to a change
in ‘leak’ which might occur, for example, due to myocyte
contraction. Accordingly, to further confirm our find-
ings, cell-attached and inside-out configurations were
used to measure single channel SOC activity with and
without PKG and PKA inhibitors (KT5823 and H-89)
and PKC activator (PMA) and IP3. The data obtained
from single channel SOC activity was consistent with
those of whole cell SOC currents. However, we still
need to interpret our findings cautiously because the
supposed opposite effects on SOC channels with

activators of PKG and PKA and/or inhibitors of PKC in
rat PASMCs remain unresolved. Also, it is not yet clear
what upstream and/or downstream signaling molecules
are involved in these protein kinase pathways.

Conclusions
In summary, this study presents evidence that protein
kinases play an important role in regulating SOCs in
smooth muscles derived from the pulmonary artery.
While McElroy et al. [34] previously used Ca2+-imaging
technique to show that protein kinases can regulate
SOCs in rat PASMCs, this investigation appears to be
the first to use patch-clamp electrophysiology to mea-
sure similar SOC regulation at the whole cell and single
channel level. Given that enhanced SOC activity has
been linked to the development of pulmonary arteriopa-
thies, we proposed that protein kinase modulation may
provide a means of attenuating the progression of these
debilitating disorders.
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